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Software Security in the 

Presence of Faults

Peter Gutmann

University of Auckland

Crypto Fault Attacks

If you get a fault during a crypto computation, an attacker 
may be able to recover your encryption key(s) from the 
faulty output

• First (publicly) acknowledged in the late 1990s

• Studied to death since then
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Faults in Cryptosystems

ECC is particularly susceptible to faults

• Fault with the in-memory key: Leak the private key

• Fault with the ECC computation: Leak the private key

• Fault with the RNG: Leak the private key

• You get the picture

General idea is to move the computation from the secure 
curve to another, inevitably weaker, one or to produce a 
faulty point on the original curve

Faults can be injected in a variety of ways and almost all parts of 
the system can be targeted, e.g. the base point, system 
parameters, intermediate results, dummy operations and 
validation tests
— “Fault Attacks on Elliptic Curve Cryptosystems”

Faults in Cryptosystems (ctd)

RSA also has issues, but nowhere near as bad as ECC

RSA has a fault problem in the RSA-CRT computation if 
you sign the exact same message twice

• This essentially never occurs

• Not in IPsec, SSH, TLS, CMS, S/MIME, PGP, SCEP, TSP, 
OCSP, CMP, …

• Any protocol that allowed this would also trivially allow replay 
attacks

ECC in contrast has entire catalogues of fault problems

• These don’t require duplicate signatures
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Faults in Cryptosystems (ctd)

SRP, PSK, etc have no issues

• Authentication doesn’t require the use of signatures

– Or certificates, or CAs, which is why there’s close to zero 
support for it in browsers

• Built around MACs/PRFs (hash-based)

• Little research published on the issue, but probably because 
there’s no obvious attack

Faults in Cryptosystems (ctd)

Symmetric crypto (e.g. AES) doesn’t have random fault 
issues

Attacks require injection of specific attacker-controlled 
faults, not random faults in random locations

• Example: Create 1-byte differentials in input to AES 
MixColumns

• Example: Create 255 different byte faults in the AES middle 
rounds

• Example: Create 1-bit fault in 128 bits of SubBytes input to 
AES last round
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Faults in Cryptosystems (ctd)

Similar to RSA, attacks require encryption of the same data 
two or more times

• Won’t happen for the common CBC or CTR/GCM modes

CTR/GCM mode, however, fails catastrophically on an IV 
fault

• Both confidentiality and integrity protection collapse
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Faults in Cryptosystems (ctd)

The two trendiest encryption mechanisms, ECC and AES-
GCM, are also the most brittle in the presence of faults

• Worst case, a fault in the RNG, and you lose everything in one 
go

• ECC private key

• AES-CTR confidentiality

• AES-GCM integrity-protection

The most robust mechanisms are probably RSA and AES-
CBC + HMAC

• They’re not fashionable 



15/10/2020

5

Faults in Cryptosystems (ctd)

How to carry out the attack

• Wait

Purely passive 
attack

• No need to do 
anything except 
watch network 
traffic and wait 
for it to happen S
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Causes of Faults

Electrical glitches

• Overvoltage

• Undervoltage

• Spikes

• Clock glitches

• Noise

Thermal issues

Radiation

• Often induces electrical glitches

• Can also change circuit operation, temporarily or permanently
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Characteristics of Randomly-appearing Faults

Possible: Random bit(s) 0 → 1

Possible: Random bit(s) 1 → 0

Unlikely: Random bit fault during computation

• Most CPUs have at least error detection on the CPU core

• Some have full ECC and more, e.g. Cortex A, Cortex R, IBM 
Power, Intel, MIPS, Sparc

• See later slides for extreme cases, e.g. Intel, IBM, Sparc

Not present: Non-random, attacker-controlled faults

• In any case if an attacker can disassemble your device and sit 
there injecting controlled hardware faults at will, it’s probably 
game over anyway

Theory vs. Reality

Research results are often difficult to apply…

Fault model #5: No control over the timing or location, no 
duplicate data to act on

S
ou

rc
e:

 G
em

pl
us



15/10/2020

7

Theory vs. Reality (ctd)

Lack of understanding by cryptographers…

release even _one_ any way faulty signature computed using 
RSA-CRT and your private key walks
— CFRG list comment

• Garbled sound byte from a 20-year-old research paper

… or appreciation that TLS crypto exists outside the web…

[…] non-starter as web browsers […] fix the reasons why web 
browsers […] the web browser vendors […]
— CFRG list comment, responding to a message that talked

specifically about non-browser TLS use

Theory vs. Reality (ctd)

… or just plain denial

I’m aware of invalid curve attacks, which can be completely 
mitigated by using a twist-secure curve and point compression
— CFRG list comment

• “The mathematician looked at the fire extinguisher and the fire, 
said ‘a solution exists’, and went back to bed”

Cryptographers and SCADA/embedded implementers 
don’t talk to each other

• Cryptographers: They’re not using our fine 
theoretical design!

