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Abstract
A common complaint about PKI is that it is simply too hard to use at the end-user level. Somewhat surprisingly,
there exists no PKI equivalent of DHCP or BOOTP for automated, transparent PKI setup, leaving the certificate user
experience similar to the process of bringing up an X.25 link. This paper provides a PKI equivalent of these basic
bootstrap services that provides automatic, transparent configuration and setup of certificate information, with the
user needing to supply no more than their user name and password. The work covers the design process involved
and tradeoffs made, implementation details, and experiences with actual operation. The overall purpose of the work
is to design and implement a plug-and-play certificate setup mechanism usable by even the most inexperienced user,
a “PKI your mother can use”.

1 Introduction
Despite many years of effort, PKI technology has failed to take off except in a few niche areas. Reasons for this
abound, and include the difficulty of deploying the technology, cost, lack of interoperability, and the poor match of
PKI designs to any pressing real-world problems. Probably the primary factor at the user level though is the high
level of difficulty involved in deploying and using a PKI.

There is considerable evidence from mailing lists, Usenet newsgroups and web forums, and directly from the users
themselves, that acquiring a certificate is the single biggest hurdle faced by users1. For example various user
comments indicate that it takes a skilled technical user between 30 minutes and 4 hours work to obtain a certificate
from a public CA that performs little to no verification, depending on the CA and the procedure being followed.
Obtaining one from non-public CAs that carry out various levels of verification before issuing the certificate can
take as long as a month. A representative non-technical user who tried to obtain an (unverified) certificate from a
public CA took well over an hour for the process, which involved having the author tell them where to go to start the
process, filling out eight (!!) browser pages of information, having to spend time finding their passport, several
restarts due to values being rejected, waiting for emailed instructions, numerous questions to the author about
various points of the process, cutting and pasting data values from an email message to a web page, and filling in
more information over a succession of eleven further web pages (including several that were completely
incomprehensible to the user, she just clicked “Next”).  Eventually, a final page announced that a certificate had 
been issued, although the user was never able to locate it on the PC, and couldn’t understand much of the 
information on the web page, which referred to things like “certificate Distinguished Names” and “X.509 
SubjectAltName” (there was a button labelled “Fetch”, but this seemed to have no effect).  Eventually an emailed 
message provided a URL to download the certificate, which, after switching to a different web browser and
providing further names and passwords yielded a file on disk which the user located after considerable searching.
Clicking on the file had no effect, at which point the user gave up. In a similar study, a set of highly technical users,
most with PhDs in computer science, took over two hours to set up a certificate for their own use and rated it as the
most difficult computer task that they’d ever been asked to perform [1].

In contrast, obtaining the Internet connection that enabled the certificate process took around ten minutes and
involved the exchange of a user name, password, ISP phone number, and a credit card number (the sample
certificate was free, or the process would no doubt have taken even longer). Similarly, connecting a new system to a
LAN usually requires no more than a user name and password for access to the appropriate server, with the rest
being taken care of transparently via mechanisms such as DHCP. In contrast, the process of obtaining a certificate
most closely resembles the experience of bringing up an X.25 link. The usability problems inherent in such a
system are summed up by a book that examines the reasons for the success of peer-to-peer software: “the vast
majority of users detest anything they must configure and tweak. Any really mass-appeal tool must allow an
essentially transparent functionality as default behaviour; anything else will necessarily have limited adoption” [2].

1 The use of anecdotal evidence in this paper is an unfortunate necessity because few public PKI usability studies
exist, and the few that do tend to be post-mortem analyses.
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The problems that this creates are demonstrated by what happens when technically skilled users are required to work
with certificates. The OpenSSL toolkit [3][4] includes a Perl script CA.pl that allows users to quickly generate so-
called clown suit certificates (ones that “have all the validity of a clown suit” when used for identification purposes 
[5]), which is widely-used in practice. The cryptlib toolkit [6][7] contains a similar feature in the form of Xyzzy
certificates (added with some resistance and only after the author grew tired of endless requests for it), ones with
dummy X.500 names, an effectively infinite lifetime, and no restrictions on usage. Most commercial toolkits
include similar capabilities, usually disguised as “test certificates” for development purposes only, which end up
being deployed in live environments because it’s too difficult to do it the way X.509 says it should be done.  
Certificates used with mailers that support the STARTTLS option consist of ones that are “self-signed, signed-by the
default Snake Oil CA, signed by an unknown test CA, expired, or have the wrong DN” [8]. The producer of one
widely-used Windows MUA reports that in their experience 90% of the STARTTLS-enabled servers that they
encounter use self-signed certificates [9]. This reduces the overall security of the system to that of unauthenticated
Diffie-Hellman key exchange, circa 1976. In all of these cases, the entire purpose of certificates has been
completely short-circuited by users because it’s just too difficult to do the jobproperly. The problematic nature of
X.509 is echoed in publications both technical and non-technical, with conference papers and product descriptions
making a feature of the fact that their design or product works without requiring a PKI. For example, one recent
review of email security gateways made a requirement for consideration in the review that the product “have no 
reliance on PKI” [10]. As an extreme example of this, the inaugural PKI Research Workshop, attended by expert
PKI users, required that submitters authenticate themselves with plaintext passwords because of the lack of a PKI to
handle the task [11][12]. In other cases, initiatives that had tried to deploy PKI switched back to standard passwords
due to the volume of user complaints about complexity and usability problems [13].

The goal of this paper, then, is to design and build a certificate-handling mechanism whose use is no more difficult
than the task of obtaining an ISP account.  Somewhat less formally, the intent is to “build a PKI your mother can 
use”.  Since ISPs have had many years of experience in making what was originally a complex operation best left to 
experienced technical users accessible to everyone, this paper uses the approach used by ISPs to solve similar
problems as a starting point for solving equivalent problems from the PKI field.

2 The Problem
Security texts generally recommend the following security principles for good key management [14][15][16]:

 Encryption (as opposed to signature) keys should have as short a lifetime as possible in order to shorten their
window of vulnerability. Changing keys frequently reduces the damage if a key is compromised.

