
Email Security

“Why do we have to hide from the police, Daddy?”
“Because we use PGP, son. They use S/MIME”

Email Security

Problems with using email for secure communications
include
•Doesn’t handle binary data
•Messages may be modified by the mail transport mechanism
–Trailing spaces deleted
–Tabs  spaces
–Character set conversion
–Lines wrapped/truncated

•Message headers mutate considerably in transit

Data formats have to be carefully designed to avoid these
problems

Email Security Requirements

Main requirements
•Confidentiality
•Authentication
•Integrity

Other requirements
•Non-repudiation
•Proof of submission
•Proof of delivery
•Anonymity
•Revocability
•Resistance to traffic analysis

Many of these are difficult or impossible to achieve

Security Mechanisms

Detached signature

•Leaves the original message untouched
•Signature can be transmitted/stored separately
•Message can still be used without the security software

Signed message

•Signature is always included with the data

Security Mechanisms (ctd)

Encrypted message

Usually implemented using public-key encryption

Mailing lists use one public-key encrypted header per
recipient

•Any of the corresponding private keys can decrypt the session
key and therefore the message

Security Mechanisms (ctd)

Countersigned data

Encrypted and signed data

•Always sign first, then encrypt
S(E(“Pay the signer $1000”))

vs.
E(S(“Pay the signer $1000”))

PEM

Privacy Enhanced Mail, 1987

Attempt to add security to SMTP (MIME didn’t exist yet)
•Without MIME to help, this wasn’t easy

Attempt to build a CA hierarchy along X.500 lines
•Without X.500 available, this wasn’t easy

Solved the data formatting problem with base64 encoding
•Encode 3 binary bytes as 4 ASCII characters
•The same encoding was later used in PGP, MIME, ...

PEM Protection Types

Unsecured data

Integrity-protected (MIC-CLEAR)
•MIC = message integrity check = digital signature

Integrity-protected encoded (MIC-ONLY)

Encrypted integrity-protected (ENCRYPTED)

General format based on RFC822 messages
-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Type: Value Encapsulated header
Type: Value
Type: Value

Blank line
Data Encapsulated content
-----END PRIVACY-ENHANCED MESSAGE-----

PEM Protection Types (ctd)
MIC-ONLY
-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Proc-Type: 4,MIC-ONLY
Content-Domain: RFC822
Originator-Certificate:
MIIBlTCCAScCAWUwDQYJKoZIhvcNAQECBQAwUTELMAkGA1UEBhMCVVMxIDAeBgNV
BAoTF1JTQSDRiNKcOCaCoLAyaXR5LCBJbmMuMQ8wDQYDVQQLEwZCFNOrDDExDzAN
...
iWlFPuN5jJ79Khfg7ASFxskYkEMjRNZV/HZDZQEhtVaU7Jxfzs2wfX5byMp2X3U/
5XUXGx7qusDgHQGs7Jk9W8CW1fuSWUgN4w==

Issuer-Certificate:
MIIB3FNoRDgCAQowDQYJKoZIhvcNAQECBQAwTzEWiGEbLUMenKraFTMxIDAeBgNV
BAoTF1JTQSBEYXRhIFNlY3VyaXR5LCBJbmMuMQ8wDQYDVQQLEwZCZXRhIDExDTAL
...
dD2jMZ/3HsyWKWgSF0eH/AJB3qr9zosG47pyMnTf3aSy2nBO7CMxpUWRBcXUpE+x
EREZd9++32ofGBIXaialnOgVUn0OzSYgugiQReSIsTKEYeSCrOWizEs5wUJ35a5h

MIC-Info: RSA-MD5,RSA,
jV2OfH+nnXFNorDL8kPAad/mSQlTDZlbVuxvZAOVRZ5q5+Ejl5bQvqNeqOUNQjr6
EtE7K2QDeVMCyXsdJlA8fA==

LSBBIG1lc3NhZ2UgZm9yIHVzZSBpbiB0ZXN0aW5nLg0KLSBGb2xsb3dpbmcgaXMg
YSBibGFuayBsaW5lOg0KDQpUaGlzIGlzIHRoZSBlbmQuDQo=
-----END PRIVACY-ENHANCED MESSAGE-----

PEM Protection Types (ctd)

