Email Security

“Why do we have to hide from the police, Daddy?”
“Because we use PGP, son. They use S/MIME”

Email Security

Problems with using email for secure communications
include

* Doesn’t handle binary data
» Messages may be modified by the mail transport mechanism
— Trailing spaces deleted
— Tabs «> spaces
— Character set conversion
— Lines wrapped/truncated
» Message headers mutate considerably in transit

Data formats have to be carefully designed to avoid these
problems

Email Security Requirements

Main requirements

 Confidentiality
 Authentication
* Integrity
Other requirements
+ Non-repudiation
Proof of submission
Proof of delivery
* Anonymity
Revocability
» Resistanceto traffic analysis

Many of these are difficult or impossible to achieve

Security Mechanisms

Detached signature
Message | | Sig

» Leavesthe original message untouched
+ Signature can be transmitted/stored separately
» Message can still be used without the security software

Signed message
Sig

 Signature is dways included with the data

Security Mechanisms (ctd)
Encrypted message
Encr

Usually implemented using public-key encryption
Pheener | Enor

Mailing lists use one public-key encrypted header per
recipient

PK-encr | PK-encr | PK-encr
key key key Encr

 Any of the corresponding private keys can decrypt the session
key and therefore the message

Security Mechanisms (ctd)

Countersigned data

Sig, | Sig,

Encrypted and signed data

Encr Sig

+ Always sign first, then encrypt
S(E(“Pay the signer $1000”))
Vs,
E(S(“Pay the signer $1000))

PEM

Privacy Enhanced Mail, 1987

Attempt to add security to SMTP (MIME didn’t exist yet)
» Without MIME to help, this wasn’t easy

Attempt to build a CA hierarchy along X.500 lines
» Without X.500 available, this wasn’t easy

Solved the data formatting problem with base64 encoding

 Encode 3 binary bytes as4 ASCII characters
» The same encoding was later used in PGP, MIME, ...

PEM Protection Types

Unsecured data
Integrity-protected (MIC-CLEAR)

» MIC = message integrity check = digital signature
Integrity-protected encoded (MIC-ONLY)
Encrypted integrity-protected (ENCRY PTED)

General format based on RFC822 messages
————— BEG N PRI VACY- ENHANCED MESSAGE- - - - -

Type: Val ue Encapsulated header
Type: Val ue
Type: Val ue
Blank line
Dat a Encapsul ated content

————— END PRI VACY- ENHANCED MESSAGE--- - -

PEM Protection Types (ctd)
MIC-ONLY

----- BEG N PRI VACY- ENHANCED MESSAGE- - - - -

Proc- Type: 4, M G O\LY

Cont ent - Dormai n: RFC822

Oiginator-Certificate:
M | Bl TCCASc CAWMDQYJKoZI hvc NAQECBQAWUTEL MAk GA1TUEBhMCVVMK| DAe BgNV
BA0TF1JTQSDRi NKc OCaColL Ay aXR5LCBJ bmivu MBwWDQYDVQQLEwZCFNOr DDEX Dz AN

i W FPUN5j J79Khf g7ASFxsk YKEM RNZV/ HZDZQEht VaU7Jxf zs 2wk X5by Mp2X3U/
5XUXGx 7qus DgHQGs 7k OVWVBCWLT uSWUgNAw==

| ssuer-Certificate:
M | B3FNoRDg CAQowDQYJKoZI hvc NAQECBQAWTz EW GEbLUMenKr aFTMk| DAe BgNV
BAOTF1JTQSBEYXRhI FNI Y3VyaXR5LCBJbnmivuMBWDQYDVQQLEWZCZXRh| DEXDTAL

dD2j Mz/ 3HsyWKWISFOeH AJB3qr 9zosG4A7py MhTf 3aSy 2nBO7 Cvk pUMRBe XUp E+Xx

EREZd9++320f GBI Xai al nOgVUn0COz SYgugi QReSI sTKEYeSCr OW zEs5wUJ35a5h
M C- I nfo: RSA- MD5, RSA,

j V2O HtnnXFNor DL8kPAad/ n5Q TDZI bVuxvZAOVRZ5q5+Ej | 5bQvgNeqOUNQ r 6

Et E7TK2QDeVMCy XsdJ| A8f A==

LSBBI G1I ¢c3NhZ2UgZnmBy| HVzZSBpbi BOZXNOaWsnLgOKLSBGh2xsb3dpbntgaXivg
YSBi bGFuayBsaWsl OgOKDQpUad z1 G zI HRoZSBI bnfuDQo=

