
Encryption and Security Tutorial

Peter Gutmann

University of Auckland
http://www.cs.auckland.ac.nz/~pgut001

Security Requirements

Confidentiality
•Protection from disclosure to unauthorised persons

Integrity
•Maintaining data consistency

Authentication
•Assurance of identity of person or originator of data

Non-repudiation
•Originator of communications can’t deny it later



Security Requirements (ctd)

Availability
•Legitimate users have access when they need it

Access control
•Unauthorised users are kept out

These are often combined
•User authentication used for access control purposes
•Non-repudiation combined with authentication

Security Threats

Information disclosure/information leakage

Integrity violation

Masquerading

Denial of service

Illegitimate use

Generic threat: Backdoors, trojan horses, insider attacks

Most Internet security problems are access control or
authentication ones
•Denial of service is also popular, but mostly an annoyance



Attack Types

Passive attack can only observe communications or data

Active attack can actively modify communications or data
•Often difficult to perform, but very powerful
–Mail forgery/modification
–TCP/IP spoofing/session hijacking

Attack Types (ctd)

Strong, effectively unbreakable crypto is universally
available (despite US government efforts in the 1990s)
•Don’t attack the crypto, attack the infrastructure within which 
it’s used
•" " " " implementation
•" " " " users
–See my Internet threat convergence tutorial for more on the latter



Security Services

From the OSI definition:
•Access control: Protects against unauthorised use
•Authentication: Provides assurance of someone's identity
–Often confused with authorisation

•Confidentiality: Protects against disclosure to unauthorised
identities
•Integrity: Protects from unauthorised data alteration
•Non-repudiation: Protects against the originator of

communications later denying it

Security Mechanisms

Three basic building blocks are used:
•Encryption is used to provide confidentiality, can provide

authentication and integrity protection
•Digital signatures are used to provide authentication, integrity

protection, and non-repudiation
•Checksums/hash algorithms are used to provide integrity

protection, can provide authentication

One or more security mechanisms are combined to provide
a security service



Services, Mechanisms, Algorithms

A typical security protocol provides one or more services

•Services are built from mechanisms
•Mechanisms are implemented using algorithms

Conventional Encryption

Uses a shared key

Problem of communicating a large message in secret is
reduced to communicating a small key in secret



Public-key Encryption

Uses matched public/private key pairs

Anyone can encrypt with the public key, only one person
can decrypt with the private key

Key Agreement

Allows two parties to agree on a shared key

Provides part of the required secure channel for exchanging
a conventional encryption key



Hash Functions

Creates a unique “fingerprint” for a message

Anyone can alter the data and calculate a new hash value
•Hash has to be protected in some way

MAC’s

Message Authentication Code, adds a password/key to a
hash

Only the password holder(s) can generate the MAC



Digital Signatures

Combines a hash with a digital signature algorithm

Digital Signatures (ctd)

Signature checking:



Message/Data Encryption

Combines conventional and public-key encryption

Message/data Encryption (ctd)

Public-key encryption provides a secure channel to
exchange conventional encryption keys



Data Formats

One obviously-correct format for secured content

•Allows straightforward one-pass processing for encapsulation
and decapsulation

Information required to process payload
Payload

Result of processing payload

Data Formats (ctd)

Signed data MACd data

Encrypted data
Keying info = password derivation
info, public-key-encrypted
content-encryption key, …

This single obvious format is why PGP and S/MIME, SSL
and SSH differ mostly in their bit-bagging formats
•Doesn’t prevent standards groups from coming up with 

different (broken) versions

Hash algo.for payload
Payload

Signature on payload
Payload

MAC on payload

Keying info for MAC

Encrypted payload
Keying info for encryption



Security Protocol Layers

The further down you go, the more transparent it is
The further up you go, the easier it is to deploy

Why Security is Harder than it Looks

All software has bugs
Under normal usage conditions, a 99.99% bug-free

program will rarely cause problems

A 99.99% security-bug-free program can be exploited by
ensuring the 0.01% instance is always encountered

This converts the 0.01% failure to 100% failure



Why Security is Harder than it Looks (ctd)

Customers have come to expect buggy software
•Correctness is not a selling point
•Expensive and time-consuming software validation and

verification is hard to justify

Solution: Confine security functionality into a small subset
of functions, the trusted computing base (TCB)
•In theory the TCB is small and relatively easy to analyse
•In practice vendors end up stuffing everything into the TCB,

making it a UTCB
•Consumers buy the product anyway (see above)