• Implementers: This stuff doesn’t do what we need, 
we’ll have to come up with our 
own way of doing it
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Theory vs. Reality (ctd)

A few studies published, but all for code (not data) 
corruption

• 2% of firewall code-memory faults caused security problems
— “Evaluating the Security Threat of Firewall Data 

Corruption Caused by Instruction Transient Errors”

• 1-2% of FTP and SSH code-memory faults caused security 
problems
— “An Experimental Study of Security Vulnerabilities 

Caused by Errors”

Theory vs. Reality (ctd)

Code corruption isn’t normally an issue in fault-aware 
embedded systems

• Code executes directly 
out of nonvolatile memory

• If the code is in RAM, the 
RTOS monitor process 
scans the code segment 
and restarts the system on 
error
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When are there Radiation-induced Faults?

When you’re using the crypto to monitor nuclear materials

Used to check compliance with nonproliferation treaties

Crypto in High-radiation Environments

Monitoring of fuel storage ponds

Ensure fuel rods don’t go missing (particularly in breeder 
reactors)
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Crypto in High-radiation Environments (ctd)

Monitoring of reactor refueling

Check what goes in and out
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Crypto in High-radiation Environments (ctd)

Monitoring of waste management

Check what’s leaving the facility via nondestructive assay 
(NDA)
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Crypto in High-radiation Environments (ctd)

Most of those aren’t truly high-radiation environments

• Humans have to work there

Higher-than-normal radiation, but not classed as high-
radiation

• Other equipment is deployed to high-radiation areas

Leads to an interesting definition of tamper-discouraging
crypto

It would take you three days to put up the scaffolding and 
disassemble the monitoring gear.  The radiation will kill you in 
one day

• Who needs “tamper-resistant” when you’ve got that…

Crypto in Harsh Environments

Not specific to reactors though…

Devices can experience faults in harsh environments in 
general

• Covered by numerous standards

• EN 50128 – Railway applications – Communication, signalling 
and processing systems

• EN 50129 – Railway applications – Safety related electronic 
systems for signalling 

• EN 50402 – Requirements on the functional safety of fixed gas 
detection systems

• IEC 60601 – Medical electrical equipment safety

[Continues]
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Crypto in Harsh Environments (ctd)

[Continued]

• IEC 60880 – Nuclear power plants – Instrumentation and 
control systems important to safety

• IEC 61508 – Functional Safety

• IEC 61511 – Safety instrumented systems for the process 
industry sector (also ANSI S84)

• IEC 61513 – Nuclear power plants – Instrumentation and 
control important to safety

• IEC 62061 – Functional safety of electrical, electronic and 
programmable electronic control systems (also ISO 13849)

• ISO 26262 – Road vehicles – Functional safety

Many, many more

Notable Failures due to Ionising Radiation

Advanced Simulation and Computing Program (ASC) Q 
Supercomputer at Los Alamos

• Built with DEC Alpha 21264 CPUs
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Notable Failures due to Ionising Radiation

Error detection but not correction on level 3 cache tag 
(BTAG) RAM

• Too much slowdown in 
this speed-critical case

• Standard data RAM does 
have ECC

Faults were detected via 
parity checks, but not 
corrected, node crashed

• c.f. IBM Power, which
treats a cache error as a
miss, not a fault
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Notable Failures due to Ionising Radiation

Suspected cosmic rays

ASC Q is at LANL, elevation 7,500ft (2,300m)

• Cosmic radiation is 6x as intense as at sea level

For comparison, avionics computers are at 30,000ft

• Radiation is 150x as intense as at sea level
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Notable Failures due to Ionising Radiation

Single node at sea level experiences fatal soft error once in 
50 years

• 500-node cluster at elevation experiences one every 1½ hours

Los Alamos just happens 
to have the Los 
Alamos Neutron 
Science Centre 
(LANSCE)

• Confirmed that it’s
radiation-induced
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Notable Failures due to Ionising Radiation