PEM Protection Types (ctd)
ENCRYPTED (explicitly includes MIC)

————— BEG N PRI VACY- ENHANCED MESSAGE- - - - -
Proc- Type: 4, ENCRYPTED
Cont ent - Domai n: RFC822
DEK- | nf o: DES- CBC, BFF968AA74691AC1
Originator-Certificate:
M | Bl TCCASc CAWMDQYJKoZI hv c NAQECBQAWUT EL MAk GA1 UEBhMCVVIVK I DAe BgNV

5XUXGx 7qus DgHQGs 7Jk OWBCWLf uSWUgN4Aw==
| ssuer-Certificate:
M | B3DCCAUg CAQowDQYJKoZI hvc NAQECBQAWT z EL MAk GA1UEBhMCVVIMKk | DAe BgNV

EREZd9++320f GBI Xai al nOgVUn0COz SYgugi Q077nJLDUj 0hQehCi zEs5wUJ35a5h
M C- I nfo: RSA- MD5, RSA,

UdFJR8u/ Tl Ghf H65i eewe2l OMt 00a3vZCvVNGBZ r f / 7nr gz\WDABz 8WONs XSex v

Aj RFbHONPz BuxwnmOAFe AOH)szL4yBvhG

Continues

PEM Protection Types (ctd)

Continued

Reci pi ent -1 D- Asynmetri c:
MFExCz AJBgNVBAYTAl VTNMSAWHg YDVQQKEXdSUOEgRGFOYSBTZWNLcn Oe SwgSVBj
Lj EPMAOGALUECX MEQMVO Y SAX MBWDQYDVQQLEWZOT1RBUl k=, 66

Key- I nfo: RSA,
06BS1WWOCTyHPt S3bM_D+L0hej dvX6Qv1HK2ds2sQPEaXhX8EhvVphHYTj wekdW
7x0Z3JIx2vTAhOYHVEqqC) A==

geW j / YJ2Uf 5ng9yznPbt DOmYl oSwl uVIFRYx+gzY+8i Xd/ NQr XHf i 6/ MhPf PF3d
j 1 qCIAXxvI d2xgqQ@ mJzoSladr 7kQbc/ | uadLgKeq3ci FzEv/ MbZhA==
----- END PRI VACY- ENHANCED MESSAGE- - - - -

PEM CA Hierarchy

|—| Internet Policy
IPRA Registration Authority

Policy Certification
Authority

| PCA | | PCA | [PCA |

[CA| [CA| [CA]

End entities

Single grand unified hierarchy
* No choice of alternate CAs, policies, ...

Although PEM itself failed, the PEM CA terminology still
crops up in various products

PEM CA Hierarchy (ctd)

Policy CA’s guarantee certain things such as uniqueness of
names
 High-assurance policies (secure hardware, drug tests for users,
etc)
— Can’t issue certificates to anything other than other high-
assurance CA’s

» Standard CA’s

* No-assurance CA’s (persona CA’s)
— Certificate vending machines
— Clown suit certificates

Why PEM Failed
Why the CA’s failed

e The Internet uses email addresses, not X.500 names
— Actually, no-one uses X.500 names

* CA’s for commercial organisations and universities can’t meet
the same requirements as government defence contractors for
high-assurance CA’s

— Later versions of PEM added lower-assurance CA
hierarchies to fix this

» CA hardware was always just afew months away
—When it arrived, it was hideously expensive

» CA’s job was made so onerous no-one wanted it
— Later versions made it easier

Why PEM Failed (ctd)