 Different keys should be used for different purposes. For example one (short-term) key might be used for
encryption, a (different) medium-term key for ephemeral authentication and a long-term key for digital
signatures that need to be validated years after signing. Even in the latter case, only the public portion of the
key should be retained over the long term for signature verification, with the private portion being destroyed to
reduce potential exposure.

 Keys should be carefully protected, and never distributed

A consequence of the difficulty in obtaining certificates is that users break every principle of good key management
in order to avoid the pain of acquiring/replacing a certificate [17]:

 CAs use certificates with effectively infinite lifetimes (20-40 years).

 Users use certificates with effectively infinite lifetimes (even if the CA limits it to 1 year for billing purposes)
by re-certifying the same key year in, year out. Many users see this as perfectly natural and sensible, and some
CAs concur.

 The same key is used for everything (encryption, long-term signing, ephemeral authentication, etc, etc). This is
regarded as a CA and/or software feature by many users. For example, the Windows CryptoAPI allows an
encryption-only key to be used for signatures as well, since this is more convenient for users than having to
manage two keys.

 The private key is copied around freely so that every application on the system and in some cases every user or
machine on the network can share it. Again, the ability to freely distribute the private key is regarded as a
software feature.
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 In some cases, this effect can even stall the deployment of newer, more secure mechanisms to replace older
ones with known security problems. One of the contributing reasons why RSA with PKCS #1 padding is still in
almost universal use rather than being replaced with a more secure alternative such as RSA OAEP or RSA PSS
is that it’s too difficult to update the certificates involved [18].

In all of these cases, the pain of certificate acquisition and renewal has overridden all security concerns. The
problem we face, then, is how to make certificate acquisition and update as transparent and simple as possible. The
best way to determine what needs to be done is to examine the individual issues raised by the certificate acquisition
example given in section 1, and provide representative solutions as used in the ISP world.

2.1 Initial Assumptions
Before we begin, we need to define the environment within which we’re operating.  The work presented here makes 
the following basic assumptions:

 There is an existing relationship between the user and some entity involved in the certification process that can
be used for authentication purposes. For example when a user signs up for online banking or a loyalty program,
the bank or vendor typically sends them an authenticator for the online enrolment in the post, or communicates
it over the phone or in person. A similar out-of-band exchange of initial authentication information is assumed
here. This follows existing practice and uses well-established mechanisms, which is important not only for
obvious practical reasons but also because it comes with valuable legal precedent in case of any dispute.

 There is a server available that provides the certification services discussed further on, or at least the PKI
service-locator service. This is the PKI equivalent of a DHCP server. Just as with a DHCP server, a user can
still manually configure alternatives if they so desire or if the server is unavailable. The server may provide the
services directly, for example as part of an ISP’s overall service package or through an in-house CA, or it may
merely act as a front-end or forwarder to another service provider such as a traditional public CA. For example
it’s quite possible that a large service provider such as AOL or MSN may want to run a CA as a value-added
service for users. Similarly, large organisations such as corporates, universities, and government departments
may run their own CAs. Smaller organisations, on the other hand, would typically farm the service out to an
external CA.

 We’re not designing a system to handle nuclear weapons launch codes.  In particular, the system need only be 
as secure as an equivalent non-PKI alternative: “Cumbersome technology will be deployed and operated
incorrectly and insecurely, or perhaps not at all” [19]. For example, typical online operations for which a
certificate might be used (shopping, banking, vendor loyalty programs) all get by with a user name and
password as the basic input to the authentication process.  If it’s good enough for existing applications, it’s good 
enough here, although we use more appropriate cryptographic support (MACs and digital signatures) than the
usual passwords-over-SSL.

The requirements that need to be met by the enrolment process are currently the subject of an extensive public
consultation process being performed by the New Zealand State Services Commission [20], who have been
soliciting input from various sources including government departments, businesses, and end users, as well as
special-interest groups such as the New Zealand Privacy Commissioner. The work also takes into consideration
similar work being carried out in Australia, Canada, Ireland, Singapore, and the UK, and will be the subject of a
future paper.

The consultation process has among its policy goals producing an enrolment system which is acceptable to potential
users (taking into account the different needs of different users), providing appropriate privacy protection, and being
fit for its purpose, avoiding unnecessary over-engineering. The implementation goals include providing a user-
focused system which is as convenient, easy to use and non-intrusive as possible, being flexible enough to
accommodate change, being affordable and reliable for the public and for government agencies, and very
importantly complying with relevant law, including privacy and human rights law, and functioning in a way that
provides legal certainty. A final implementation goal is that it provide functional equivalence to existing systems, so
that the authentication requirements are similar to those that apply to existing transactions except in cases where the
online nature of the transaction significantly changes the level of risk. Although the State Services Commission is
not considering a PKI-based enrolment system for individuals, the principles that underpin their work can be
adopted to develop a Plug and Play PKI.
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Now that the initial assumptions have been laid out, we can examine the various design problems that we need to
address.

2.2 Locating the Certificate Service
The user was required to manually locate the certification service (typically a Certification Authority or CA) that
they were using. In contrast a protocol such as DHCP automatically locates the services required for Internet access
without the user even being aware that this is happening.

2.3 Entering User Data
Once the user had located the CA service, they were required to enter a considerable amount of data before they
could go any further. In particular, despite the fact that the certificate being requested would contain no more than
an (unverified) name and an email address (the rest is fixed data set by the CA), the user was required to fill in pages
and pages of information unrelated to the certificate. After providing authentication data, the user was emailed back
multiple authenticators that had to be cut and pasted into web pages and then had to answer several more pages of
questions before a certificate was issued. Imagine the loss of productivity faced by any organisation that has its
employees enrol for certificates if each employee is forced to run this gauntlet!

In contrast, signing up for an ISP account or connecting to a corporate network requires a single user name (to
identify the user) and a password (to authenticate them). Even processes such as online banking (with far more at
stake then a zero-value email certificate) can get by with a simple name and authenticator.

