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Introduction

1996: Securely deleting data from magnetic media is hard

2001: Semiconductors aren’t so easy either

Magnetic media
• Relatively simple solution
• Light technical background coverage

Semiconductors
• Many different, nontrivial solutions
• Lots of technical background coverage



Existing Work on Semiconductor Forensics

Semiconductor Device Physics

Electrons exist in discrete 
energy bands

Applying energy moves 
electrons from valence to 
conduction band
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Bands
• Are too far apart in insulators
• Touch or overlap in conductors
• Conduction occurs via electrons or holes (but not both) in 

semiconductors



Semiconductor Device Physics (ctd)

Semiconductor types
• p-type conducts by holes
• n-type conducts by electrons

P-N junction diode
• Conducts when forward 

biased (p-type at +ve)
• Doesn’t conduct when 

reverse biased
• Exact mechanism is fairly 

complex
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Semiconductor Device Physics (ctd)

n-channel MOSFET
• Applying voltage to gate 

forms conducting electron 
inversion layer beneath it

• Current flows from source 
to drain
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Device types
• n-channel devices move electrons (fast)
• p-channel devices move holes (slower)
• Complementary MOS (CMOS) uses both types



Semiconductor Memories
Static RAM

• Value written via Data/Data stored in cross-coupled flip-flops
• Individually addressable cells
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Semiconductor Memories (ctd)

Dynamic RAM

• Capacitor for storage, transistor for read/write/refresh
• Sense amplifiers compare cell voltage to value in reference cell
• Cells use various exotic techniques to shrink size but keep 

capacitor storage constant
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Electromigration

Relocation of metal atoms due to collision with electrons
• Electron wind
• Material removed to create voids at negative electrode
• Material deposited to create hillocks/whiskers at positive 

electrode

Some (minimal) healing occurs due to backflow when 
stress is removed

Electromigration (ctd)
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Electromigration (ctd)
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Electromigration (ctd)

Alloys are used to combat electromigration
• Cu in Al
• Sn in Cu

Cu or Sn solute atoms are displaced until the conductor 
behaves like the original pure metal
• Can be detected using electron microprobing techniques



Hot Carriers

MOSFETs have very small device dimensions → high 
electric fields (MV/cm)
• Electrons are accelerated to high speeds (hot carriers)

• Can tunnel into gate oxide
– Detrapping time = nanoseconds … days

• Can tunnel into passivation layer
– Permanent
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Hot Carrier Effects

Excess charge reduces on-state current (n-MOS), off-state 
current (p-MOS)
• Change of several hundred mV of memory cell voltage over a 

few minutes
• Writing 1 over 0 leads to a drop in cell threshold voltage
• Writing 0 over 1 leads to an increase in cell threshold voltage

Detectable by changing the setting of the reference cell

Affects logic circuits in general
• Changes currents, voltages, capacitance for the device



Ionic Contamination

Most common are sodium and to a lesser extent potassium
• Sodium ions have a high mobility in silicon
• Migrate towards Si/SiO2 interface
• Reduce threshold voltage of n-MOS, increase it for p-MOS
• Detectable using the same techniques used for hot carriers
• Addressed using passivation layers

Reliability studies indicate this only occurs at random 
locations where impurities have penetrated the 
passivation layer(s)
• Improved manufacturing techniques have mostly eliminated 

this avenue for data recovery

Other Effects

Radiation-induced charging can affect MOSFET turn-on 
voltage
• Can be used to affect voltage thresholds, timings, power supply 

and leakage currents
• Freeze a device to prevent a change on logic state
• Lock out tamper-responding circuitry (eg erase-on-tamper)
• High-end crypto devices include sensors to detect ionising

radiation



Semiconductor Forensic Techniques

Wide variety of techniques in use for semiconductor testing
• No-one can agree on which parameters to measure
• Many results are obtained for specially-created test structures
• Large variety of devices in use

Some of the more common techniques
• IDDQ testing (measure device current consumption, fully on or 

off MOSFETs have low IDDQ)
• Vary operating voltage and temperature to test for hot carrier 

effects
• Measure substrate current, gate current, current in gated drain-

substrate diode, etc etc
• Many tools and journals cover this topic

Semiconductor Forensic Techniques (ctd)

Probing techniques
• Design for test (DFT) allows test access
• Mechanical probing
• Deep submicron testing requires the use of focused ion beam 