 Hierarchy enshrined the RSADSI monopoly

— CA hardware acted as a billing mechanism for RSA
signatures

— People were reluctant to trust RSADSI (or any one party)
with the security of the entire system

 The required X.500 support infrastructure never materialised

Why PEM Failed (ctd)
Why the message format failed

» The PEM format was ugly and intrusive

— PEM’s successors bundled everything into a single blob and
tried to hide it somewhere out of the way

» No ability to just send encrypted messages
— ENCRY PTED requires use of MIC
— Most users wanted encryption, not signing

— The SIMIME standards group decided severa years ago
that it wasn’t worth signing its messages

* RSA patent problems
Pieces of PEM live on in afew European initiatives
« MailTrusT, SecuDE, modified for MIME-like content types

PGP
Pretty Good Privacy

Hastily released in June 1991 by Phil Zimmerman (PRZ) in
response to S.266

MD4 + RSA signatures and key exchange
Bass-O-Matic encryption

LZH data compression

uuencoding ASCII armour

Dataformat based on a 1986 paper by PRZ

PGP was immediately distributed worldwide via a Usenet
post

PGP (ctd)
PGP 1.0 lead to an international effort to develope 2.0

Bass-O-Matic was weak, replaced by the recently-devel oped
IDEA

MD4 " " " " MD5

LZH replaced by the newly-developed InfoZip (now zlib)
uuencoding replaced with the then-new base64 encoding
Ports for Unix, Amiga, Atari, VMS added
Internationalisation support added

Legal Problems

PGP was the centre of an ongoing legal dispute with
RSADSI over patents
+ RSADSI released the free RSAREF implementation for (non-
commercial) PEM use
+ PGP 2.6 was altered to use RSAREF inthe US
« Commercial versions were sold by Viacrypt, who had an RSA
license
Later versions deprecated RSA in favour of the non-
patented Elgamal
» Elgamal wasreferred to in the documentation as Diffie-
Hellman for no known reason
— Both are DLP agorithms, but DH != Elgamal

Government Problems

In early 1993, someone apparently told US Customs that
PRZ was exporting misappropriated crypto code

« US Customs investigation escalated into a Federal Grand Jury
(US Attorney) in September 1993

They were pretty serious, e.g.:

26 February 1995: San Francisco Examiner and SF Chronicle
publish an article criticising the government’s stand on
encryption and the PGP investigation

27 February 1995: Author of the article was subpoena’d to appear
before the Grand Jury
Investigation was dropped in January 1996 with no charges
lad

PGP Message Formats

Unsecured
Compressed
Signed/clearsigned
Encrypted

+ optional encoding
General format

————— BEG N PGP messagetype- - - - -

————— END PGP messagetype- - - - -

PGP Message Formats (ctd)
Clearsigned message

We've got into Peter's presentation. Yours is next. Resistance is
usel ess.

----- BEG N PGP S| GNATURE- - - - -
Version: 2.3

i QCVAgUBKII Al 2v14aSAKIPNAQEVXgQAoXr vi AggvpVRDLW CHbNQo6y HuNuj 8y
cvPx2zVkhHj zkf s51 UN6z63r Rwej vHxegV79EX4xzsssW/UzbLvy QUkGS08SZ2Eq
bLSui j 9aFXal v5gJ4j B/ hu40qv U6l 7gKKr Vgt Lx EYpkv XFd+t FC4n9HovumyNRUC
ve57Y8988pY=

=NCcG

————— END PGP SI GNATURE- - - - -

» Remember that al this predates MIME
» Also had to work with things like Fidonet

