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Fig. 1.13 Left: a simple polyhedron with randomly-rendered faces. Middle: a simple polyhedron
defined in a regular orthogonal 3D grid. Right: a non-simple polyhedron (which could be, e.g., the
layout for a “world” of a computer game).

The non-simple polyhedron on the right13 can be generated as a union of five tori.
A polyhedral torus cannot be topologically transformed into a sphere.

A point p on the surface of a polyhedron is visible from the outside iff there is a
ray starting at p that intersects the polyhedron in no other point than at p. A point
p in a polyhedron sees a point q in this polyhedron iff the straight segment pq is
contained in the polyhedron.

Fig. 1.14 Left: a tree (at Tzintzuntzan, Mexico) can be modelled as a simple polyhedron, assuming
that nature was not producing any torus when growing this tree. Right: a sponge can only be
modelled as a non-simple polyhedron.

Objects in our real world (see Figure 1.14) can be modelled as polyhedrons by
approximating curved surface patches at some selected scale by polygons. The two
objects shown are of low shape complexity compared with the dimensions and vari-
ations of shapes in the whole universe.

We assume that some integer n > 0 characterizes the complexity of input data,
such as the number of points in a set, the number of vertices of a polygon, or the

13 Used by Johann Benedict Listing (1808–1882) in 1861 when illustrating the skeletonization of
shapes in R3.
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number of faces of a simple polyhedron. The upper limit for n is unknown because
progress in technology may shift feasible values further up right now, or in a few
years from now. Those values of n are so ‘little’ compared with the universe, or
even to the infinity of the set of all integers. It would make sense to define an upper
limit for n, say n < 1080, which is the estimated number of protons in the observable
universe.14 We could conclude that all our algorithms only need to work for inputs
with n < 1080; larger inputs are out of scope.

This would not simplify considerations such as “this algorithm is correct for any
n > 0”, thus also, for example, a proof of correctness for

n = 101010101010

We prove results for numbers n which will never be experienced by humankind, just
for the sake of mathematical simplicity.

The complexity of input data (e.g., sets of points, polygons, or polyhedrons)
will be characterized by integers, without taking into account any limitation
for those integers.

1.9 Euclidean Shortest Paths

Euclidean shortest paths (ESP) have been specified in Definition 1.7. In this section
we illustrate only a few examples of ESP problems, for demonstrating subjects to be
considered in this book. Polygons or polyhedrons are simple in what follows unless
otherwise stated.

Obstacles or attractions are bounded or unbounded subsets in Euclidean space.
When calculating a path, it must not enter any of the obstacles, but it has to visit all
the given attractions in a specified order. A path ρ visits a set S iff ρ has a non-empty
intersection with S.

We also assume a search domain that is the space of possible moves: source and
destination for the path are in the search domain, all the attractions need to have at
least a non-empty intersection with the search domain, and obstacles can possibly
be outside of the search domain. See Figure 1.16 for an example.

We consider polygonal or polyhedral search domains, defined by a finite number
n≥ 0 of lines or line segments or polygonal faces, respectively. For example, a half
plane or a 3D half space are also possible; they are defined by one straight line
in 2D space, or one plane in 3D space (i.e., n = 1). Finally, all R2 or R3 are also
possible, they are defined by having no limiting straight line or segment or polygon
(i.e., n = 0).

14 See, e.g., www.madsci.org/posts/archives/oct98/905633072.As.r.html.
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Fig. 1.15 Sketch of an ESP problem in the plane defined by a polygonal search domain, source p
and destination q, an ordered set of attractions (shown by shaded ellipses), and a set of obstacles,
shown as shaded polygons of constant shape. The figure shows a possible (not yet length mini-
mized) path, connecting p with q via the given sequence of attractions, avoiding all the obstacles,
and staying in the given search domain.

Definition 1.14. Assume that the Euclidean space [R2,de] or [R3,de] contains a fi-
nite set of polygonal or polyhedral obstacles and also an ordered set of polygonal or
polyhedral attractions. We consider two points p (the source) and q (the final desti-
nation) within the given polygonal or polyhedral search domain. The ESP problem
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Fig. 1.16 The same ESP problem as in Figure 1.15 but after expanding all the obstacles in x- and
y-directions, thus ‘giving the moving object less space’ . The figure shows a possible path from p
to q.
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Fig. 1.17 A rectangular sheet
with five embedded polygonal
shapes (i.e., being the attrac-
tions) and a non-optimized
path of a cutting head. At
each of the five points on
frontiers of the shapes, the
cutting head would start (and
also end) when cutting out a
shape from the sheet.

is to compute a path ρ between p and q in such a way that the path ρ does not
intersect the interior of any obstacle, visits all the attractions in the specified order,
does not leave the search domain, and is of minimum Euclidean length.