Dealt with by 

• Scrubbing cache RAM before program runs

– Manual equivalent of automated ECC scrubbing

– Rewrite ECC’d data with original correct data

• Checkpointing during runs to allow recovery

• Leaving spare nodes available to restart failed jobs on

• etc

(NB: Often-repeated 2016 IEEE Spectrum article mentions 
more examples, but these contain multiple factual errors 
and/or are unverifiable.  Don’t believe what Google will 
turn up).
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Modern CPU Fault Resistance

Things can fail in unexpected ways

• Expose PIII and K7 to gamma source

What failed wasn’t the CPU but the CPU fan

• A PWM fan-control chip in the fan motor died long before the 
CPU did
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Modern CPU Fault Resistance (ctd)

During the test, all components except the CPU were 
heavily shielded

• CPU was raised up above the shield by a riser board

Scattering caused faults in the shielded components

Multiple motherboards, memory modules and video cards have 
lost functionality in the pursuit of the total dose limit of the DUT 
processors
— “Total Ionizing Dose Testing of the Intel Pentium III and 

AMD K7 Microprocessor”



15/10/2020

16

Modern CPU Fault Resistance (ctd)

PIII took 100x the dose of the K7

Intel processors verge on radiation-hardened devices
— “Terrestrial-Based Radiation Upsets: A Cautionary Tale”

• Possibly due to Intel’s bad experience with alpha-particle 
induced faults in 16K DRAMs in the late 1970s

Use e.g. ECC and bit-interleaving (to fortify SECDED) in 
caches (c.f. 21264 BTAG issues)

Modern CPU Fault Resistance (ctd)

It’s clear that [Intel] are addressing an issue with cosmic rays, 
since they have become progressively more rad-hard over the 
years
— “Terrestrial-Based Radiation Upsets: A Cautionary Tale”
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Modern CPU Fault Resistance (ctd)

No apparent device degradation was apparent on any of the 
samples.  Cumulative dose levels for exposures ranged from 1 to 
17 Mrad(Si).  For comparison, the ITAR level is 500 krad(Si).

As noted, total dose and DR [dose rate] device tolerances exceed 
the ITAR limits for this [AMD A4-3300, 2011 vintage budget 
desktop CPU] off-shore fabricated design.  To the best of the 
authors’ knowledge, AMD has not intentionally radiation hardened 
the device for these environments, but the technology itself 
supports these characteristics
— “Hardness Assurance for Total Dose and Dose Rate Testing 

of a State-Of-The-Art Off-Shore 32 nm CMOS Processor”

• ITAR = International Traffic in Arms Regulations (now 
Wassenaar), who set the limits where something becomes an 
export-controlled rad-hard military device

Modern CPU Fault Resistance (ctd)

IBM Power is just as careful

• ECC, parity, residue checking, bit-interleaving (‘chipkill’), 
automatic instruction retry, …

• Tested by proton-beam irradiation
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Modern CPU Fault Resistance (ctd)

Other server-grade CPUs like Sparc64 contain similar 
measures

• SECDED on level 2 caches

• Parity check on level 1 cache causes a reload from ECC-
protected level 2

– c.f. Alpha fail on parity error

• TLB also has parity check, error treated as a miss

• ALU has parity and mod-3 arithmetic checking of results

– Failed instructions are restarted on error

• 10% of transistors are for error handling

Under intense neutron bombardment, 94% of errors 
vanished, 5% were recovered from, 2% resulted in an 
observable fault

Modern CPU Fault Resistance (ctd)

Rate of SEUs is measured in Mean Time To Upset, MTTU

Intel claim MTTU of 25 years for server-grade CPUs

• Presumably at sea level

• Possibly in a lead vault?

IBM claim “dramatic 
improvements in soft-
error recovery”

• Compared to what?

Fujitsu (Sparc64) claim 10
FIT at sea level

• FIT = failure in time, per billion hours, MTTF of 10K years
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Whole-System Fault Resistance

This is for $1,000 server CPUs

• And server-grade hardware in general, e.g. ECC RAM

Everything else isn’t so seriously engineered

• Consumer-grade CPUs
• Embedded CPUs
• DRAM
• System buses
• I/O devices

How do we build a reliable system from unreliable 
components?