ENCRYPTED (explicitly includes MIC)
-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Proc-Type: 4,ENCRYPTED
Content-Domain: RFC822
DEK-Info: DES-CBC,BFF968AA74691AC1
Originator-Certificate:
MIIBlTCCAScCAWUwDQYJKoZIhvcNAQECBQAwUTELMAkGA1UEBhMCVVMxIDAeBgNV
...
5XUXGx7qusDgHQGs7Jk9W8CW1fuSWUgN4w==

Issuer-Certificate:
MIIB3DCCAUgCAQowDQYJKoZIhvcNAQECBQAwTzELMAkGA1UEBhMCVVMxIDAeBgNV
...
EREZd9++32ofGBIXaialnOgVUn0OzSYgugiQ077nJLDUj0hQehCizEs5wUJ35a5h

MIC-Info: RSA-MD5,RSA,
UdFJR8u/TIGhfH65ieewe2lOW4tooa3vZCvVNGBZirf/7nrgzWDABz8w9NsXSexv
AjRFbHoNPzBuxwmOAFeA0HJszL4yBvhG

Continues

PEM Protection Types (ctd)
Continued

Recipient-ID-Asymmetric:
MFExCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5j
LjEPMA0GA1UECxMGQmV0YSAxMQ8wDQYDVQQLEwZOT1RBUlk=,66

Key-Info: RSA,
O6BS1ww9CTyHPtS3bMLD+L0hejdvX6Qv1HK2ds2sQPEaXhX8EhvVphHYTjwekdWv
7x0Z3Jx2vTAhOYHMcqqCjA==

qeWlj/YJ2Uf5ng9yznPbtD0mYloSwIuV9FRYx+gzY+8iXd/NQrXHfi6/MhPfPF3d
jIqCJAxvld2xgqQimUzoS1a4r7kQQ5c/Iua4LqKeq3ciFzEv/MbZhA==
-----END PRIVACY-ENHANCED MESSAGE-----

PEM CA Hierarchy

Single grand unified hierarchy
•No choice of alternate CAs, policies, …

Although PEM itself failed, the PEM CA terminology still
crops up in various products

PEM CA Hierarchy (ctd)

Policy CA’s guarantee certain things such as uniqueness of
names
•High-assurance policies (secure hardware, drug tests for users,

etc)
–Can’t issue certificates to anything other than other high-
assurance CA’s

•Standard CA’s
•No-assurance CA’s (persona CA’s)
–Certificate vending machines
–Clown suit certificates

Why PEM Failed

Why the CA’s failed
•The Internet uses email addresses, not X.500 names
–Actually, no-one uses X.500 names

•CA’s for commercial organisations and universities can’t meet
the same requirements as government defence contractors for
high-assurance CA’s
–Later versions of PEM added lower-assurance CA

hierarchies to fix this
•CA hardware was always just a few months away
–When it arrived, it was hideously expensive

•CA’s job was made so onerous no-one wanted it
–Later versions made it easier

Why PEM Failed (ctd)
•Hierarchy enshrined the RSADSI monopoly
–CA hardware acted as a billing mechanism for RSA

signatures
–People were reluctant to trust RSADSI (or any one party)

with the security of the entire system
•The required X.500 support infrastructure never materialised

Why PEM Failed (ctd)

Why the message format failed
•The PEM format was ugly and intrusive
–PEM’ssuccessors bundled everything into a single blob and

tried to hide it somewhere out of the way
•No ability to just send encrypted messages
–ENCRYPTED requires use of MIC
–Most users wanted encryption, not signing
–The S/MIME standards group decided several years ago
that it wasn’t worth signing its messages

•RSA patent problems

Pieces of PEM live on in a few European initiatives
•MailTrusT, SecuDE, modified for MIME-like content types

PGP

Pretty Good Privacy
•Hastily released in June 1991 by Phil Zimmerman (PRZ) in

response to S.266
•MD4 + RSA signatures and key exchange
•Bass-O-Matic encryption
•LZH data compression
•uuencoding ASCII armour
•Data format based on a 1986 paper by PRZ

PGP was immediately distributed worldwide via a Usenet
post

PGP (ctd)

PGP 1.0 lead to an international effort to develope 2.0
•Bass-O-Matic was weak, replaced by the recently-developed

IDEA
•MD4 " " " " MD5
•LZH replaced by the newly-developed InfoZip (now zlib)
•uuencoding replaced with the then-new base64 encoding
•Ports for Unix, Amiga, Atari, VMS added
•Internationalisation support added

