
Algorithms
for Picture Analysis Lecture 05: Length of a Curve

Definition of Length

Let φ be a parameterized continuous path φ : [a, b] → R2 such
that a 6= b, φ(a) = φ(b), and let φ(s) 6= φ(t) for all s, t

(a ≤ s < t < b).

C. Jordan defined in 1893 the following, today known as Jordan
curve in the plane:

γ = {(x, y) : φ(t) = (x, y) ∧ a ≤ t ≤ b}

A Jordan arc γ in the plane is defined by a subinterval [c, d]
where a ≤ c < d ≤ b.

A rectifiable Jordan arc γ has a bounded arc length as follows,
where de is the Euclidean metric:

L(γ) = sup
n≥1∧c=t0<···<tn=d

n∑
i=1

de (φ (ti) , φ (ti−1)) < ∞
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Alternative Definition

In a first attempt, C. Jordan proposed in 1883 the following
definition of a curve:

γ = {(x, y) : x = α(t) ∧ y = β(t) ∧ a ≤ t ≤ b}

However, using such a parameterization, G. Peano defined, in
1890, a curve known as the Peano curve that fills the whole unit
square. Despite that, this 1883 definition is in common use for
arc length calculation. We assume differentiable functions α and
β:

L(γ) =
∫ b

a

√(
dα(t)

dt

)2

+
(

dβ(t)
dt

)2

dt

In picture analysis, we have to deal with curves that are given in
digitized pictorial form and for which a parametric description
is often not of interest. However, the true length of an arc or
curve can be used to evaluate methodologies for measuring
length in picture analysis.
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A General Evaluation Scheme

1. Define a methodology for estimating the length of an arc or
curve (possibly limited to a particular class of arcs or
curves) assuming that this arc or curve is only given by a
particular finite representation (e.g., a polygon).

2. Consider examples of arcs or curves in the class of interest
where the true length is known; map these arcs or curves
into finite representations (e.g., by grid-intersection
digitization into an ordered sequence of grid points, or by
sampling into a polygonal chain) as assumed in your
methodology.

3. Apply your methodology for these finite representations
and compare the estimated length against the true length.

A consideration of various finite (i.e., of varying cardinalities)
representations of the same curve allows to understand how the
size of the discrete representation influences the accuracy of the
estimation.
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Estimation of π by Archimedes

(more than 2200 years ago)

class of curves: circles (i.e., curves of [today] known length 2πr)

finite representation: inner and outer regular n-gon (An n-gon is
called regular if its edges all have the same length.)

methodology: perimeter of inner n-gon as lower bound, and
perimeter of outer n-gon as upper bound; in the figure we have
n = 6, which gives

3 < π < 3.46

example: n = 96 (this is the maximum number n as used by
Archimedes), then

223
71 < π < 220

70 (i.e., π ≈ 3.14)
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the logical start is at n = 3: the equilateral triangle

then, by dividing each side by its perpendicular bisector, we can
construct (inner or outer) n-gons for n = 6, 12, 24, 48, 96, . . . (i.e.,
these are the varying representations of the same curve)

Inner nm-gon Pnm

perimeter P(Pnm
) = nm · em, assuming nm = 3× 2m edges of

length em

m = 0 (i.e., the inner equilateral triangle): e0 = r
√

3

m = 1 (i.e., the inner hexagon): e1 = r

in general (for inner nm-gons): em+1 =
√

2r2 − r
√

4r2 − e2
m

Outer nm-gon Qnm

again, consider perimeter P(Qnm) = nm · fm, assuming
nm = 3× 2m edges of length fm

m = 0 (i.e., the outer equilateral triangle): f0 = . . .

m = 1 (i.e., the outer hexagon): f1 = . . .

in general (for outer nm-gons): fm+1 = . . .

Page 5 February 2005



Algorithms
for Picture Analysis Lecture 05: Length of a Curve

Let P(Pnm) be the perimeter of the inner nm-gon. It follows that
the estimation error

κ(nm) = |P(Pnm
)− 2πr| ≈ 2πr

nm

converges to zero as nm →∞

(see Appendix for further discussion and the original method of
Archimedes)

To be more precise, the formula says that the speed of convergence
1/κ(n) is (asymptotically) a linear function of n.