2.4 Obtaining the Certificate
The process of obtaining the certificate once it was issued was problematic and difficult for the user to comprehend,
both conceptually (the user was told that a certificate had been issued, but all that meant was that a certificate existed
somewhere, not that the user actually had it), and practically (it didn’t work properly).  In contrast, the success or 
failure of the ISP signup process is immediately obvious, and requires no further action by the user (barring the
usual networking snafus).

2.4.1 PKI-enabled Toasters
A slightly different situationoccurs when the certificate user isn’t a human being but a device, particularly a device 
with a very limited user interface that can’t function as, or emulate, the behaviour of a human being: the Internet-
enabled toaster. Designing mechanisms to make working with these devices possible is the goal of zero-
configuration networking [21][22][23], inspired by the host-requirements RFC observation that a self-configuring
networking system would permit “the whole suite to be implemented in ROM or cast into silicon [...] it would be an
immense boon to harried LAN administrators as well as system vendors”.

The ability to initialise a PKI-enabled toaster is an additional plug-and-play PKI service that has no equivalent in the
ISP world.

2.5 Bootstrapping the PKI
A final problem, which was hidden by the use of the web browser, is obtaining the initial CA certificates that are
used to verify other certificates. Web browsers address this problem by including a large (well over 100 certificates
for current browsers) collection of certificates hardcoded into them. These hardcoded certificates include ones from
totally unknown CAs (including ones whose private keys have been on-sold to various third parties [24]), CAs with
moribund web sites, 512-bit keys, policies disclaiming all liability for any use of the certificate or reliance on
information contained in it, and similar worrying signs [25]. Furthermore, because the browser trusts all CA
certificates in its collection equally, the overall system is only as trustworthy as the least trustworthy CA in the
collection. In other words, Honest Joe’s Used Cars and Certificates is assigned the same status as the Verisign Class 
1 Public Primary Certification Authority, and can usurp its certificates if it so desires.

This bootstrap process, referred to in this paper as PKIBoot, is a PKI-specific issue that has no equivalent in the ISP
world.
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2.6 Problem Summary
In summary, we need a system with the following features:

 Transparent discovery of PKI services

 Bootstrap functionality that doesn’tassume pre-existing trusted certificates

 Simple (user name + password) enrolment process

 Automated acquisition and renewal of certificates

Section 3 examines possible mechanisms that may be used to provide these services, and sections 3.2.1 and 5 go on
to cover the actual implementation, and implementation experiences.

3 Approach
In order to meet the requirements listed in section 2.6, we need three distinct mechanisms:

 A service location mechanism

 A bootstrap mechanism

 A certificate acquisition/renewal mechanism

The abstract flow of operations for this process is shown in the sequence diagram in Figure 1. Initially, the user
needs to determine where to go to obtain certificate services. This is handled by the service location step.
Employing security mechanisms at this very preliminary level would be rather problematic since the actual service
that handles security hasn’t been engaged yet. There is in fact no need for this service to be secure, since the
interaction with the certificate service that follows is authenticated, in the same way that SSL (in theory) doesn’t 
require a secure DNS service since it authenticates the client and server. In practice though, SSL authenticates the
server using a certificate from one of over a hundred CAs hardcoded into the client software that the user has no
choice but to trust, and omits user authentication entirely because it’s just toohard to manage, providing a good
example of the exact problem that the plug-and-play PKI services are intended to solve.

User Svc.Location PKI Service

Svc_Req

Svc_Resp

Auth( PKIBoot_Req )

Auth( PKIBoot_Resp )

Auth( Init_Req )

Auth( Init_Resp )

Auth( Update_Resp )

Auth( Update_Req )

Locate PKI
service

Obtain CA
certificates

Obtain initial
certificates

Obtain
further certs

Figure 1: Plug-and-play PKI setup process

Once the user has located the certificate service provider, they cryptographically authenticate themselves to the
server via the mechanism described in section 4.3 and request an initial set of certificates such as trusted CA
certificates. For example if the certification service were being run by the user’s employer, the server would return 
the employer’s CA certificates (and any other certificates that the employer considers trustworthy, for example those 
of trading partners) to the user, authenticated using the same mechanism as the one used by the user. This is
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equivalent to the certificate collection normally hardcoded into web browsers, except that the user is accepting a
small set of certificates from the trusted service provider rather than a large collection of arbitrary certificates from
sources completely unknown to them.

Now that the user has the necessary CA certificates, they can obtain their first certificate, identified by their user
name and authenticated by their password (again, used as input to the appropriate cryptographic mechanism). In the
case of the Internet-enabled toaster where there’s no password available, the authentication is provided by a unique 
ID such as the toaster’s serial number (which doesn’t have to be private, merely unique) and the use of a private
network segment for initialisation (in other words the security controls at this initial level are physical rather than
electronic, exact details of the process are given in section 3.2.1).

Finally, the user can request further certificates using either their user name and password as before, or (more
conveniently and logically) using the initial certificate to authenticate further requests. In the case of the Internet-
enabled toaster, further operations can now be carried out off the private network, with communications
authenticated using the certificates exchanged during the PKIBoot stage. Further certificates can be now obtained,
and existing ones updated at any time.

Rather than designing yet another new PKI protocol (the IETF PKIX working group currently has 21 RFCs and 30
RFC drafts in the works, with several being small books over 100 pages long, for an incredible 1,600 pages of X.509
PKI standards), our intent is to make use of existing protocols and mechanisms wherever possible (although no
standard exists that provides details on the basic act of initialising a PKI via a PKIBoot-type mechanism, there do
exist RFCs covering issues such as how to add animations and theme music to an X.509 certificate [26]). An
additional goal, not stated explicitly above, is to aim for a solution which is practical and workable (a single paper
suffices to cover it), rather than the ultimate perfect certificate management mechanism (260 pages of RFCs in 4
parts with 6 additional RFC drafts in progress and a 200-message thread arguing over what colour to paint it when
it’s finished).