Legal Problems

PGP was the centre of an ongoing legal dispute with
RSADSI over patents
•RSADSI released the free RSAREF implementation for (non-

commercial) PEM use
•PGP 2.6 was altered to use RSAREF in the US
•Commercial versions were sold by Viacrypt, who had an RSA

license

Later versions deprecated RSA in favour of the non-
patented Elgamal
•Elgamal was referred to in the documentation as Diffie-

Hellman for no known reason
–Both are DLP algorithms, but DH != Elgamal

Government Problems

In early 1993, someone apparently told US Customs that
PRZ was exporting misappropriated crypto code
•US Customs investigation escalated into a Federal Grand Jury

(US Attorney) in September 1993

They were pretty serious, e.g.:
26 February 1995: San Francisco Examiner and SF Chronicle
publish an article criticising the government’s stand on
encryption and the PGP investigation

27 February 1995: Author of the article wassubpoena’dto appear
before the Grand Jury

Investigation was dropped in January 1996 with no charges
laid

PGP Message Formats

Unsecured

Compressed

Signed/clearsigned

Encrypted

+ optional encoding

General format

-----BEGIN PGP message type-----
data
-----END PGP message type-----

PGP Message Formats (ctd)

Clearsigned message
-----BEGIN PGP SIGNED MESSAGE-----

We've got into Peter's presentation. Yours is next. Resistance is
useless.

-----BEGIN PGP SIGNATURE-----
Version: 2.3

iQCVAgUBK9IAl2v14aSAK9PNAQEvxgQAoXrviAggvpVRDLWzCHbNQo6yHuNuj8my
cvPx2zVkhHjzkfs5lUW6z63rRwejvHxegV79EX4xzsssWVUzbLvyQUkGS08SZ2Eq
bLSuij9aFXalv5gJ4jB/hU40qvU6I7gKKrVgtLxEYpkvXFd+tFC4n9HovumvNRUc
ve5ZY8988pY=
=NOcG
-----END PGP SIGNATURE-----

•Remember that all this predates MIME
•Also had to work with things like Fidonet

PGP Message Formats (ctd)

Anything else
-----BEGIN PGP MESSAGE-----
Version: 2.3

hQEMAlkhsM216BqRAQf/f938A6hglX51/hwa42oCdrQDRGw6HJd+5OqQX/58JB8Y
UAlrYBHYZ5md46ety62phvbwfsNuF9igSx2943CHrnuIVtkSXZRpKogtSE1oMfab
5ivD4I+h3Xk0Jpkn5SXYAzC6/cjAZAZSJjoqy28LBIwzlfNNqrzIuEW8lbLPWAt1
eqdS18ukiOUvnQAI1QfJipGUG+Db1KnpqJP7wHUl/4RG1Qi50p3BCDIspC8jzQ/y
GsKFlckA132dMx6b80vsUZga/tmJOwrgBjSbnOJ8UzLrNe+GjFRyBS+qGuKgLd9M
ymYgMyNOqo/LXALSlLIc/Dr1nKC0cAC01a/RZ00w4KYAAFrxX9a1BQq1nb40/OSB
CgrPqi61jBks2NW2EPoIC7nV5xLjflZwlRjY/V5sZS6XDycJ9YOf6fOclNwCoBsB
HRshmNtMHH2tq2//OozKZ8/GHGNysN8QQWNQYElgRCgH3ou1E+CJoyoPwrMqjSYC
oGp4fezQpiI83Ve/QMMV276KntTFLRpQ2H+lLDvX9Wfjg1+xTw==
=ZuOF
-----END PGP MESSAGE-----

PGP Key Formats

Unlike PEM, PGP also defined public/private key formats
•OpenSSL’s ‘PEM’ format is a homebrew invention

•Key trust = how much the key is trusted to sign things (set by
the user)
•userID trust = how much the userID is trusted to belong to this

key
•Signing trust = copy of the signing key’s trust

PGP calculates userID trust = sum of signing trusts

PGP Trust

UserID trust = trust of binding between userID and key

Key trust = trust of key owner

Example: UserID = Politician
•UserID trust = High
•Key trust = Low

Trust levels
•Unknown
•None
•Casual
•Heavy-duty

PGP Trust (ctd)

Each key can contain multiple userIDs with their own trust
levels
•userID = Peter Gutmann, trust = high
•userID = University Vice-Chancellor, trust = none