The figure shows percentage errors between the perimeters of
the inner n-gons (also taking n = 4, 5, 8, 18, 36 into account) and
the perimeter of the circle.

Evaluation: Archimedes’ method is theoretically sound and can
be verified experimentally for relatively small values of n.
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Estimation of π by Liu Hui

(a Chinese mathematician; publication in the year 263)

class of curves: circles (i.e., curves circumscribing a [today]
known area of S = πr2)

finite representation: inner regular n-gon

methodology: use areas Sn of these n-gons and the following
formula (shown by Liu Hui for n > 2):

S2n < S < S2n + (S2n − Sn)

example: 2n = 192 (this is the maximum number as used by Liu
Hui), then

π ≈ 3.1410 (true is π = 3.14159265359 . . .)

(Liu Hui discussed the concept of “convergence” in these
studies, which was not yet formulated by Archimedes.)

Evaluation: Liu Hui’ method is theoretically sound and leads to
an even faster convergence to the true value than Archimedes’
method (but remains to be linear in convergence speed).
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Grid-Intersection Digitization of Circles

class of curves: circle of diameter 1

finite representation: Ordered sequence of grid points defined by
grid-intersection digitization in Gnn (i.e., a grid of size n× n).

methodology: This ordered sequence is a simple polygon Pn with
vertices at grid points and edges (between subsequent vertices)
of length 1/(n− 1) or

√
2/(n− 1). Use the perimeter P (i.e., sum

of all edge lengths) of Pn for estimating π

example: P(P26) = 3.3439 . . . (i.e., an error of 6.4403%)

From a paper by M. Tajine and A. Daurat (2000) it follows that
values P(Pn) do not converge to π, for n to ∞.

Evaluation: Theoretically not sound due to failing convergence,
but errors might be acceptable if circle is contained in a “small
square” (say, a square of at most 20 pixels on its edges).
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The “Staircase Effect”

Assume a diagonal pq in a square with sides of length a. The
length of the diagonal is equal to a

√
2. Now consider 4-path

approximations ρ(p, q) of the diagonal as shown below (i.e., for
different grid resolutions). The length of these 4-paths is always
equal to 2a, whatever grid resolution will be chosen.

As a second example, consider the frontiers of digitized disks as
shown above. Independent of grid resolution, the length of the
frontier is always equal to 4.

Evaluation: The use of the length of a 4-path for estimating the
length of a digitized arc can lead to errors of 41.4214 . . .%,
without any chance to reduce these errors in some cases by
using higher grid resolution. This method cannot be used for
length measurements in picture analysis.
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Use of Weighted Edges

Now assume that we are using the length of an 8-path for
length measurements (i.e., we use the weight

√
2 for diagonal

edges, and just 1 as before for isothetic edges).

(A line or line segment in the Euclidean plane is isothetic iff it is
parallel to one of the two Cartesian coordinate axes.)

We consider the line segment pq below with slope 22.5◦ and a
length of 5

√
5/2.

The length of ρ(pq) is 3 + 2
√

2 for grid constant 1 (shown on the
left) and (5 + 5

√
2)/2 for all grid constants 1/2n (n ≥ 1). This

shows that the length of ρ(pq) does not converge to 5
√

5/2 as
the grid constant goes to zero.

From a paper by M. Tajine and A. Daurat (2000) it follows that
any length measurement based on weighted steps of 8-paths
cannot lead to a length measurement which is convergent (to
the true value) for increases in grid resolution.

Evaluation: Similar as for the use of 4-paths, but here only with
errors of up to 7.9669 . . .%, without any chance to reduce these
errors in some cases by using higher grid resolution.
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Alternatives

Picture analysis is often directed (or based) on measuring
properties such as the length of a curve, the contents of a region,
the diameter of a set, the surface area of a volume, and so forth.
Sound measurement methodologies are a fundamental
requirement. These can be (for example, in the case of length
measurements) based on:

(i) the use of optimized weights for local configurations of
curves, where optimization is directed on curves of a specified
class;

(ii) approximations of 4- or 8-curves by polygonal chains, where
each edge of the chain is calculated based on global
approximation constraints (e.g., segmenting an 8-path into
subsequent DSSs of maximum length);

(iii) fitting of higher-order (e.g., second order) arcs to the given
4- or 8-curves; or

(iv) using stereological approaches (e.g., estimating length
based on calculating intersection points with a finite set of
straight lines).