PGP Message Formats (ctd)
Anything else

----- BEG N PGP MESSAGE-- - - -
Version: 2.3

hQEVAI khs M216BqRAQK / f 938A6hgl X51/ hwa420Cdr QDRGAMHId+50qQX/ 58JB8Y
UAI r YBHYZ5nmd46et y62phvbwf sNuF9i gSx2943CHr nul Vt kSXZRpKogt SE1oM ab
5i vD41l +h3Xk0Jpkn5SXYAzC6/ cj AZAZS]j oqy28LBI wzl f NNgr z| uEWBI bLPWAt 1
eqdS18uki OUvNQAI 1F Ji pGUG+Db1KnpqJ P7wHUI / 4RGLQ 50p3BCDI spC8j zQ' y
GsKFI ckA132dMk6b80vsUZga/ t mIOm gBj SbnQJ8UzLr Ne+G FRyBS+qGuKgLd9M
ymYgMyNOqo/ LXALSI LI ¢/ Dr 1nKCOcACO1la/ RZOOWAKYAAFr xX9a1BQqlnb40/ OSB
Cgr Pqi 61j Bks2NW2EPol C7nV5xLj f | Zwl Rj Y/ V5sZS6XDycJ9YOE 6f Ccl NwCoBsB
HRshm\t MHH2t q2/ / CozKZ8/ GHGNy s N8 QQWNQYEl gRCgH30oulE+CJoyoPwr Myj SYC
oGp4f ezQpi | 83Ve/ QUW276Knt TFLRpQ2H+ LDvXOW j gl+xTw==

=ZuCF

----- END PGP MESSACE-----

PGP Key Formats
Unlike PEM, PGP aso defined public/private key formats

* OpenSSL’s ‘PEM’ format is a homebrew invention

KeylID
Public key | Key trust

UserlD UserlD trust
Signature Sig.trust
Signature Sig.trust

» Key trust = how much the key is trusted to sign things (set by
the user)

* userlD trust = how much the userID istrusted to belong to this
key
+ Signing trust = copy of the signing key’s trust

PGP calculates user|D trust = sum of signing trusts

PGP Trust

UserID trust = trust of binding between userlD and key
Key trust = trust of key owner
Example: UserlD = Politician
» UserlD trust = High
» Key trust = Low
Trust levels

» Unknown
* None

» Casud

» Heavy-duty

PGP Trust (ctd)

Each key can contain multiple userl Ds with their own trust
levels
* userlD = Peter Gutmann, trust = high
+ userlD = University Vice-Chancellor, trust = none
Keys are revoked with a signed revocation (suicide note)
that PGP adds to the key
» Unlike X.509, you don’t need to go to an external agency to
cancel your key
PGP philosophy: Scram switch, in case of an emergency
shut down as quickly as possible

+ X.509 philosophy: DoS, make it as difficult as possible to
revoke akey

PGP Trust Computation

Trust levels are automatically computed by PGP
| Publickey | UserlD | Trust=High |

Signature |[Trust=Casual
Signature |Trust=Casual
Signature | Trust=None

Signature |Trust=Casual

User can define the required trust levels (e.g. 3 casuals=1
high)

In practice, the web of trust doesn’t really deliver
* |t can also be used hierarchically, like X.509

PGP Keyrings
One or more keys stored together constitute akeyring
Keys are looked up by

Key | Trust
* userlD (free- ey TTrust J« ’7 | —
form name) Sig | Trust [*5
+ keylD (64-bit | STV ey [Twst] |
value derived ::r
from the L Key | Trust 4_‘
public key) < L

The owner’s key is ultimately trusted and can convey this
to other keys

Key Distribution

Key distribution doesn’t rely on an existing infrastructure

« Email
* Personal contact
— Keysigning services
» Keys on web pages
* PGP keyservers
—email/HTTP interface to a PGP keyring
— HKP = undocumented protocol based on variations of a
student project
Verification by various out-of-band means (personal
contact, phone, mail)

» PGP key fingerprint was specifically designed for this purpose

Advantages of PGP over PEM

Y ou can pick your own name(s)

You don’t have to register with an authority

PGP requires no support infrastructure

The trust mechanism more closely matchesreal life

Key/certificate distribution can be manual or automatic
(just include it with the message)

MIME-based Security

Multipurpose Internet Mail Extensions

* Provides a convenient mechanism for transferring composite
data

Security-related information is sent as sections of a
multipart message
« multipart/signed
 multipart/encrypted
Binary datais handled via base64 encoding

MIME-aware mailers can automatically process the
security information (or at least hide it from the user)

MIM E-based Security (ctd)

