
An Open-source Cryptographic
Coprocessor

Peter Gutmann

University of Auckland, New Zealand

Problems with Crypto on End-user Systems
Passive attack

• ReadProcessMemory
• Subclass Windows shell, hook apps on startup
• Patch systemwide user-to-kernel mode jump table
• AppInitDLLs registry key causes DLL to be loaded and called on

app startup
• Unix: ptrace with PTRACE_ATTACH

Active attack
• SuspendThread/VirtualProtectEx/WriteProcessMemory/
ResumeThread

Assisted attack
• Notification Packages registry key hands over all passwords
• ExpoOffload registry key hands over all private keys

Avoiding the Problem
Unix: Run as a dæmon

Windows NT: Run as a service

Windows 95: Run away

But
• All NT services run under the shared system account
• Load a new service dynamically and use
ReadProcessMemory on other services

• Overwrite parent process handle with that of system account

Why End-user OS’s will Never be Secure

Consumers don’t (really) care about security
• 92% of Fortune 1000 managers were worried about ActiveX,

Java, etc etc
• About three quarters allowed them into their internal networks

anyway
• About half didn’t even scan for them

Comments from security experts
• Which sells more products, really secure software or really

easy-to-use software?
• Corporate cultures are focused on money, not product
• The way to win is to design software that is as insecure as you

can possibly get away with […] Users prefer cool features to
security

Why End-user OS’s will Never be Secure (ctd)

Most bugs will never be fixed
• 1/3 of faults have MTTF of ~5000 years
• 1/3 of faults have MTTF of ~1500 years
• 2% have MTTF of 5 years  For marketing purposes, remove

only this 2%

Apps are used in stereotyped ways which exercise only a
tiny portion of their code
• Removing visible defects will keep most users happy
• “It crashes when you do X? Don’t do that then”

Users are forced to use insecure software
• Businesses need to handle Word and Excel documents, web

pages loaded with ActiveX and JavaScript in order to operate

Solving the Problem

Standard approach
• Move the insecurity away from the crypto
• Requires a secure OS (Orange Book B2 minimum)

Mohammed and the mountain approach
• Move the crypto away from the insecurity

Coprocessor Design Issues

How much functionality should we move across?

Tier 1
• Private key protection only (smart card)
• All operations are controlled by untrusted host

– Can request decryption or signing of anything
• Barely better than no protection at all

Protection

Tier

Private key

Session key

Metadata

Command verification

App-level functionality5
4
3
2
1

Coprocessor Design Issues (ctd)

Tier 2
• Session key + key wrap operations (Fortezza)
• No cryptovariables are present on untrusted host
• Device is still controlled by untrusted host

– Fortezza protocols like CSP/MSP include complex security
mechanisms, but enforcement is left to the host (!!)

Tier 3
• All data processing + metadata control
• Host can request encryption or signing of entire message
• Coprocessor performs message formatting, adds timestamp and

signer identity, etc

Coprocessor Design Issues (ctd)

Tier 4
• Command verification
• Trusted I/O channel to allow user to confirm commands from

host
– “Do you really want to sign this?”

Tier 5
• Application-level functionality
• Needs to have message viewer, editor, MUA, …

… MIME attachments, HTML, JavaScript, ActiveX, …
• Coprocessor now needs its own coprocessor for security

Best tradeoff is tier 3 or tier 4 coprocessor

Coprocessor Hardware

Standard approach
• ASICs, microcontrollers, custom hardware

COTS approach
• PC/104 embedded PC
• Biscuit PC
• SIMM PC

Tier 1-3 crypto processor hardware
• Smart card: 5MHz 8 bit CPU, 256 bytes RAM, 4K EEPROM
• Fortezza card: 10/20MHz ARM CPU, 64kB RAM, 128kB