In these lectures we will detail approach (ii) for length
measurement.
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Coursework

Related material in textbook: Sections 1.2.7 and 2.3.3.

A 5. [6 marks]a Provide (hint: see Appendix)

(i) the missing formulas missing on page 5 for the case of outer
polygons,

(ii) derive explicit formulas for the edges of the outer polygon;

(iii) and discuss conclusions for an approximative calculation of
π (see the Appendix for an analogous discussion of the inner
polygon).

Furthermore,

(iv) do the experiment indicated on page 8: calculate
grid-intersection digitizations of circles in grids of varying grid
resolution (defining digital circles having diameters of
30, 31, . . . , 1000 grid edges), and compare the length of the
resulting 8-curves against the true perimeter of the circles.
Show all the relative errors (i.e., absolute value of the difference
between calculated length and true perimeter, divided by the
true perimeter) in a diagram. (Hint: there is also a Bresenham
algorithm for generating digital circles.)

aTwo marks for the theoretical parts (i), (ii) and (iii), and four marks for part
(iv).
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Appendix: Archimedes’ Iteration

We derive an explicit formula for edges em as used in our
presentation of Archimedes’ method.

triangle: e0 = r
√

3 ≈ r · 1.7321 . . .

hexagon: e1 =
√

2r2 − r
√

4r2 − 3r2 = r

12-gon: e2 =
√

2r2 − r
√

4r2 − r2 = r
√

2−
√

3 ≈ r · 0.5176 . . .

24-gon: e3 = r

√
2−

√
2 +

√
3 ≈ r · 0.2611 . . .

48-gon: e4 = r

√
2−

√
2 +

√
2 +

√
3 ≈ r · 0.1308 . . .

96-gon: e5 = r

√
2−

√
2 +

√
2 +

√
2 +

√
3 ≈ r · 0.0654 . . .

Note: In the repeated construction of Pnm+1 from Pnm , angle αm

goes to zero as m →∞, and em+1 goes (from above) to em/2.

Let m ≥ 2. Then we have m− 2 repeated stackings of
√

2 + . . .

in the formula for em.

Resulting examples of the perimeters:

triangle: P(P3) = 3× 20 × e0 = 3r
√

3 ≈ 2r · 2.5982 . . .

hexagon: P(P6) = 3× 21 × e1 = 6r = 2r · 3

12-gon: P(P12) = 3× 22 × e2 = 12r
√

2−
√

3 ≈ 2r · 3.1056 . . .
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An Approximation Formula for π

Assume r = 1. In this case we have that P(Pnm)− 2π goes to a
constant (which is actually 2π) over nm as nm →∞.

This implies the following (note: here we have m− 2 repeated
stackings of

√
2 + . . ., assuming m ≥ 2):

3× 2m−1

√√√√
2−

√
2 +

√
2 +

√
2 + · · ·

√
3 → π

for m →∞. (This is just another approximation formula for π.)

Archimedes’ Original Approach

In modern mathematical language, he used for initialization of
his iteration at m = 1 (i.e, hexagon) the identities

P(Pnm) = 2nm sin(π/nm) and P(Qnm) = 2nm tan(π/nm)

(note: 12 sin(π/6) = 6 and 12 tan(π/6) = 4
√

3, for n1 = 6), and
iterated according to the general recurrence formulae

P(Qnm+1) =
2 · P(Pnm

) · P(Qnm
)

P(Pnm
) + P(Qnm

)

P(Pnm+1) =
√
P(Qnm+1) · P(Pnm

)

(but without having these formulas explicitly at hand at his
time; they are correct for m ≥ 0). n sin(π/n) converges from
below to π, for n →∞, and n tan(π/n) converges from above to
π, for n →∞ (both with linear convergence speed).
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