An exact solution is a path ρ that solves such an ESP problem. See Figure 1.15.
Due to a constraint about the size of the object that is expected to move along a cal-
culated shortest path, we may consider expanded obstacles rather than the original
obstacles; see Figure 1.16. Vertices of a calculated path, connecting p and q, can
move freely in the search domain, not only in the given attractions.

We provide five examples of ESP problems. Those and others are discussed in
this book:

(1) Find an ESP between points p and q in a simple polygon (the polygon defines
the search domain); there are no obstacles or attractions. This is the well-known
problem of finding a shortest path in a simple polygon.

(2) Attractions are pairwise-disjoint polygons (see Figure 1.17), all within a rect-
angular ‘sheet’ of material (e.g., textile, metal), p = q, and there are no obstacles.
This is known as a parts-cutting problem, where a ‘cutting head’ needs to travel
from one polygonal shape to the other for cutting them ‘out’ from the rectangular
‘sheet’; this rectangle is the search domain.

(3) The search domain is the interior or the surface of a polyhedron, and there are
no obstacles or attractions. This defines either the problem of finding a shortest path

p

q

Fig. 1.18 Five stacked rectan-
gles (i.e. being the obstacles)
in parallel planes in 3D space.
The figure shows a possible
path from p to q.



34 1 Euclidean Shortest Paths

Fig. 1.19 A simple path of
cubes and start and end points
p and q. The union of the
cubes in the path defines a
tube, and the ESP problem is
to find a shortest connection
from p to q in this tube.

p

q

in a simple polyhedron, or the problem of finding a shortest path on the surface of
a simple polyhedron.

(4) The whole R3 is our search domain, and the obstacles are a finite set of
stacked rectangles (i.e., rectangles in parallel planes), without any attractions. We
need to find a shortest path which avoids the stacked rectangles. See Figure 1.18.

(5) The 3D space is subdivided into a regular orthogonal grid forming cubes (e.g.
voxels in 3D medical imaging, or geometric units in gene modelling). These cubes
form a simple path iff each cube in this path is face-adjacent to exactly two other
cubes in the path, except the two end cubes which are only face-adjacent to one
other cube in the path. The two end cubes contain start and end vertex p and q. See
Figure 1.19.

A given source p and destination q specify a fixed ESP problem. If there is no
fixed start or end point, then this defines a floating ESP problem with a higher degree
of uncertainty, thus a larger computational challenge.

Problems

1.1. Let g(n) = n log10 n and f (n) = n log2 n. Show that g(n) ∈O( f (n)) and f (n) ∈
O(g(n)) (i.e., both functions are asymptotically equivalent).

1.2. Show that the Minkowski distance measure d1 satisfies all the three axioms M1,
M2, and M3 of a metric.

1.3. A shortest d1-path is defined by minimizing the total distance

L (ρ) =
n

∑
i=0

d1(pi, pi+1) , with p0 = p and pn+1 = q

between source p and destination q. Figure 1.20 illustrates three (of many) options
for shortest d1-paths between p and q. Specify the area defined by the union of all
shortest d1-paths from grid point p to grid point q. How is the analogous area for
Minkowski metric d∞?
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Fig. 1.20 Three shortest d1-paths between p and q. The coordinate axes define the only two pos-
sible directions of moves (also called isothetic moves).

1.4. How to define the length of a shortest path between two points p and q in
R3 when applying the forest distance d f rather than de? Generalize the given 2D
distance d f at first to a metric in R3.

1.5. Do some experiments with the Dijkstra algorithm. Download a source from the
net, run it on weighted graphs with different values of |E|, and measure the actual
run time (e.g., by running it on the same input 1,000 times and divide measured time
by 1,000). Generate a diagram which plots values of |E| together with the measured
time. After a sufficient number of runs you should have a diagram showing a ‘dotted
curve’. Discuss the curve in relation to the upper time bounds specified above for
the Dijkstra algorithm.

1.6. (Programming exercise)
Implement a program which generates ‘randomly’ a simple polygon with n > 0
vertices, with only specifying the value of parameter n at the start of the program.
The program should also contain the option that only the vertices are generated (i.e.,
a set of points) as a set of n randomly generated points.

Aim at generating a large diversity of shapes of polygons (e.g., more than just
star-shaped polygons; see Figure 1.21). For controlling the output of your program,

p
p

Fig. 1.21 Left and middle: two star-shaped polygons (note: in a star-shaped polygon there is at
least one point p ‘such that a ‘guard’ at p sees’ all the frontier of this polygon). Right: a ran-
domly generated simple polygon (courtesy of Partha Bhowmick, Indian Institute of Technology
Kharagpur, India).
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draw the resulting polygons on screen (e.g., by drawing with OpenGL in an OpenCV
window). The generated polygons will be useful for testing ESP programs later on,
for programming exercises listed in subsequent chapters.
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