Fault-tolerant Systems

Numerous architectures designed for functional safety

• General terminology is XooY

• X out of Y units must fail for a system failure

Standard systems are 1oo1

• Failure of any part causes system failure

Sensor Processor Actuator
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Fault-tolerant Systems (ctd)

1oo2 for fail-safe systems

• Failure in both systems is required for an inadvertent activation 
to occur

Sensor Processor Actuator

Sensor Processor Actuator

Fault-tolerant Systems (ctd)

2oo2 for high-availability systems

• Both systems must fail for overall failure

Sensor Processor Actuator

Sensor Processor Actuator
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Fault-tolerant Systems (ctd)

Even more complex systems are possible

• 2oo3 with voting circuits

All of these (except 1oo1) require custom hardware designs

• Not practical to require this

• Can’t demand completely new hardware just to accommodate 
an obscure crypto issue, or even a less obscure security issue

None are really practical for general-purpose use

• May be feasible, but not really practical

Fault-Resistant Systems

There’s a special variant that requires little to no custom 
work…

1oo1D

• Standard 1oo1 with diagnostic channel

• If a failure is detected by the monitoring system, halt or restart 
the main system

Fail-fast

• 1oo1D is pretty standard for radiation-tolerant systems

• Actually it’s pretty standard for properly-designed (SCADA, 
not IoT) embedded in general

Goal: Make general-purpose software 1001D
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Fault-Resistant Systems (ctd)

Swiss Cheese Model of Failure (Prevention)

• Developed by Prof.James Reason, “The Contribution of Latent 
Human Failures to the Breakdown of Complex Systems”

Widely used in

• Risk management
• Healthcare
• Engineering
• Aviation
• ...

Fault-Resistant Systems (ctd)

Basic premise: Defences 
are imperfect

• Think Swiss Cheese

With enough layers, 
even Swiss cheese 
can stop most failures

• All the holes have to 
line up exactly for a 
failure to occur
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Fault-Resistant Systems (ctd)

Need to constrain control and data flow in such a manner 
that error propagation through the entire system is 
(highly) unlikely

• Or at least to minimise the occurrence of faults as much as 
possible

Turn the Swiss Cheese Model (of Fault Prevention) into 
programming practice

• Enough layers of constraints ensure that faults moving 
processing outside the permitted envelope is unlikely

Design by Contract

Concept introduced by Bertrand Meyer in the 1980s

Basic form is that a routine must assert pre-conditions that 
hold before it executes and postconditions that hold after 
it executes

• Well-supported in languages like Eiffel (also by Meyer)

Easy to implement in C as macros
• REQUIRES( precondition );
• ENSURES( postcondition );

#define REQUIRES( x ) if( !( x ) ) throw_error();
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Design by Contract (ctd)
int getItem( const CRYPT_KEYID_TYPE keyIDtype, 

const void *keyID, const int keyIDlength, 
const KEYMGMT_ITEM_TYPE itemType, 
const int options )

{
REQUIRES( keyIDtype == CRYPT_KEYID_NAME || \

keyIDtype == CRYPT_IKEYID_KEYID );
REQUIRES( keyIDlength >= MIN_NAME_LENGTH && \

keyIDlength < MAX_ATTRIBUTE_SIZE );
REQUIRES( itemType == KEYMGMT_ITEM_PUBLICKEY );
REQUIRES( isFlagRangeZ( options, KEYMGMT ) );

...

Design by Contract (ctd)

Function’s design-by-contract precondition is that input 
parameters are as expected

• Basic good sanitation
• Catches wild jumps into code

– Precondition won’t be met
– Using ROP to jump into exportPrivateKey() will be caught

Fundamental building block for most later safety measures
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Range Checking

Commonly-used memory copy/move/append
memcpy( destination, source, count );

The function is actually
void *memcpy( void *destination, 

const void *source, 
size_t num );

int count → size_t num means negative count value 
becomes a huge positive value

• Has led to a number of security vulnerabilities

Making everything unsigned is a kludge

• Bites you in locations where you actually need a signed value

Range Checking (ctd)

Create integer bounds-checking functions for the most 
common cases
• isIntegerRange( value ) →

range( 0 ... some_bound )
• isIntegerRangeNZ( value ) →

range( 1 ... some_bound )
• isShortIntegerRange( value ) →

range( 0 ... some_small_bound )
• isShortIntegerRangeNZ( value ) →

range( 1 ... some_small_bound )

Each memory operation can now be checked
REQUIRES( isShortIntegerRangeNZ( count ) );
memcpy( dest, src, count );
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Range Checking (ctd)

Can do the same for enums and flags by following a 
standard naming convention when declaring them

typedef enum { OPERATION_NONE, OPERATION_READ, 
OPERATION_WRITE, OPERATION_EXECUTE,
OPERATION_FORMAT, OPERATION_LAST }
OPERATION_TYPE;