EEPROM
• Open-source copro: 133MHz Pentium CPU, 16MB RAM,

8MB flash

Coprocessor Firmware

Redefine role of various system layers for crypto-specific
functionality

Best choice is embedded Linux
• Drivers for every imaginable piece of hardware
• Acts as bootstrap loader and resource manager for crypto

control software
• Free/open source

Hardware

Firmware

Operating system

Hardware

Linux

Crypto control SW

Applications Crypto objects

Crypto Functionality Implementation

Data is moved to/from coprocessor using
forwarder/receiver mechanism

Communications options
• Ethernet
• USB
• Parallel port (EPP/ECP)
• Carpet static

Marshal Unmarshal

Unmarshal Marshal
ForwarderReceiver

ReceiverForwarder

function()function()

Network

Crypto Functionality Implementation (ctd)

Crypto-related function calls on local system are forwarded
to coprocessor for processing

Host sees only standard software crypto interface

cryptSignCert(cert, caKey) krnlSendMessage(cert,
MESSAGE_CERT_SIGN, NULL, caKey);

Host Coprocessor

[COMMAND_CERTSIGN, cert, caKey]

Coprocessor Session Management

Tier 2 processors have relatively
sophisticated session control
• Manufacturer initialises device
• Security officer (SO) loads security

parameters
• User uses device

SO functions can’t be performed by user
User functions can’t be performed by SO

Currently coprocessor assumes control is from a single user
• Future work will look at role-based access control
• Basic SO vs. user separation involves a trivial modification to

the cryptlib security kernel

Manufacturer

SO

User

Load firmware

Initialise card

Trusted I/O Path

Standard coprocessor control comes entirely from the host

Once the user/SO PIN is entered all bets are off
• Hostile app can request any operation from coprocessor
• Tier 3 is safer than tier 2, much safer than tier 1

Kernel

Object ACL

Action ACL

SignSign
TargetSource

Trusted I/O Path

Tier 4 coprocessor can request confirmation of operations
from the user
• Implemented as modification to the cryptlib security kernel

• Host requests action
• Kernel requests user confirmation over trusted I/O path
• Lack of confirmation or timeout causes action to fail

Sign
Source Kernel

Sign
Target

Deny

Request confirmation
from user

Physically Isolated Crypto

Air gap security
• All crypto keys are stored in and processing done on a small

satellite orbiting Mars
• Allows use of crypto in countries with GAK laws

– User in UK, crypto in Ireland or France

Requires a protected session to the coprocessor
• ssh or SSL, preferably with DH keys
• IPsec

Physically Secure Crypto

Coprocessor may need to withstand third-party curiosity

Standard approach
• Embed circuitry in tamper-

resistant envelope

Embedded systems are
often designed for use
in hostile environments
• Use enclosure designed for

extreme environments

Example: HiDAN system from Real Time Devices USA
• Heavy-duty aluminium alloy chassis
• Acts as heatsink and provides substantial amount of protection

Im
ag

e
©

 R
TD

 U
SA

Physically Secure Crypto (ctd)

Protection level provided
• 85dB EMI shielding from

10-100 MHz
• 80dB EMI shielding to

1 GHz
• Complies with some

TEMPEST emission
standards

• Build-in power supply
module

• Can withstand medium-calibre artillery fire

FIPS 140 level 2 compliant, level 3 compliant if filled with
potting mix

Im
ag

e
©

 R
TD

 U
SA

Crypto Hardware Acceleration

Conventional crypto
• Coprocessor’s onboard CPU can saturate any normal

communications channel

Public-key crypto
• FPGAs and ASICs aren’t cost-effective on a small scale
• Cheapest crypto accelerator chip: K6-2/450
• AMD and Intel can make it faster cheaper than you can
• Clustered DSPs may offer an advantage

– Multiple single-cycle multiply-accumulate (MAC) units
– Low power consumption
– Glueless multiprocessor support

Availability

Hardware
• Any embedded PC supplier
• Advantech, http://www.advantech.com/products/sbc.htm
• Prices from $200 … $much, sometimes < $100 in surplus lots

Software… uhh… ahem…
• Progress stalled since January by thesis
• Exists as demo with hardcoded communications parameters

– Actual version will support sockets, named pipes, …
• Full version will be released as
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

• More information (much more) in my thesis
http://www.cs.auckland.ac.nz/~pgut001/