3.1 PKI Service Location
The first requirement is for a protocol to locate PKI services. In the comparison with signing up for an ISP account
or connecting to a corporate network that was used in section 2, mention was made of the use of DHCP for locating
IP-related services, so the obvious solution would be DHCP. However, there are also a number of other service-
location mechanisms that should be considered, of which the major ones are Jini, UPnP, the Service Location
Protocol (SLP), and perhaps a few lesser-known ones such as Salutation.

3.1.1 DHCP
The Dynamic Host Configuration Protocol [27] provides a framework for machines on a network to obtain
information such as their IP address, subnet mask, and default gateway. Apart from having computer-literate
relatives, DHCP is the primary mechanism used to make IP automagically work for users.

Use of DHCP for PKI service location has several problems. Many networks already contain DHCP servers, and
don’t take kindly to the appearance of a second server: “The diversity of hardware and protocol implementations in 
the Internet would preclude reliable operation if random hosts were allowed to respond to DHCP requests” [27].
Overloading existing servers for use for PKI service location would represent a nightmare for sysadmins and home
users, who would be faced with reconfiguring an arbitrary variety and number of DHCP servers, many of which
don’t allow user configuration of the kind required for our purposes.  Finally, DHCP functions at a very low level, 
while the PKI services can assume that an IP networking infrastructure is already up and running, doing away with
the need for the low-level DHCP approach. All of these issues make DHCP unsuited for our purposes, apart from
providing the bare plug-and-play conceptual model for our design.

3.1.2 Jini
Jini is used to locate and interact with Java-based services [28][29]. It has the disadvantage that it is tied to a
particular programming language and philosophy, and requires a large amount of Java-specific mechanisms such as
Java object serialisation, RMI (Remote Method Invocation), and code downloading (the ability to move Java objects
between JVMs) in order to function. In addition it provides a large range of client/server communications services
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that are unnecessary for our purposes, since our intent is to use a standard PKI protocol if possible rather than
implementing our own one using Java. This makes Jini unsuited for our purposes.

3.1.3 UPnP
UPnP is XML’s (or perhaps Microsoft’s) answer to Jini [30][31]. Like Jini, it provides a mechanism for locating
and interacting with services over a network. Also like Jini, the protocol is very complex, employing XML (SOAP)
over HTTP [32], and provides a large range of capabilities such as the ability to query devices down to the level of
manufacturer details, serial numbers, and UPC codes, an HTML GUI interface, URLs for assorted control
interfaces, and so on and so on. In addition the protocol is peer-to-peer and aimed mainly at home environments,
allowing devices such as printers, scanners, and cameras to communicate with a computer and each other without
requiring tedious user configuration.

There exists a service-discovery subset of UPnP, the Simple Service Discovery Protocol (SSDP), which operates on
HTTP over UDP and restricts itself purely to service discovery. This protocol provides more or less the same
services as SLP (see section 3.1.4) and bootstraps directly into SOAP/GENA (the UPnP General Event Notification
Protocol), so it’s not really useful as a standalone service location protocol, and in any case doesn’t provide any real 
advantages over SLP. A more pragmatic consideration is that sites may block UPnP from leaving the LAN or
disable it at the host for security reasons, in the same way that they currently block/disable NetBIOS. This would
make services such as PKIBoot collateral damage even though it isn’t really a UPnP service.  All of these 
considerations make UPnP unsuited to our purposes.

3.1.4 SLP
The Service Location Protocol (SLP) is an IETF standards-track protocol designed to function in a language and
technology-neutral manner [33][34][35][36]. SLP is purely a lookup service that provides a service location
mechanism and then gets out of the way, which appears to make it an ideal choice for a PKI service location
mechanism. However, there are some issues that make it slightly less than ideal. Firstly, the protocol is quite
complex to implement, although this is mitigated to some extent by the existence of a freely-available reference
implementation [37]. A more significant concern is that SLP is still waiting for its killer application (PKI is unlikely
to be that killer application), so there is little deployment or even knowledge of its existence. In order to avoid
requiring sysadmins to install, configure, and maintain yet another network service, we allow for the use of SLP
where available, but also provide a simple alternative in section 3.1.6.

3.1.5 Others
There exist a variety of other, lesser-known service discovery protocols such as Salutation [38] and Apple’s 
Rendezvous [39]. Although these have advantages for particular environments (for example Rendezvous brings
AppleTalk-style ease of use to TCP/IP environments, which is of benefit to Macintosh users), they have no
particular advantage over SLP for our purposes. In addition there are efforts under way to provide bridging for
some of the more common service location protocols, such as having Salutation able to query SLP servers [40]. It
appears that SLP (if it takes off) will be the common-denominator protocol.

Another possible alternative is the use of DNS SRV records [41]. Unfortunately the operating system used by the
user group most in need of handholding when it comes to technical issues has no support for anything beyond the
most basic DNS address lookups, making it impossible to use DNS SRV with anything but very recent Win2K and
XP systems. To make things even more entertaining, several of the function names and some of the function
parameters changed at various times during the Win2K phase of development, and the behaviour of portions of the
Windows sockets API changed in undocumented ways to match. This leads to the unfortunate situation in which a
Unix sysadmin can make use of DNS SRV to avoid having to deal with technical configuration issues, but a
Windows’95 user can’t.  As a result, we can’t usefully rely on SRV for our needs.

3.1.6 Faking it
In the absence of any formal service-location mechanism, it’s possible to fall back to the use of a “well-known” 
location constructed from the service provider’s domain name or the device’s IP address [42]. If the PKI service
isn’t provided locally, HTTP type 3xx redirection or DNS-based redirection may be used to redirect clients to the
actual PKI service provider. Use of this means of service location has the significant feature that it can be managed



8

through a single line of DNS or HTTP configuration data added to existing services/servers, making it by far the
easiest option to deploy of any of the service location mechanisms— the addition of a single DNS entry for, for
example, pkiboot.aol.com, would instantly provide plug-and-play PKI facilities for the entire AOL user base,
with no further configuration necessary2.