#define isEnumRange( value, name ) \
( value > name##_NONE && value < name##_LAST )

REQUIRES( isEnumRange( enumValue, OPERATION ) );
REQUIRES( isFlagRange( flagValue, FLAG ) );

Range Checking (ctd)

Can also be used to deal with compiler braindamage



15/10/2020

27

Bounds Checking

C has no bounds checking

• A long-standing complaint

To some extent this is turning C into Pascal/Ada/…

Need to check an index into a block of memory

• Is ‘index’ within the range { start, end } is straightforward

What about ‘is { start, length } within { 0, totalLength }’?

• Very common requirement when working with blocks of 
memory

• Also very common exploit vector, see ‘buffer overrun’

Bounds Checking (ctd)
#define boundsCheck( start, length, totalLength ) \

( ( start <= 0 || length < 1 || \
start + length > totalLength ) ? \

FALSE : TRUE )

SSH packet-assembly code:
REQUIRES( boundsCheck( keyDataHeaderSize,

keyexInfoLength, receiveBufferSize ) );
memmove( keyexInfoPtr + keyDataHeaderSize, 

keyexInfoPtr, keyexInfoLength );
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Safe Loops

Standard form of a loop
for( int i = 0; i != 10; i++ )

do_stuff( i );

Iterations

• do_stuff( 0 );
• do_stuff( 1 );
• ...
• do_stuff( 9 );

Safe Loops (ctd)

What if there's a fault on i?
• do_stuff( 18263 );
• do_stuff( 2374176 );
• do_stuff( -372145 );

• If your do_stuff() follows design-by-contract: 
REQUIRES( isShortIntegerRange( value ) );

you’re protected from the worst of it, but it’s still invalid input 

Loop never terminates (until numeric wraparound) because 
i has gone outside the range [0…10]
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Safe Loops, Attempt #1

Make loop variables unsigned, use less-than rather than 
equality comparison

for( unsigned int i = 0; i < 10; i++ )

do_stuff( i );

Will this loop terminate?

• Yes, for a simple loop
• Not necessarily, for a complex loop

for( unsigned int i = 0; i < 10; i++ )

i = complex_calculation();

Actually even the simple loop may not work, see later 
slides

Safe Loops, Attempt #1 (ctd)

Will this loop terminate?
thing_t *pointer;

for( pointer = getFirstItem(); pointer != NULL; \
pointer = getNextItem( pointer ) )

do_stuff( pointer );

Well, it's supposed to terminate…
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Safe Loops, Attempt #2

All loops should be statically bounded

• Include explicit limit counters in loops
for( pointer = getFirstItem(), count = 0; 

pointer != NULL && count < MAX_COUNT; 
pointer = getNextItem( pointer ), count++ )

do_stuff( pointer );

Guarantees termination after MAX_COUNT iterations

• Different bounds values for different loops

For most loops there’s a reasonable idea what the upper 
bound should be

Safe Loops, Attempt #2 (ctd)

Implement bounded loops via macros
#define LOOP_MAX( a, b, c ) \

for( unsigned int _iterationCount = 0, a; \
_iterationCount < MAX_COUNT && b; \
_iterationCount++, c )

#define LOOP_BOUND_OK _iterationCount < MAX_COUNT

So the previous loop is:
LOOP_MAX( i = 0, i < 10, i++ )

do_stuff();

ENSURES( LOOP_BOUND_OK );
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Safe Loops, Attempt #2 (ctd)

And then the compiler screws it up
for( unsigned int _iterationCount = 0, i = 0; \

_iterationCount < MAX_COUNT && i < 10; \
_iterationCount++, i++ )

do_stuff();

Merge the two loops, since both are incrementing the same 
value and 10 < MAX_COUNT

for( __x = 0; __x < 10; __x++ )

do_stuff();

Safe Loops, Attempt #3

Need to have one variable counting up and the other down:
#define LOOP_MAX( a, b, c ) \

for( signed int _iterationCount = \
MAX_COUNT, a; \

_iterationCount > 0 && b; \
_iterationCount--, c )

#define LOOP_BOUND_OK _iterationCount > 0

Loops that count down have the second variable counting 
up instead:

#define LOOP_MAX( a, b, c ) \
for( signed int _iterationCount = 0, a; \

_iterationCount < MAX_COUNT && b; \
_iterationCount++, c )