General format

Content - Type: multipart/type, boundary="Boundary"
Cont ent - Tr ansf er - Encodi ng: base64

- - Boundary
encryption info

- - Boundary
message

- - Boundary
signature
- - Boundary- -

Both PEM and PGP were adapted to fit into the MIME
framework

MOSS

MIME Object Security Services

» PEM shoehorned into MIME

» MOSS support was added to MIME typesvia
appl i cati on/ noss-si gnat ure and
appl i cati on/ noss-keys

MOSS (ctd)
MOSS Signed

Content - Type: nul tipart/signed; protocol ="application/noss-
signature"; mcal g="rsa-nd5"; boundary="Si gned Message"

--Signed Message
Content - Type: text/plain

Support PGP: Show MOSS to your friends.

--Signed Message
Content - Type: application/ nposs-signature

Version: 5
Oiginator-1D:
j V2O HnnXHUBbNnL8k PAad/ n5Q TDZI bVuxvZAOVRZ5q5+Ej | 5bQvgNeqOUNQ r 6
Et E7TK2QDeVMOy XsdJ| A8f A==
M C- I nfo: RSA- MD5, RSA,
UdFJR8u/ Tl Ghf H65i eewe2l OMt 00a3vZCvVNGBZ r f / 7nr gz\WDABz 8WONs XSex v
Aj RFbHONPz BuxwnmDAFe AOH)szL4yBvhG

--Signed Message- -

MOSS (ctd)
MOSS Encrypted

Content - Type: mul tipart/encrypted; protocol ="application/npbss-keys";
boundar y="Encrypt ed Message"

--Encrypted Message
Cont ent - Type: application/ noss-keys

Version: 5

DEK- | nf o: DES- CBC, BFF968AA74691AC1

Reci pient-1D:
MFExCz AJBgNVBAYTAI VTMSAWHg YDVQQKEX dSUOEgRGFOYSBTZWNLc i Oe SwgSWbj
Lj EPMAOGAL UECX MGQMVO YSAX MQBWDQYDVQQLEWZOT1RBU k=, 66

Key- I nfo: RSA
06BS1WWOCTYHPt S3bM_D+L0hej dvX6Qv1HK2ds2sQPEaXhX8EhvVphHYTj wekdW
7x0Z3JIx2vTAhOYHVEqqQ A==

--Encrypted Message
Cont ent - Type: application/octet-stream

geW |/ YJ2Uf 5ng9yznPbt DOmYl oSW uVIOFRYx+gz Y+8i Xd/ NQr XHf i 6/ MhPf PF3d
j 1 qCIAXxvI d2xgqQ@ mJzoSladr 7kQbc/ | uadLgKeq3ci FzEv/ MbZhA==

--Encrypted Message--

PGP/MIME

PGP shoehorned into MIME
» PGP support added to MIME types via application/pgp-
signature and application/pgp-encrypted
PGP already uses - - > so PGP/MIME escapes this with

b

PGP/MIME (ctd)
PGP/MIME Signed:

Content - Type: nmnul tipart/signed; protocol ="application/pgp-signature";
m cal g=pgp- nd5; boundary=Si gned

--Signed
Content - Type: text/plain

Qur nessage format is uglier than your nessage format!

- - Si gned
Cont ent - Type: application/ pgp-signature

R BEG N PGP MESSAGE-- - - -
Version: 2.6.2

i QCVAWUBMIT RF2N90oV\BghPDJ AQE9UQQAL | 7LURVNdB;j r k4EqYBI b3h5QXI X/ LC/ /
j JV5bNvKZI GPI cEm 5i Fd9boEgvpi r Ht | REEqLQRKYNoBAct FBZmh9GC3C041W&q
uMor bxc+nl s1TI Kl A08r Vi 9i g/ 2Yh7LFr K5Ei n57U W2vgSxLhe/ zhdf ol T9Brn
HOxEa44b+El =

=ndaj

SRR END PGP MESSAGE-----

- - Si gned- -

PGP/MIME (ctd)
PGP/MIME Encrypted

Content-Type: nultipart/encrypted; protocol ="application/pgp-
encrypt ed"; boundary=Encrypted

