
Algorithms
for Picture Analysis Lecture 03: Component Labeling

Equivalence Relations

R is an equivalence relation on a set M iff (read if and only if)

(i) R is reflexive: for every p ∈ M we have pRp.

(ii) R is symmetric: for p, q ∈ M , if pRq, then also qRp.

(iii) R is transitive: for p, q, r ∈ M , if pRq and qRr, then also pRr.

Example:

For a given picture P , defined on a finite grid G, and pixels
p, q ∈ G let pRq iff P (p) = P (q). We regard the (infinite)
complement of G as consisting of pixels that all have the same
value, so they belong to one of the components (the background
component) of P .

Relation R is an equivalence relation on Z2; it is

reflexive:

symmetric:

transitive:

Equivalence classes:

Any equivalence relation on a set M partitions M into pairwise
disjoint equivalence classes M(p) = {q : q ∈ M ∧ qRp}, for p ∈ M .

Page 1 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

Let P be a 2D multivalued picture defined on a finite grid G in
which pixel p has value P (p) in {0, 1, . . . , Gmax}.

We say that two pixels p and q are P -equivalent iff P (p) = P (q).

Let Mu be the set of all q ∈ G such that P (q) = u.

If there exists p ∈ G such that u = P (p), Mu is an equivalence
class with respect to the relation of P -equivalence on G (in brief,
a P -equivalence class).

A picture that has five P -equivalence classes; the numbers on
the right are used to refer to the values defining these classes.

Let us assume 4-adjacency for all these P -equivalence classes
M1, M2, M3, M4, and M5.

For P we assume a background component with value 1. It
follows that M1 has two components (i.e., the background
component of P and another component containing four
pixels).

Class M5 consists of six 4-components which define two
complementary 4-components (a “hole” and the background
4-component of class M5).

Page 2 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

Component Labeling

Task which arises frequently in picture analysis and computer
graphics (it is known as labeling, filling, or region detection):

Let the P -equivalence classes have a total of k components
(including the background component).

The task is to assign k labels (e.g., integers or colors) to the
pixels of P in such a way that all of the pixels in each
component have the same label and pixels in different
components have different labels.

To keep P unaltered, we can put the labels into an array of the
same size as P .

Page 3 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

FILL Procedure

Scan the picture until a pixel p is found that has not yet been
labeled.

Suppose P (p) = u and that labels L1, . . . , Lk−1 have already
been used.

Choose a new label Lk, and call the procedure FILL(p, u, Lk)
shown below:

1. Label p with Lk.

2. Put p into a stack.

3. If the stack is empty, stop.

4. Pop r out of the stack.

5. Label with Lk all pixels q ∈ A(r) that have value u and
have not yet been labeled, and put these qs into the
stack.

6. Go to Step 3.

Note that the adjacency set A(r) may depend on u (e.g., if we
use 1-adjacency for 1s and 0-adjacency for 0s).

After labeling the component that contains p, continue scanning
the picture until all of the pixels have been labeled. Make sure
that all pixels in the background component of P have the same
label (which way?).

Page 4 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

The figure below shows the order of the pixel visits (assuming
the order shown on the right is used for visiting 4-adjacent
pixels) when this algorithm is used to label the white pixels.

The numbers show the order in which the pixels are labeled,
assuming a standard scan of the grid (i.e., left to right, top to
bottom).

Which order would result if the stack is replaced by a
first-in-first-out queue?

Page 5 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

The FILL algorithm requires that the stack can be as large as the
total number of pixels in the given picture (normally not
[anymore] a problem).

This FILL algorithm uses a depth-first strategy to visit all of the
pixels in a component. The books

W.M. Newman and R.F. Sproull. Principles of Interactive
Computer Graphics, 2nd edition. McGraw Hill, New
York, 1979.

T. Pavlidis. Algorithms for Graphics and Image Processing.
Computer Science Press, Rockville, Maryland, 1982.

discuss variants of this strategy, such as recursive and
nonrecursive (i.e., “filling by connectivity”). The time
complexity of this strategy can be improved by stacking
horizontal runs of pixels, see

C. Ronse and P.A. Devijver. Connected Components in
Binary Images: The Detection Problem. Wiley, New York,
1984.

In some versions of the FILL algorithm the stack is replaced by
a first-in-first-out queue.

Page 6 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

Rosenfeld-Pfaltz Labeling Algorithm

(published in 1966)

1. In the first scan, propagate the labels until the end of
the picture is reached:

(a) If the current pixel p is adjacent to one or more pre-
viously visited pixels that all have the same label,
assign that label to p, and continue the scan.

(b) If the current pixel p is adjacent to two or more pre-
viously visited pixels that have different labels, as-
sign the smallest of those labels (e.g., L) to p, enter
the other labels into the table as being equivalent to
L, and continue the scan.