#define LOOP_BOUND_OK _iterationCount < MAX_COUNT
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Safe Loops, Attempt #3 (ctd)

The expanded form is then
for( signed int _iterationCount = MAX_COUNT, i = 0; 

_iterationCount > 0 && i < 10; 
_iterationCount--, i++ )

do_stuff();

ENSURES( _iterationCount > 0 );

Now all loops are statically bounded and we can guarantee 
termination

Safe Loops, Attempt #3 (ctd)

And then the compiler screws it up again…

Wait, what could possibly go wrong with:
int array[ 512 ];
int i;
unsigned int j;

for( i = 0; i < 512; i++ )
array[ i ] = 5;

for( j = 0; j < 512; j++ )
array[ j ] = 3;

gcc –O1 –S loops.c / gcc –O2 –S loops.c

• -O3 is similar but vectorised 
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Safe Loops, Attempt #3, x86
.L2: movl $5, (%rax) # store $5 to address

addq $4, %rax # increment address pointer
cmpq %rbp, %rax # compare to bound
jne .L2 # loop if not equal

.L3: movl $3, (%rbx) # store $3 to address
addq $4, %rbx # increment address pointer
cmpq %rbp, %rbx # compare to bound
jne .L3 # loop if not equal

Safe Loops, Attempt #3, Arm
mov w1, 5

.L3: str w1, [x0],4 # store word from W1 to address
# X0, add 4

cmp x0, x19 # compare to limit in X19
bne .L3 # loop if not equal

mov w1, 3
.L5: str w1, [x0],4 # store word from W1 to address

# X0, add 4
cmp x0, x19 # compare to limit in X19
bne .L5 # loop if not equal
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Safe Loops, Attempt #3, MIPS
li $3,5

$L2: sw $3,0($2) # store data
addiu $2,$2,4 # increment address pointer
bne $2,$17,$L2 # loop if not equal

li $2,3
$L3: sw $2,0($16) # store data

addiu $16,$16,4 # increment address pointer
bne $16,$17,$L3 # loop if not equal

Safe Loops, Attempt #3, PPC
li 8,512
mtctr 8 # move 512 to CTR register 

# via GPR 8
li 10,5

.L3: stwu 10,4(9) # store word with update from
# GPR 10

bdnz .L3 # decrement count, branch if 
# nonzero 

li 8,512
mtctr 8 # move 512 to CTR register 

# via GPR 8
li 10,3

.L5: stwu 10,4(9) # store word with update from
# GPR 10

bdnz .L5 # decrement count, branch if
# nonzero
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Safe Loops, Attempt #3, RISC-V
li a4,5

.L2: sw a4,0(a5) # store word in A4 in address
addi a5,a5,4 # increment address pointer
bne a5,s1,.L2 # branch if address less than

# bound

li a5,3
.L3: sw a5,0(s0) # store word in A4 in address

addi s0,s0,4 # increment address pointer
bne s0,s1,.L3 # branch if address less than

# bound

Safe Loops, Attempt #3, Sparc
mov 5, %g2
st %g2, [%g1]

.L7: add %g1, 4, %g1 # add 4
cmp %g1, %i4 # compare to bound
bne %xcc, .L7 # loop if not equal
st %g2, [%g1] # store data in delay slot

mov 3, %g1
st %g1, [%i5]

.L8: add %i5, 4, %i5 # add 4
cmp %i5, %i4 # compare to bound
bne %xcc, .L8 # loop if not equal
st %g1, [%i5] # store data in delay slot
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Safe Loops, Attempt #3 (ctd)

This isn’t architecture-specific

• It’s universal across all gcc-produced code

gcc converts all loops from a safe [0…n] index bound to an 
unsafe index != n

• No (known) version of gcc will compile this loop correctly
• “Correctly” = preserving the semantics of the original code

Safe Loops, Attempt #3 (ctd)

gcc bonus feature: If there’s a bounds check within the 
loop…

XXX: note: in expansion of macro 'boundsCheck’
XXX: warning: comparison of unsigned expression

>= 0 is always true [-Wtype-limits]

Emitted code treats loop index as signed 

• Or at least don’t-care, via = / !=

Emitted code treats bounds check as unsigned and removes 
it

• Loses both safe-loop and safe-bounds operations in one go
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Safe Loops, Attempt #3 (ctd)

What about the competition?