When used with full-scale DNS-enabled IP, the well-known location is constructed by prepending “pkiboot” to the 
domain name to obtain the URL to use for PKI services. For example if the current operating environment has a
domain myorg.org then the PKI service would be accessed as http://pkiboot.myorg.org. When the
certificate service is being provided in a more limited form such as with a web-enabled embedded device, the access
location is given by appending a fixed path portion “pkiboot” to the device’s IP address or location.  For example if 
the embedded device providing the service is available at 192.0.0.1 then the PKI service on the device would be
accessed as http://192.0.0.1/pkiboot/.

In practice we can use an extra level of indirection to locate PKI services, since PKIBoot isn’t the only service we 
require, and the services may be distributed across multiple servers for performance, maintainability, or security
reasons. For example the server that publishes certificate revocation lists (a small number of very large files, often
several MB in size) has very different operational characteristics than the one that makes certificates available (a
large number of very small files), which in turn has very different security characteristics than the one that provides
certificate status information by directly querying the CA certificate store.

Since this is the part of the system that is the most likely to be maintained manually by an overworked sysadmin, we
make it as simple as possible: A set of entries matching the required PKI service to the server URL that provides it,
one service per line. This is in effect a crude form of DNS SRV functionality that can be made to work with
versions of Windows earlier than XP. Note that no authentication is necessary at this preliminary pre-PKI level—
the one thing that a PKI facility doesn’t lack is endless capability for authentication and authorisation at every stage
of the process.

A possible alternative exists in the form of the authorityInfoAccess (AIA) and subjectInfoAccess (SIA) certificate
extension, which can be used to indicate the location of various certificate services. Since URLs can be fairly
ephemeral while certificates tend to persist forever, experience has shown that these URLs invariably point to
servers that no longer exist (at one point it was suggested that certificate standards be reworded to require that
certificates contain only invalid URLs, to match existing practice [43]), not helped by the fact that the entity that
issues the certificates usually has different goals from the one that runs the servers that provide various associated
services. Since no CA will reissue all of its certificates simply because a server URL has changed, we can’t depend 
on the AIA/SIA extension, although we can opportunistically use it if it’s present and actually valid.

3.2 PKIBoot
There currently exists no protocol or mechanism for this fundamental PKI operation. Since one of our design goals
is to use existing message formats if at all possible rather than inventing yet another new PKI protocol (see section
3), we need to locate an existing mechanism that can be adapted to our needs. This task is made easier (or perhaps
more complex) by the fact that every new PKI protocol seems to invent its own message format incompatible with
that of all other protocols, providing us with over a dozen different ones to choose from. All of these implement
simple request/response mechanisms that provide more or less the same functions, so in theory any would fit the
bill. In order to make things easier, we focus only on the two that are specifically designated as general-purpose
certificate management protocols, with a discussion of their relative merits provided in the next section, section 3.3.

In order to support the PKIBoot operation, we use the GenMsg (General Message) facility of the Certificate
Management Protocol (CMP, discussed further in section 4.3) to provide the certificate setup operation shown as the
second stage of Figure 1 (CMP also includes a kitchen-sink field in the message header, but this appears to be
dedicated to workarounds for problems in the initial version of the CMP protocol, so we use a GenMsg instead. In
addition, the CMP RFC at one point appears to make a reference to a vaguely PKIBoot-type of operation, but never
defines any messages or data types to support it, so this can’t be implemented as a standard part of the protocol).  A 
PKIBoot request consists of a CMP GenMsg containing a request for the initial set of trusted certificates,
authenticated with a MAC (Message Authentication Code, a cryptographic checksum derived from the user’s 
enrolment password) for new users or a digital signature for existing users who already have a certificate.

2 The question of whether exposing AOL users to certificates is a sound idea is beyond the scope of this paper.
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The CA responds to the PKIBoot request with the initial trusted certificate set, also protected with a MAC or a
signature. In this way the user will accept only a restricted set of known-good certificates from a cryptographically
authenticated authority, rather than an arbitrary collection of certificates included by whoever supplied their web
browser or PC. This authentication process also eliminates the need for cryptographically protecting the service
discovery stage that was covered in section 3.1, since only the genuine CA will be able to generate the
MAC/signature necessary to authenticate the initial certificate set (the CMP protocol includes additional features
such as nonces to prevent replay attacks, transaction IDs to link messages, and so on. Interested readers are referred
to the CMP specification for more information).

3.2.1 PKIBoot for PKI-enabled Toasters
The design presented here works just as well for Internet-enabled toasters as it does for devices with human users
through the use of the baby-duck security model [44][45]. In this model, a newly-initialised device (either one fresh
out of the box or one reset to its ground state) imprints upon the first device it sees in the same way that a newly-
hatched duckling imprints on the first moving object it sees as its mother. In our case the device trusts the first entity
it meets merely to issue it a certificate, not unconditionally as in the original baby-duck model. The process is
shown in Figure 2.

CA

Uninitialised
device

Public
Lan

CA

Initialised
device

Public
Lan

Figure 2: PnP PKI setup for an embedded device, with PKIBoot (left) and further setup (right)

Initially, the device is in the uninitialised (or reset-to-zero) state. Upon being connected to a network for the first
time, it goes through the PKIBoot process to obtain its CA certificates and an initial certificate for itself, as shown in
the left half of the diagram. This initialisation is carried out on a private LAN dedicated to device initialisation.
Once the device has imprinted on the certificate server, it is moved to the public LAN (or WAN) and carries out any
further operations there, as shown in the right half of the diagram.  Note that we don’t touch on the issue of who the 
device should trust (this is a making-PKI-workable paper, not an embedded device security paper). Readers are
referred to the original work on the baby-duck security model for more coverage of this area [44][45].