Keys are revoked with a signed revocation (suicide note)
that PGP adds to the key
•Unlike X.509, you don’t need to go to an external agency to

cancel your key

PGP philosophy: Scram switch, in case of an emergency
shut down as quickly as possible
•X.509 philosophy: DoS, make it as difficult as possible to

revoke a key

PGP Trust Computation

Trust levels are automatically computed by PGP

User can define the required trust levels (e.g. 3 casuals = 1
high)

In practice, the web of trust doesn’t really deliver
•It can also be used hierarchically, like X.509

PGP Keyrings
One or more keys stored together constitute a keyring

Keys are looked up by
•userID (free-

form name)
•keyID (64-bit

value derived
from the
public key)

The owner’s key is ultimately trusted and can convey this
to other keys

Key Distribution

Key distribution doesn’t rely on an existing infrastructure
•Email
•Personal contact
–Keysigning services

•Keys on web pages
•PGP keyservers
–email/HTTP interface to a PGP keyring
–HKP = undocumented protocol based on variations of a

student project

Verification by various out-of-band means (personal
contact, phone, mail)
•PGP key fingerprint was specifically designed for this purpose

Advantages of PGP over PEM

You can pick your own name(s)

You don’t have to register with an authority

PGP requires no support infrastructure

The trust mechanism more closely matches real life

Key/certificate distribution can be manual or automatic
(just include it with the message)

MIME-based Security

Multipurpose Internet Mail Extensions
•Provides a convenient mechanism for transferring composite

data

Security-related information is sent as sections of a
multipart message
•multipart/signed
•multipart/encrypted

Binary data is handled via base64 encoding

MIME-aware mailers can automatically process the
security information (or at least hide it from the user)

MIME-based Security (ctd)

General format

Content-Type: multipart/type; boundary="Boundary"
Content-Transfer-Encoding: base64

--Boundary
encryption info

--Boundary
message

--Boundary
signature
--Boundary--

Both PEM and PGP were adapted to fit into the MIME
framework

MOSS

MIME Object Security Services
•PEM shoehorned into MIME
•MOSS support was added to MIME types via
application/moss-signature and
application/moss-keys

MOSS (ctd)

MOSS Signed
Content-Type: multipart/signed; protocol="application/moss-

signature"; micalg="rsa-md5"; boundary="Signed Message"

--Signed Message
Content-Type: text/plain

Support PGP: Show MOSS to your friends.

--Signed Message
Content-Type: application/moss-signature

Version: 5
Originator-ID:

jV2OfH+nnXHU8bnL8kPAad/mSQlTDZlbVuxvZAOVRZ5q5+Ejl5bQvqNeqOUNQjr6
EtE7K2QDeVMCyXsdJlA8fA==

MIC-Info: RSA-MD5,RSA,
UdFJR8u/TIGhfH65ieewe2lOW4tooa3vZCvVNGBZirf/7nrgzWDABz8w9NsXSexv
AjRFbHoNPzBuxwmOAFeA0HJszL4yBvhG

--Signed Message--

MOSS (ctd)
MOSS Encrypted
Content-Type: multipart/encrypted; protocol="application/moss-keys";

boundary="Encrypted Message"

--Encrypted Message
Content-Type: application/moss-keys

Version: 5
DEK-Info: DES-CBC,BFF968AA74691AC1
Recipient-ID:
MFExCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5j
LjEPMA0GA1UECxMGQmV0YSAxMQ8wDQYDVQQLEwZOT1RBUlk=,66

Key-Info: RSA,
O6BS1ww9CTyHPtS3bMLD+L0hejdvX6Qv1HK2ds2sQPEaXhX8EhvVphHYTjwekdWv
7x0Z3Jx2vTAhOYHMcqqCjA==

--Encrypted Message
Content-Type: application/octet-stream

qeWlj/YJ2Uf5ng9yznPbtD0mYloSwIuV9FRYx+gzY+8iXd/NQrXHfi6/MhPfPF3d
jIqCJAxvld2xgqQimUzoS1a4r7kQQ5c/Iua4LqKeq3ciFzEv/MbZhA==

--Encrypted Message--

PGP/MIME

PGP shoehorned into MIME
•PGP support added to MIME types via application/pgp-

signature and application/pgp-encrypted

PGP already uses ‘--’ so PGP/MIME escapes this with
‘- ’

-----BEGIN PGP MESSAGE-----
becomes

- -----BEGIN PGP MESSAGE-----

PGP/MIME (ctd)
PGP/MIME Signed:
Content-Type: multipart/signed; protocol="application/pgp-signature";

micalg=pgp-md5; boundary=Signed

--Signed
Content-Type: text/plain

Our message format is uglier than your message format!