• clang -O2 -S loops.c
• icc -O2 -S loops.c
• MSVC
• xlc -O2 -S loops.c
• suncc -O2 -S loops.c

Safe Loops, Attempt #4, clang 
.LBB0_1: movaps %xmm0, (%rsp,%rax,4)

...
movaps %xmm0, 240(%rsp,%rax,4)

# store data via XMMs
addq $64, %rax # increment address ptr
cmpq $512, %rax # compare to bound
jne .LBB0_1 # branch if not equal

.LBB0_3: movaps %xmm0, (%rsp,%rax,4)
...
movaps %xmm0, 240(%rsp,%rax,4)

# store data via XMMs
addq $64, %rax # increment address ptr
cmpq $512, %rax # compare to bound
jne .LBB0_3 # branch if not equal
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Safe Loops, Attempt #4, clang (ctd) 
movi v0.4s, #5 # vector load data

.LBB0_1: add x10, x9, x8
add x8, x8, #32 # increment address ptr
cmp x8, #2048 # compare to bound
stp q0, q0, [x10] # store quadword reg pair
b.ne .LBB0_1 # branch if not equal

movi v0.4s, #3 # vector load data
.LBB0_3: add x9, x19, x8

add x8, x8, #32 # increment address ptr
cmp x8, #2048 # compare to bound
stp q0, q0, [x9] # store quadword reg pair
b.ne .LBB0_3 # branch if not equal

Safe Loops, Attempt #4, icc
..B1.2: movdqu XMMWORD PTR [rsp+rax*4], xmm0

...
movdqu XMMWORD PTR [48+rsp+rax*4], xmm0
add rax, 16 # increment address ptr
cmp rax, 512 # compare to bound
jb ..B1.2 # branch if below

..B1.5: lea edx, DWORD PTR [4+rax]
movdqu XMMWORD PTR [rsp+rdx*4], xmm0
...
lea esi, DWORD PTR [12+rax]
movdqu XMMWORD PTR [rsp+rax*4], xmm0
add eax, 16 # increment address ptr
cmp eax, 512 # compare to bound
jb ..B1.5 # branch if below

Unsigned 
comparison/
branch!
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Safe Loops, Attempt #4, MSVC 

mov ecx, 32
mov rdx, 0000000500000005H

$LL1@main:mov QWORD PTR [rax], rdx
...
mov QWORD PTR [rax+16], rdx
lea rax, QWORD PTR [rax+64]
mov QWORD PTR [rax-40], rdx
...
mov QWORD PTR [rax-8], rdx # store data
sub rcx, 1 # dec count
jne SHORT $LL1@main # branch if

# not equal

[…]

Safe Loops, Attempt #4, MSVC (ctd) 

[…]

mov ebx, 32
mov rcx, 0000000300000003H

$LL2@main:mov QWORD PTR [rax], rcx
...
mov QWORD PTR [rax+16], rcx
lea rax, QWORD PTR [rax+64]
mov QWORD PTR [rax-40], rcx
...
mov QWORD PTR [rax-8], rcx # store data
sub rbx, 1 # dec count
jne SHORT $LL2@main # branch if

# not equal
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Safe Loops, Attempt #4, xlc
cal r4,64(r0)
mtspr CTR,r4 # move 64 to CTR reg via GPR 4

__L30:st r0,4(r3)
...
st r0,32(r3) # store data, unrolled
cal r3,32(r3) # add 32 to address
bc BO_dCTR_NZERO,CR0_LT,__L30

# branch if counter nonzero

cal r4,64(r0)
mtspr CTR,r4 # move 64 to CTR reg via GPR 4

__L80:st r0,4(r31)
...
st r0,32(r31) # store data, unrolled
cal r31,32(r31) # add 32 to address
bc BO_dCTR_NZERO,CR0_LT,__L80

# branch if counter nonzero

Safe Loops, Attempt #4, suncc
or %g0,5,%i5
st %i5,[%i1]
or %g0,0,%i0 # zero counter

.L19: add %i0,1,%i0 # increment counter
add %i1,4,%i1 # increment address
cmp %i0,511 # compare to bound
ble %icc,.L19 # branch if less or equal
st %i5,[%i1] # store data in delay slot

or %g0,3,%i4
sll %i2,2,%i5

.L18: add %i2,1,%i2 # increment counter
st %i4,[%i5+%i3] # store data
cmp %i2,511 # compare to bound
bleu %icc,.L18 # branch if less or equal,

# unsigned
sll %i2,2,%i5 # address = counter * 4 in 

# delay slot

Correct signed/
unsigned branch!
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Safe Loops, Attempt #4 (ctd)