Although Figure 2 shows a single server providing service for both sides, this is merely a convenience; the private
network segment used for initialisation may have a server dedicated purely to device initialisation. Consider for
example the case of an engine management system (EMS) of a car using the baby-duck PKI model. The
initialisation stage is carried out at the manufacturer before the car is shipped to dealers. Once in the field, the EMS
can use the initial certificate set to verify that upgrades are only performed by authorised service agents, and use its
certificate to authenticate itself to the service agent3. Similarly, a technician installing PKI-enabled devices in the
field could carry with them a laptop dedicated to PKIBoot device initialisation. After the device is first installed, it
is initialised through a direct connection to the laptop. Once the initialisation phase has been completed, the device
is connected to the general network where all further operations take place.

3 As a side-benefit of these measures, an army of hot-chip enthusiasts will provide the system with considerable
penetration testing at no cost to the vendor.
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3.3 Obtaining Certificates
There exist two different protocols for certificate management, Certificate Management Protocol or CMP [46] and
Certificate Management Messages over CMS or CMC [47]. Both are quite complex, and their main difference is
that CMP has the curious design goal of being deliberately incompatible with any standard message format (really!)
[48] while CMC was designed to use existing, well-established formats [49]. Some of the consequences of the CMP
design decision are examined in more detail in sections 4.3 and 5.2. At the moment, CMP seems to be winning (in
the sense that CMP is rarely used while CMC appears to be unused), so we employ a carefully-profiled subset of
CMP here.

4 Implementation
This section looks at the implementation details of the various protocols and mechanisms chosen in section 3. The
section that follows examines specific issues that cropped up during the process, and analyses the results of the
implementation.

4.1 PKI Service Location
Implementation of the service location step was simple and straightforward, both for SLP and for the DNS/HTTP-
based alternative. SLP required building the OpenSLP server and client and configuring the server with a simple
template for PKI services, accessible via the SLP URL service:pki.test:http://certificates.-
myorg.org. This URL can be built automatically using the rules from section 3.1.6. The alternative option, using
DNS and/or HTTP to provide an equivalent service, does more or less the same thing, but without requiring SLP as
an intermediary.

This illustrates the major problem arising from the lack of SLP deployment mentioned in section 3.1.4: SLP is a type
of directory service which assumes that users will contact a well-known, central directory service (a Service Agent
or Directory Agent in SLP terminology) to handle requests for particular services. This works well when SLP is in
general use for locating all manner of services, but when the only service in use is the PKI service, having to find the
SLP service in order to find the PKI service is an unnecessary complication. Although there is a facility for locating
SLP services via DHCP [50], this has the same problems as using DHCP to directly locate the PKI service that were
discussed in section 3.1.1 (SLP can also use UDP multicast for discovery, but this isn’t a general-purpose solution
since its range usually extends only as far as the local network segment).

In addition, SLP is a powerful, general-purpose service location protocol capable of responding to very specific
requests such as “Where do I get Slowaris drivers for a WalletBuster 5000 colour printer?”, when all we really need 
is “Where’s the certificates?”.  Because of all of these issues, in practice it’s easier to perform the PKI service 
location via the DNS/HTTP mechanism than via SLP, although we retain the ability to use SLP if it becomes
generally adopted (this is no doubt the same excuse being used by every other not-quite user of SLP).

4.2 PKIBoot
The PKIBoot implementation was quite straightforward, and required only a relatively minor modification of the
CMP implementation in the cryptlib toolkit [7] to handle the new GenMsg subtype. When in use, the certificate
server is initialised with a set of trusted certificates that, at a minimum, includes its own certificate(s) and/or the
certificates of the CA on whose behalf it operates. This operation is handled in a fairly straightforward manner as
part of cryptlib’s role-based access control system.

cryptlib recognises multiple user roles that are assigned different capabilities, one of which is a CA role authorised
to issue and revoke certificates. Each user role has a variety of parameters associated with it, one of which is a
collection of certificates used/trusted by the user. When the server receives a PKIBoot request, it queries the CA
user for its trusted certificates, and sends these as the response to the PKIBoot query. The server verifies an
incoming request using the authentication information it has stored for the user making the request, and responds
with the initial trusted certificate set, exactly as described in section 3.2.
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Figure 3: Role-based actions during the PKIBoot process

Because of the automated role-based handling of certificates (the CA will, at an absolute minimum, have its own
certificate(s) trusted), there is no need to perform any explicit actions to manage trusted certificates. In effect, the
PKIBoot process allows a client to perform a remote query of trusted certificates from the CA user, implemented
using standard PKI mechanisms. The process is illustrated in Figure 3. In this case the cryptlib PKIBoot user is
acting as a proxy for the cryptlib CA user, however it can also act as a proxy for another cryptlib PKIBoot user, for
example when a departmental server relays certificates from an organisation-wide server.

The list of trusted certificates is communicated in the standard CMS format accepted by any PKCS #7/CMS/-
SMIME implementation [49], and by extension virtually every certificate-aware application. Although the transport
protocol we’re using is CMP, it can be in interpreted in a manner that allows the same bits-on-the-wire format as
CMS (see section 5.3 for details on how this is possible), so that the certificate payload can be used by anything that
understands CMS certificate chains, which in practice includes pretty much everything that uses X.509 certificates.
This means that any certificate-using application can be PKIBoot-enabled through the use of a CMP front-end to
handle the messaging.

There is a possible alternative format, Microsoft’s Certificate Trust List (CTL) [51], but this only contains a hash of
the certificate rather than the certificate itself (it’s assumed that the certificates are distributed via some unspecified 
mechanism), contains additional unnecessary information such as policy identifiers alongside the hash, and most
importantly contains a number of undocumented details and is apparently covered by a Microsoft patent. CMS
predates CTLs by many years and is well-defined, widely-supported, and unencumbered by patents.

The entire process beyond defining the contents of the trusted certificate set is quite transparent to both the server
administrator and the user, being handled automatically by the (modified) CMP server and cryptlib’s role-based
access control system.  From the users’ point of view, the PKIBoot process is simply a part of the initial certificate 
exchange and doesn’t require any explicit actions or effort, being protected by the security mechanisms used in the 
initial certificate exchange (see the next section).