--Signed
Content-Type: application/pgp-signature

- -----BEGIN PGP MESSAGE-----
Version: 2.6.2

iQCVAwUBMJrRF2N9oWBghPDJAQE9UQQAtl7LuRVndBjrk4EqYBIb3h5QXIX/LC//
jJV5bNvkZIGPIcEmI5iFd9boEgvpirHtIREEqLQRkYNoBActFBZmh9GC3C041WGq
uMbrbxc+nIs1TIKlA08rVi9ig/2Yh7LFrK5Ein57U/W72vgSxLhe/zhdfolT9Brn
HOxEa44b+EI=
=ndaj
- -----END PGP MESSAGE-----
--Signed--

PGP/MIME (ctd)
PGP/MIME Encrypted
Content-Type: multipart/encrypted; protocol="application/pgp-

encrypted"; boundary=Encrypted

--Encrypted
Content-Type: application/pgp-encrypted

Version: 1

--Encrypted
Content-Type: application/octet-stream

-----BEGIN PGP MESSAGE-----
Version: 2.6.2

hIwDY32hYGCE8MkBA/wOu7d45aUxF4Q0RKJprD3v5Z9K1YcRJ2fve87lMlDlx4Oj
g9VGQxFeGqzykzmykU6A26MSMexR4ApeeON6xzZWfo+0yOqAq6lb46wsvldZ96YA
AABH78hyX7YX4uT1tNCWEIIBoqqvCeIMpp7UQ2IzBrXg6GtukS8NxbukLeamqVW3
1yt21DYOjuLzcMNe/JNsD9vDVCvOOG3OCi8=
=zzaA
-----END PGP MESSAGE-----

--Encrypted--

MOSS and PGP/MIME

MOSS never took off

PGP/MIME never took off either

S/MIME

Originally based on proprietary RSADSI standards
wrapped in MIME
•PKCS, Public Key Cryptography Standards
–RC2, RC4 for data encryption
–PKCS #1, RSA encryption, for key exchange
–PKCS #7, cryptographic message syntax, for message

formatting

Newer versions added non-proprietary and non-patented
ciphers
•Widely-supported, little-used
–Every Windows box and many Unix boxes have this built in
–Outlook makes it (moderately) easy to use

CMS

Cryptographic Message Syntax
•Type-and-value format

Data content types
•Data
•Signed data
•Encrypted data (conventional encryption)
•Enveloped data (PKC-encrypted)
•Authenticated (MAC’d) data
•Compressed data

CMS (ctd)

Other content types possible
•Key management messages
•Protocol-specific message data

Content can be arbitrarily nested

Signed Data Format

Presence of hash algorithm information before the data and
certificates before the signatures allows one-pass
processing
•Streaming implementations can generate and verify messages

on the fly

Digest (hash) algorithm(s)
Encapsulated data

Signer certificate chain(s)
Signature(s)

Signature Format

Authenticated attributes are signed along with the
encapsulated content
•Signing time
•Signature type
–“I agree completely”
–“I agree in principle”
–“I disagree but can’t be bothered going into the details”
–“A flunky handed me this to sign”

Signing certificate ID
Authenticated attributes

Signature
Unauthenticatedattributes

Signature Format (ctd)
•Receipt request
•Security label
•Mailing list information

Unauthenticated attributes provide a means of adding
further information without breaking the original
signature
•Countersignature
–Countersigns an existing signature
–Signs the signature on the content rather than the content
itself, so the other content doesn’t have to be present
–Countersignatures can contain further countersignatures

Enveloped Data Format

Newer versions added support for further mechanisms like
previously distributed shared content-encryption keys
•Makes mailing-list support easier

Encryptedcontent-encr.key
Decryption key certificate ID

Per-recipient information

CMS  S/MIME

Wrap each individual CMS layer in MIME
base64 encode + wrap content
Encode as CMS data
base64 encode + wrap content
Encode as CMS signed data
base64 encode + wrap content
Encode as CMS enveloped data
base64 encode + wrap content

Result is 2:1 message expansion

S/MIME Problems

Earlier versions used mostly crippled crypto
•Only way to interoperate was 40-bit RC2
–RC2/40 is still the lowest-common-denominator default
–User is given no warning of the use of crippled crypto
–Message forwarding may result in a security downgrade