(c) Otherwise, assign to p a label that has not yet been
used, and continue the scan.

2. Determine the equivalence classes of the labels by
computing the transitive closure of the equivalent
pairs of labels detected in Step 1. Choose one label
from each equivalence class as its pivot.

3. Scan the picture a second time, and replace every label
with the pivot of its equivalence class.

First scan: we propagate smallest labels, and, whenever labels
merge, we note this fact in a table of equivalent pairs of labels.

Second scan: we replace each label with a representative of its
equivalence class.

Page 7 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

Example

Background: assumed to be black

In the label propagation step of the algorithm, we use
4-adjacency for white pixels and 8-adjacency for black pixels.

At the end of the first scan, we have the following equivalence
table:

Label A is also the label of all of the pixels of the background
component. Note that some equivalences are detected more
than once.

Page 8 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

The equivalences between pairs of the 20 labels A, . . . , T can be
shown in the form of trees:

Standard graph traversal algorithms (e.g., depth-first,
breadth-first) can be used to find the labels equivalent to a given
label.

Alternatively, we scan the labels in order, smallest first. Any
label that is equivalent to A has pivot A and can be marked and
replaced with A. We next examine the smallest label that has
not yet been marked; this label must be the pivot of its
equivalence class so all of the labels equivalent to it can be
marked and replaced with it.

We will use the smallest label in each equivalence class as the
pivot of that class:

Page 9 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

A binary picture of size m× n in which 0s and 1s alternate (“a
chessboard”) requires O(mn) labels.

(How many exactly, if we use 4-adjacency for white pixels,
8-adjacency for black pixels, and assume a black background?)

An a priori threshold on the number of labels can be used to
limit the size of the equivalence table.

In one of the following binary pictures, the black pixels are
connected, and in the other one, there are two 4-components of
black pixels; can you tell which is which?

Page 10 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

Scan Orders

The basic control structure of a picture analysis program (e.g.,
for component labeling) typically specifies a scan order for
visiting all, or some of the pixels.

Scan orders: standard (upper left), inward spiral (upper
middle), meander (upper right), reverse standard (lower left),
magic square (lower middle), and selective, as used in
interlaced scanning: standard, every second row (lower right).

How would be the impact of non-standard scans onto the FILL
or Rosenfeld-Pfaltz labeling algorithm?

Page 11 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

Coursework

Related material in textbook: Sections 1.3, 2.2.1, and 2.2.3.

A.3. [6 marks] Do exercise 3 on page 31, with n0 = 10. After
implementing this Hilbert scan, generate gray-level pictures P

of size 2n × 2n (n = 8, 9, 10) with random gray levels in the
range 0 to 255 (hint: call a system function RANDOM for each
visited pixel), and process these random pictures as follows,
using your implemented Hilbert scan as control structure:

(i) at each pixel p, calculate the mean MEAN(p) of the 5× 5
window centered at p, and replace the previous value P (p) by
MEAN(p). Visualize the sequence of value replacements
(following the Hilbert scan) by slowing down your program
such that the order of replacements can be followed by an
observer;

(ii) do the same using MEDIAN(p) instead of MEAN(p), where
the median of m numbers is that number which would be at the
middle position if all m numbers would have been sorted (m
assumed to be odd).

You may also use gray-level pictures of your choice instead of
these generated (purely random) pictures (hint: alter gray levels
of a given picture at a specified rate, by adding noise of random
amplitude at random positions; you may discuss the use of
uniform or Gaussian noise).

Page 12 February 2005



Algorithms
for Picture Analysis Lecture 03: Component Labeling

Appendix: Hilbert Scan

A recursive procedure for the Hilbert scan was described by L.
M. Goldschlager in 1981, generalized by W. Skarbek in 1992 to
more variants of picture scans.

Figure 1.8 in the textbook specifies the Hilbert scan in a way
that we enter the picture at its north-west corner, and we leave
it at its north-east corner. Let us denote the four corners of a
2k × 2k picture by a, b, c, d, starting at the north-west corner and
in clock-wise order. In the textbook we assume a Hilbert scan
Hk(a, d, c, b), where we start at corner a, continue then with
corner d, proceed to corner c, and terminate at corner b.

H0(a, b, c, d) is a scan of a 1× 1 picture, where we just visit the
only pixel in this picture (and the order a, b, c, d can be replaced
by any permutation of these four letters).

Hk+1(a, d, c, b) is a scan where we start at the north-west corner,
perform Hk(a, b, c, d), followed by one step down, then
Hk(a, d, c, b), followed by one step to the right, then (again)
Hk(a, d, c, b), followed by one step up, and finally Hk(c, d, a, b)
(which takes us to the north-east corner of the 2k+1 × 2k+1

picture.

Page 13 February 2005