4.3 CMP
The final stage of the process consists of obtaining the user’s certificate (or subsequent certificates).  At this point 
the software (or hardware, if a crypto token such as a smart card is being used) generates a public/private key pair
for the user and uses it to obtain the initial certificate. This is the first point at which the user needs to perform any
explicit actions, namely entering their user name and password, just as they’d be required to enter this information
when signing on to an ISP account or connecting to a corporate network. The same information was also used to
authenticate the PKIBoot exchange, but as mentioned in the previous section this occurs as a transparent addition to
the CMP process, so the user isn’t required to provide additional information for the PKIBoot process or even know 
that it’s occurring, in much the same way that DHCP sets things up for IP operation.  There may also be other 
supplementary actions required at this point, for example if the CA charges for certificates issued then the user
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should be required to acknowledge that the operation that follows will result in some form of monetary charge being
applied.

Although the discussion so far has referred to user names and passwords, in practice these values are typically text
strings identical in format to those used in software product activation keys, a shared-secret form that most
(Windows) users will be familiar with. These contain around 90 bits of entropy, which in combination with the use
of a salted iterated hash for the MAC makes offline guessing attacks infeasible. Even if a standard password is used,
the enrolment step is a one-time operation (further steps are authenticated using the certificate obtained during the
enrolment phase), making a password obtained through an attack on observed MAC values in the initial exchange of
little value to an attacker.

The use of a one-time password during the enrolment phase provides a further measure of protection in that if an
attacker can somehow obtained the password before the exchange takes place rather than afterwards (for example by
stealing it at the source), the user will be warned of the compromise when their attempt to obtain a certificate fails
with an indication that the password has already been used.

The enrolment process, while in theory probably the simplest part of the plug-and-play PKI operation, is in fact the
most awkward, being considerably hampered by the extraordinary complexity and ambiguity of the CMP protocol
specification. The problems encountered are covered in more detail in the discussion of implementation issues in
section 5.2, with resolutions provided in section 5.3.

5 Discussion
The section examines some of the major issues that were encountered in implementing the operations covered in
section 3.2.1, and concludes with a real-world acid test of the resulting system that examines whether it can live up
to the claim of being a PKI your mother can use.

5.1 Service Location
In practice the use of SLP, while no doubt the correct thing to do, is somewhat impractical. An informal survey of
sysadmins indicated that they would be reluctant to have yet another network service running on their servers, not
helped by the fact that there were easier alternatives available. In the end, the use of HTTP-based mechanisms
prevailed.

5.2 Problems with CMP
CMP is an extremely complex protocol with a large number of ambiguous, redundant, or even incomprehensible
features (there were some protocol features that were removed at one stage when even the RFC authors couldn’t 
explain their purpose). In many cases the function of various protocol elements is unknown, and so implementors
have to guess at their purpose. Needless to say, everyone guesses differently. For example, there are three different
fields that function as nonces, with no-one certain as to their exact purpose or use (one interop report states that “no 
realistic replay attackwas identified, it is not clear if nonces are required in [message types]” [52]). As a result,
some implementations implement them, some don’t, and some ignore them if they find them.

There is another nonce field described as a transaction ID that appears to be the most obvious place for a nonce,
however some implementations use this field to identify the sender of the message.  Others omit it (it’s optional) and 
use the sender key ID field (also optional, and omitted by some implementations) to identify the sender. Still others
use the sender X.500 Distinguished Name (DN) field for identification. This is the only mandatory ID field, but
when obtaining their first certificate the user doesn’t know their DN yet (in fact most users don’t know their DN at 
any point, even when they have a certificate), so the field must be filled with a dummy value, which is rejected by
some servers that (somehow) require the user to specify a DN in the initial request. Other servers accept any
arbitrary DN, but return a certificate with a totally different DN of their own choosing, leaving the reason for
needing to supply a DN in the first place open to speculation. To add to the confusion, there is a second DN present
in the request itself that may or may not match the sender DN, and the sender DN may itself be overridden by the
sender key ID, if present.

If pure DN-based identification is used, it’s not possible to uniquely identify the certificate to be used to authenticate 
a CMP transaction, since a DN can only identify the overall owner of a group of certificates, but not an individual
certificate. This problem was demonstrated by one CMP CA who updated their CA certificate, leading to the
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existence of multiple certificates identified by the same DN, so that all signatures created by the CA mysteriously
failed to verify, with no easily discernable reason (this is purely a fault of the CMP design, existing data formats
such as CMS/PKCS #7 don’t have any of these problems).

Further complications abound. Many fields are marked as mandatory, but never used, so special values have to be
invented to fill them, with no other meaning than to indicate that their presence has no meaning. Other fields are
marked as optional but are in fact mandatory, causing the protocol to break if they are omitted (because of the
confusion over the purposes of many of the fields, it’s not easy to determine this in advance).  There are portions of 
CMP that serve no identifiable purpose (for example “what is the purpose of [part of protocol]?  When should it be
checked? What attack(s) does it protect against? Should it always be there or is it used in lieu of other
mechanisms?” [52]), with the result that implementations omit them in order to reduce complexity, leading to lively
debates over standards-compliance when a new implementation which does support the feature appears (during one
interop session, interoperability among implementations was actually worse than it had been at the previous year’s 
interop). Some protocol features were in fact moved from mandatory-to-support to optional when it was found that
no-one had bothered to implement them.

In summary, trying to work with CMP was without doubt the most frustrating part of implementing the plug-n-play
PKI design.  Although it’s easy enough to manage in a homogeneous environment, trying to achieve interoperability 
among multiple different implementations is at best difficult and at worst impossible, for example when one
implementation requires that an X.500 DN be provided before the user knows what it is. The only mitigating factor
here is that any CMP implementation configured to use the PKIBoot process will presumably be able to handle the
necessary exchange of messages, leading to a de facto PKIBoot-capable common interpretation of the CMP
specification.