--Encrypt ed
Cont ent - Type: applicati on/ pgp-encrypted

Version: 1

--Encrypt ed
Content - Type: application/octet-stream

----- BEG N PGP MESSAGE---- -
Version: 2.6.2

hl wDY32hYGCE8MkBA/ wOu7d45aUx F4AQORKIpr D3v5Z9K1YcRI2f ve87] M Dl x4Q

g9VGEXFeGgzykznmyk U6 A26 MsSMex R4AApee ON6xz ZW 0+0y OgqAq6l b46wsvl dZ96YA
AABH78hy X7YX4uT1t NCWEI | BogqvCel Mpp7UQI zBr Xg6G uk S8NxbukLeang\VWB
1yt 21DYQ uLzcMNe/ JNsD9vDVCvOOG30Ci 8=

=zzaA

- - Encrypt ed- -

MOSS and PGP/MIME

MQOSS never took off
PGP/MIME never took off either

SMIME

Originally based on proprietary RSADSI standards
wrapped in MIME

* PKCS, Public Key Cryptography Standards
— RC2, RC4 for data encryption
— PKCS#1, RSA encryption, for key exchange
— PKCS #7, cryptographic message syntax, for message

formatting
Newer versions added non-proprietary and non-patented
ciphers

 Widely-supported, little-used
— Every Windows box and many Unix boxes have this built in
— Outlook makes it (moderately) easy to use

CMS
Cryptographic Message Syntax

» Type-and-value format

Content type
Content

Data content types

« Data

+ Signed data

Encrypted data (conventional encryption)
Enveloped data (PK C-encrypted)
Authenticated (MAC’d) data

» Compressed data

CMS (ctd)

Other content types possible

+ Key management messages

» Protocol-specific message data
Content can be arbitrarily nested

Content = Encrypted
Encryption info

Content = Signed

Content = Data
Data

Signature(s)

Signed Data Format

Digest (hash) algorithm(s)
Encapsulated data

Signer certificate chain(s)
Signature(s)

Presence of hash algorithm information before the data and
certificates before the signatures allows one-pass
processing

« Streaming implementations can generate and verify messages
on thefly

Signature Format

Signing certificate ID
Authenticated attributes
Signature
Unauthenticatedattributes

Authenticated attributes are signed along with the
encapsulated content

+ Signing time

+ Signature type
— “T agree completely”
— “T agree in principle”
— “I disagree but can’t be bothered going into the details”
— “A flunky handed me this to sign”

Signature Format (ctd)

* Receipt request
* Security label
* Mailing list information
Unauthenticated attributes provide a means of adding
further information without breaking the original
signature

» Countersignature
— Countersigns an existing signature

— Signs the signature on the content rather than the content
itself, so the other content doesn’t have to be present

— Countersignatures can contain further countersignatures

Enveloped Data Format

Per-recipient information
Decryption key certificate ID
Encryptedcontent-encr.key

Newer versions added support for further mechanisms like
previoudy distributed shared content-encryption keys

+ Makes mailing-list support easier

CMS —» SMIME

Wrap each individual CM S layer in MIME

base64 encode + wrap content
Encode as CMS data

base64 encode + wrap content
Encode as CM S signed data
base64 encode + wrap content
Encode as CM S enveloped data
base64 encode + wrap content

Result is 2:1 message expansion

S MIME Problems

Earlier versions used mostly crippled crypto

« Only way to interoperate was 40-bit RC2
— RC2/40 is «till the lowest-common-denominator default

— User is given no warning of the use of crippled crypto
— Message forwarding may result in a security downgrade

« S/IMIME-cracking screen saver released in 1997
— Performs an optimised attack using RC2 key setup cycles
— Looks for the MIME header in the decrypted data
Original YMIME was based on patented RSA and
proprietary RC2, rejected by the IETF as a standard

» |ETF developed S'MIME v3 using strong crypto and non-
patented, non-proprietary technology

MSP

Message Security Protocol, used in the Defence M essaging
System (DMYS)