•S/MIME-cracking screen saver released in 1997
–Performs an optimised attack using RC2 key setup cycles
–Looks for the MIME header in the decrypted data

Original S/MIME was based on patented RSA and
proprietary RC2, rejected by the IETF as a standard
•IETF developed S/MIME v3 using strong crypto and non-

patented, non-proprietary technology

MSP
Message Security Protocol, used in the Defence Messaging

System (DMS)
•X.400 message contains

an envelope + content
•MSP encapsulates the

X.400 content and adds
a security header

X.400 security required using (and trusting) an X.400
MTA; MSP requires only trusted endpoints
•MSP was later used with MIME

MSP Services

Services provided
•Authentication
•Integrity
•Confidentiality
•Non-repudiation of origin (via message signatures)
•Non-repudiation of delivery (via signed receipts)

MSP also provides rule-based access control (RBAC)
based on message sensitivity and classification levels of
sender, receiver, and workstation
•Receiving MUA checks that the receiver and workstation are

cleared for the messages security classification
•MSP rule-based access control (RBAC) role-based access

control (also RBAC)

MSP Certificates

MSP defines three X.509 certificate types
•Signature-only
•Encryption (key management) only
•Signature and encryption (two keys in one certificate)
–Non-standard extension to X.509v1

Certificate also includes R(ule)BAC authorisations

MSP Protection Types

MSP Signature
•MUA/MLA signs with signature-only certificate

Non-repudiation
•User signs with signature or dual-key certificate

Confidentiality, integrity, R(ule)BAC
•Encrypted with key management or dual-key certificate

Non-repudiation + confidentiality, integrity, R(ule)BAC
•Sign + encrypt using either signature and key management

certificates or dual-key certificate

Any of the above can be combined with MSP signatures

MSP Protection Types (ctd)

MSP signature covers MSP header and encapsulated
content
•Mandatory for mailing lists

User signature covers encapsulated content and receipt
request information

MSP Message Format

Originator key management cert chain
Originator security data

Receipt request information
Signature

Signature on data and receipt info
Signature cert chain

Decryption key ID
Recipient security data

Encrypted security classification
(RBAC) and content-encr.key

Mailing list control information
MUA or MLA information

Encapsulatedcontent

MSP Message Format (ctd)

Extremely complex format
•Many optional features in S/MIME are part of base MSP
•Conversely, looking at MSP explains some of the weird stuff

found in S/MIME

Awkward-to-process format
•One-pass processing is impossible
•Signature precedes signed data
•Signing certificates are present after the signature

Fits well with the rest of X.400

MSP in Practice

MSP is heavily tied into US DoD crypto hardware, e.g.
Fortezza:
•DSA signatures
•KEA key management
•Skipjack encryption

MSP was later kludged to work with MIME a la MOSS
and PGP/MIME

Opportunistic email Encryption

After 10-15 years of effort, S/MIME and PGP use is lost in
the noise floor (MSP is lost in space)
•Most mail clients include S/MIME support
•Many (OSS) clients include PGP support
•Usage is virtually nonexistent
–Too hard to use
–Too much bother to use

Opportunistic email Encryption (ctd)

Encrypt data using keys managed via key continuity
•Completely transparent to end users
•Requires no extra effort to use
•Effectively free (except for the slight CPU overhead)

Most commonly encountered in SMTP/POP3/IMAP
•Protects mail in transit
•Authenticates the sender
•Prevents unauthorised relaying/spamming

STARTTLS/STLS/AUTH TLS

Opportunistic encryption for SMTP/POP/IMAP/FTP
220 mail.foo.com ESMTP server ready
EHLO server.bar.com
250-STARTTLS
STARTTLS
220 Ready to start TLS
<encrypted transfer>

•Upgrades the unprotected link to a TLS-protected one
•Totally transparent, (almost) idiot-proof, etc

STARTTLS/STLS/AUTH TLS (ctd)

A year after appearing, STARTTLS was protecting more
email than all other email encryption protocols
combined, despite their 10-15 year lead
•Just as SSH has displaced telnet, so STARTTLS is displacing

(or augmenting) straight SMTP/POP3/IMAP
•Auckland Uni turned off unencrypted mail to local servers after

STARTTLS appeared, just as they turned off telnet after SSH
appeared

Not perfect, but boxes attackers into narrower and narrower
channels

Biggest benefit to MTA admins is as an access control
mechanism