5.3 Fixing CMP
In order to increase the chances of having two CMP implementations able to interoperate, we use an interpretation
of the protocol designed to minimise problems. To work around the confusion involving identifiers, we add an
extension containing an ESSCertID (a universal, unambiguous certificate identifier containing a hash of the
certificate in question) [53] to all messages. This is possible because CMP uses a peculiar defunct form of ASN.1
which is imprecise enough that we can embrace and extend the protocol to use this type of identifier. This also
allows us to use CMP to communicate standard PKCS #7/CMS certificate chains usable by any other certificate-
using software as described in section 4.2, even if it doesn’t talk CMP.

The use of the ESSCertID does away with the need to work with the unreliable CMP identification mechanisms. If
there’s no ESSCertID present, we take guesses at the various identifiers mentioned in section 5.2, trying them as key
identifiers, user identifiers, and X.509 subject key identifiers (an X.509 certificate extension type). The X.500 DNs,
which may be present, present but set to a special value to indicate that they’re not present, or arbitrarily changed by
the other side, are ignored since they’re more trouble than they’re worth.

The optional fields labelled as nonces are copied across into replies in case the other side pays attention to them, but
otherwise ignored in order to interoperate with implementations that don’t use them.  The main nonce, labelled the 
transaction ID (although some implementations overload it as a user ID) is treated as the principal nonce, unless it’s 
absent, in which case we fall back to the other nonces if they are present (as this description implies, the processing
logic for CMP messages tends to be quite complex). Because of the uncertainty about nonces, the cryptlib CMP
implementation is designed to function without them if necessary, employing a database with full transactional
capabilities to record every operation so that an attempt to replay (for example) a certificate issue request will be
detected by the presence of a duplicate entry in the database [54].

In practice then we use the ESSCertID to identify the certificate or key used for authentication of messages and the
transaction ID (with a failsafe in the transaction processing system) as the nonce, falling back through a variety of
alternatives if one or both are missing. If a certain minimum standard isn’t reached (for example all of the various 
nonce fields are absent, or none of the various identifier fields appears to identify a certificate or key), we abort the
processing. As with the assumption about PKIBoot capabilities in section 5.2, it’s safe to assume that anything 
capable of handling PKIBoot will also handle identifiers and nonces in a sensible manner.
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5.4 Testing
The final step in the process was to test the implementation to determine whether this really was “a PKI your mother
can use” (the author resisted the temptation to cheat slightly and run the client in baby-duck mode, which would
have allowed him to claim that he had a PKI his potted plants could use). The test system consisted of a Windows
’98 home PC, with anHTTP redirect leading to a PKIBoot/CMP server located on the other side of the world,
partially to prove that remote certification services were just as feasible as local ones, and partially just because it
was convenient.

Taking a recently-calibrated reference mother, the system was stress-tested to determine usability by non-technical
users. The whole process functioned exactly as expected, with the end result being a freshly-minted certificate
stored in the system without the user being aware that it had happened. The implementation actually obtains two
certificates, first a long-term signature certificate authenticated with a MAC derived from the user name and
password, and then a short-term encryption certificate authenticated with the just-obtained signature certificate,
providing the necessary separation of encryption and signature keys which is so often sacrificed for ease-of-use
when obtaining certificates using conventional mechanisms. This process is totally transparent to the user, as is the
fact (or even the need to know) that two different keys are in use. A similar process is used in OpenPGP [55], which
maintains Elgamal encryption keys authenticated with DSA signing keys.

A second test was used to verify functionality when run in baby-duck mode, with an old headless Linux box acting
as a stand-in for the Internet-enabled toaster. This test was pretty much a tautology: the system went through the
PKIBoot and certificate-acquisition process, and subsequently initiated an SSL connection authenticated from the
server side with a trusted certificate exchanged during the PKIBoot process and from the client side with its newly-
obtained certificate. In the real world, this would presumably be followed by the downloading of control software
or configuration data over the SSL-secured link. In contrast in a world without plug-and-play PKI services, SSL
server authentication is performed using a hardcoded arbitrary collection of mostly-unknown CA certificates, and
client authentication is omitted because it’s just too hard to manage.

In attempting to design a security protocol with usability as a major goal, it’s not possible (without access to the 
usability testing labs of a large software company) to immediately determine whether this goal has indeed been met.
The intent of this paper was to create a design that makes the process as simple as possible. A more general test
than the previous two, in the form of ongoing use in cryptlib by general users, is currently under way. To some
extent the design has been vindicated by the fact that at least one beta-tester wanted to move the initial experimental
implementation into production immediately, but in the long run only time will tell how successful the overall
design is.

In conclusion, the system passed the initial tests, providing a fully automated means of acquiring (and later
updating/replacing) certificates usable by even the most inexperienced user, or as part of an automated process
requiring no user intervention. In addition, the system enforced best-practice key usage without the user having to
be aware of this— they weren’t even aware that they were using certificates, and were quite amazed when informed 
that this had achieved significantly more than what was achieved by the tortuous process covered in section 1.

6 Conclusion
This paper has examined the design process involved in making the various steps of establishing and using a PKI
simple and automated enough that anyone can use it, including embedded devices that can’t rely on manual 
intervention by a human to provide them with the necessary configuration. What appears at first glance to be a
relatively simple concept is complicated by the lack of established standard(s) to help accomplish the task, and the
high level of difficulty encountered in working with the standards created to allow certificate management
operations. In contrast, the initial part of the PKI setup operation suffers from an embarrassment of riches, with the
eventual choice of mechanism being driven by ease-of-use and ease-of-deployment considerations even if it may not
be the most appropriate on purely technical grounds. Despite these difficulties, it proved possible to use (and in
some cases slightly abuse) existing standards to accomplish the task at hand, without requiring the creation of yet
another set of PKI standards to perform the task, with important portions of the protocol output (for example PKCS
#7/CMS certificate chains sent over CMP) directly usable by existing applications.
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