+ X.400 message contains

| X.400 Envelope |

an envelope + content X.400/MSP Content
» MSP encapsulates the |_MSP Header |

X.400 gontent and adds Encap3u|ated

a security header content

X.400 security required using (and trusting) an X.400
MTA; MSP requires only trusted endpoints
« MSP was later used with MIME

M SP Services

Services provided
+ Authentication
Integrity
Confidentiality
* Non-repudiation of origin (via message signatures)
» Non-repudiation of delivery (via signed receipts)
M SP also provides rule-based access control (RBAC)
based on message sensitivity and classification levels of
sender, receiver, and workstation

* Receiving MUA checks that the receiver and workstation are
cleared for the messages security classification

» MSP rule-based access control (RBAC) = role-based access
control (also RBAC)

M SP Certificates

M SP defines three X.509 certificate types

+ Signature-only

 Encryption (key management) only

 Signature and encryption (two keysin one certificate)
— Non-standard extension to X.509v1

Certificate also includes R(ule)BA C authorisations

M SP Protection Types

MSP Signature

« MUA/MLA signswith signature-only certificate
Non-repudiation

» User signs with signature or dual-key certificate
Confidentiality, integrity, R(ule)BAC

+ Encrypted with key management or dual-key certificate
Non-repudiation + confidentiality, integrity, R(ule)BAC

« Sign + encrypt using either signature and key management
certificates or dual-key certificate

Any of the above can be combined with MSP signatures

M SP Protection Types (ctd)

M SP signature covers M SP header and encapsul ated
content
» Mandatory for mailing lists

User signature covers encapsul ated content and receipt
request information

M SP Message Format

Originator security data
| Originator key management cert chain
Signature
Receipt request information
Signature on data and receipt info
Signature cert chain
Recipient security data
Decryption key ID

Encrypted security classification
(RBAC) and content-encr.key

Mailing list control information
MUA or MLA information
Encapsulated content

MSP Message Format (ctd)

Extremely complex format

» Many optional featuresin SMIME are part of base MSP
» Conversaly, looking at M SP explains some of the weird stuff
found in SSMIME
Awkward-to-process format
» One-pass processing isimpossible
+ Signature precedes signed data
 Signing certificates are present after the signature

Fits well with the rest of X.400

MSP in Practice

MSPis heavily tied into US DoD crypto hardware, e.g.
Fortezza:

» DSA signatures
+ KEA key management
 Skipjack encryption
MSP was later kludged to work with MIME ala MOSS
and PGP/MIME

Opportunistic email Encryption

After 10-15 years of effort, SSMIME and PGP useislost in
the noise floor (MSP islost in space)

* Most mail clientsinclude SSMIME support
« Many (OSYS) clients include PGP support
» Usageisvirtually nonexistent

— Too hard to use

— Too much bother to use

Opportunistic email Encryption (ctd)

Encrypt data using keys managed viakey continuity

» Completely transparent to end users
» Requires no extra effort to use
 Effectively free (except for the slight CPU overhead)

Most commonly encountered in SMTP/POP3/IMAP
* Protects mail in transit

« Authenticates the sender
 Prevents unauthorised relaying/spamming

STARTTLS/STLSYAUTH TLS
Opportunistic encryption for SMTP/POP/IMAP/FTP

220 mail . foo.com ESMIP server ready
EHLO server. bar.com

250- STARTTLS

STARTTLS

220 Ready to start TLS

<encrypted transfer>

 Upgrades the unprotected link to a TL S-protected one
 Totaly transparent, (almost) idiot-proof, etc

STARTTLS/STLS/AUTH TLS (ctd)

A year after appearing, STARTTLS was protecting more
email than al other email encryption protocols
combined, despite their 10-15 year lead

* Just as SSH has displaced telnet, so STARTTLSis displacing
(or augmenting) straight SMTP/POP3/IMAP

 Auckland Uni turned off unencrypted mail to local servers after
STARTTLS appeared, just as they turned off telnet after SSH
appeared

Not perfect, but boxes attackers into narrower and narrower
channels

Biggest benefit to MTA adminsis as an access control
mechanism