(FIB) techniques to
– Expose buried conductors
– Deposit new probe points

• Used by Chipworks to rebuild ATMEL EEPROM from aircraft 
black box



Avoiding Short-term Data Retention

Don’t store the same value 
for more than a few 
minutes
• Test of SRAM devices 

found changes in 
threshold voltage, 
transconductance, drain-
source current after 100-
500s stress

• Reads and writes of 0 
and 1 bits stress different 
access transistors

L L Load
devices

+V

SelectSelect

DataData

Avoiding Short-term Data Retention (ctd)

SRAM burn-in was a problem in the 1980s
• DES master keys stored in security modules were recovered 

almost intact on power-up

Far less likely with current devices
• 1½ hours at 75°C
• 3 days at 50°C
• 2 months at 20°C
• 3 years at 0°C

Periodically flip bits to avoid data retention effects
• Can be implemented automatically as part of DRAM refresh 

cycle



Avoiding Long-term Data Retention

Crypto processors/accelerators repeatedly feed a private 
key through the same circuits
• Zeroising electromigration/hot-carrier effects is hard

Process dummy data when circuits are idle
• Very complex to implement
• High-use circuits which exhibit problems are never idle
• Low-use circuits don’t exhibit problems

Avoiding Long-term Data Retention (ctd)

Virtually all Feistel ciphers/hashes iterate one round 
multiple times

Bignum units also typically iterate using 512- or 1024-bit 
adders and shift registers
• 1024-bit multiply uses 1k adds
• 1024-bit modmult uses 1k multiplies
• 1M applications of the same cryptovariable per RSA op



EEPROM Memory Cells

MOSFET with an extra, floating gate

Older FLOTOX cells used Fowler-Nordheim tunneling to 
tunnel electrons into/out of the floating gate

• Stored charge changes threshold 
voltage by 3-3.5V for 5V cell
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EEPROM Memory Cells (ctd)

Newer ETOX cells used channel hot electron (CHE) 
injection to program, Fowler-Nordheim tunneling to 
erase

Many other technologies exist
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EEPROM Memory Cells (ctd)

To increase storage density, one select transistor controls 
many cells
• Erase is done on groups of cells

Some cells erase faster/slower than others
• Keep repeating erase process until all cells read back as erased

– Programming is also done speculatively
• Problems with overprogrammed/overerased cells

Flash Memory

Most common is NAND flash, multiple cells controlled by 
a single select transistor

• Typically move data 64-256 bytes at a time
• As with EEPROM, many different technologies in use
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Data Remanence in EEPROM/Flash

Floating gate slowly accumulates electrons
• Typical cell can handle 1M program/erase cycles
• Whole collection can handle 10k-100k cycles
• Cycle device until memory cells freeze in programmed state

– Challenge/response mechanisms for smart cards
– Card RNG ends up in all-ones state

Trapped charge can be determined by measuring gate-
induced drain leakage (GIDL) current

Older devices tied read reference voltage to supply voltage
• Can determine cell threshold by varying supply voltage
• Can also alter programmed/erased status this way

Data Remanence in EEPROM/Flash (ctd)

Programming Disturbs
• Shared circuitry can cause program/erase to leak over into 

adjacent cells
– Drain/bitline disturbs
– Gate/wordline disturbs
– Read disturbs

Various other problems shared with RAM cells

Large threshold shift in virgin cells after first program-and-
erase cycle
• Can differentiate between erased and never-programmed cells



Data Remanence in EEPROM/Flash (ctd)

Overerasing (re-erase of already-erased cells) leaves 
floating gate positively charged
• Memory transistor becomes depletion-mode transistor
• Some devices first program the cells before erasing them

As with hard drives, EEPROM/flash often maps out failing 
sectors
• Unlike hard drives, the designers definitely know that sectors 

will fail eventually and design around it

Data Remanence in EEPROM/Flash (ctd)

Flash filesystems use wear-leveling techniques to avoid 
overuse of groups of cells
• Log-structured filesystem
• Trying to perform n overwrite passes will simply write n fresh 

copies
• No easy solution to this problem unless it’s possible to modify 

the filesystem code

Some devices store data in staging areas to implement 
program-without-erase mode
• Original data can be recovered from memory cells, new data 

from staging area
• Causes problems for erase-on-tamper if the update doesn’t 

complete fully



Recommendations

Don’t store cryptovariables for long periods in the same 
location

Don’t store cryptovariables in plaintext form in nonvolatile 
memory

Cycle EEPROM/flash cells 10-100 times before using them

Don’t assume that a key held in RAM has been destroyed 
when the RAM is cleared

Design devices to avoid repeatedly running the same 
signals over dedicated data lines

Beware of too-intelligent nonvolatile memory devices