There exists at least one compiler, running on at least one 
computer, which will compile the safe-loop code 
correctly

Need to defeat the compiler’s braindamage optimiser

• Add invariant check in loop body
ENSURES( LOOP_INVARIANT( i, 0, 10 ) );
• See later slides

Safe Loops, Attempt #4 (ctd)

Examples from the real-time control 
world

• Compile with optimisation disabled 
since this destroys the 1:1 mapping 
of source → object code

– IEC 61508-3 §7.4.4.4 / ISO 26262-8 
§11.4.4.2 warn against optimising 
compilers

• Build on 1990s-vintage PCs scrounged 
from eBay because that’s what was 
certified

• See “Automotive Control Systems Security” talk

S
ou

rc
e:

 e
B

ay



15/10/2020

42

Safe Loops, Attempt #4 (ctd)

Does disabling optimisation really fix things?

gcc –O0 -S loops.c
jmp .L2

.L3: movl -4(%rbp), %eax # load address
cltq # convert long to quad
movl $5, -2064(%rbp,%rax,4) # store data
addl $1, -4(%rbp) # increment address

.L2: cmpl $511, -4(%rbp) # compare to bound
jle .L3 # branch if less or equal

Correct signed branch

Safe Loops, Attempt #4 (ctd)
jmp .L4

.L5: movl -8(%rbp), %eax # load address
movl $3, -2064(%rbp,%rax,4) # store data
addl $1, -8(%rbp) # increment address

.L4: cmpl $511, -8(%rbp) # compare to bound
jbe .L5 # branch if below or eq

• Yes, but the resulting code is pretty bad

Correct unsigned 
branch
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Safe Loops, Attempt #4 (ctd)

What about CompCert?

• Formally verified optimizing compiler developed at INRIA, 
France

“Mathematical proof that the generated executable code 
behaves exactly as prescribed by the semantics of the 
source program”
— CompCert documentation

• Mechanism for getting people to swear in French

Safe Loops, Attempt #5

ccomp –O2 –S loops.c
.L10: leaq 8(%rsp), %rcx

movslq %r9d, %r10
movl $5, %r8d
movl %r8d, 0(%rcx,%r10,4) # store data
leal 1(%r9d), %r9d
cmpl $512, %r9d # compare to bound
jl .L10 # branch if less than

.L11: leaq 8(%rsp), %rax
movl %edx, %edi
movl $3, %esi
movl %esi, 0(%rax,%rdi,4) # store data
leal 1(%edx), %edx
cmpl $512, %edx # compare to bound
jb .L11 # branch if less than, unsigned

Correct signed/
unsigned branch
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Safe Loops, Attempt #5 (ctd)

Correct as advertised, but not the most optimal of code

• Lots of unnecessary memory loads and register transfers
• About as bad as gcc –O0

Is this a side-effect of semantics-preserving 
transformations, or just poor code generation?

Loop Invariants

We know that we got to the end of the loop OK, but what 
happens inside the loop body?

• If a fault happens while executing the loop, the postcondition is 
met but the loop wasn’t executed as intended

for( signed int _iterationCount = MAX_COUNT, i = 0;
_iterationCount > 0 && i < 10; 
_iterationCount--, i++ )

do_stuff();

ENSURES( _iterationCount > 0 );

• Exit at i = 7, _iterationCount > 0 so all appears OK
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Loop Invariants (ctd)

Great for glitch attacks

• Glitch a password-checking loop to bypass password checks

Timing-neutral password check loop
ld r0, 0
ld r1, 16

loop: ld r2, requiredPassword[ i ]
xor r2, userPassword[ i ]
or r0, r2
dec r1
jnz loop

Clock glitch steps the PC twice but the ALU only once

• Break out of the loop after checking only one character of the 
password

Glitch

Loop Invariants (ctd)

Long history of attacks going back to the 1990s with smart 
card unloopers

• DOS-based control 
software run over 
serial port

Today more likely to be
voltage or EM glitches

• Inject EMI via probe

• Voltage brownout 

• Reset-signal glitch S
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Loop Invariants (ctd)

Address by using loop invariants

for( signed int _iterationCount = MAX_COUNT, i = 0;
_iterationCount > 0 && i < 10; 
_iterationCount--, i++ )

do_stuff();

ENSURES( _iterationCount > 0 );

Note that the ratio between the two loop counters remains 
constant

• i + _iterationCount == MAX_COUNT at all times

Loop Invariants (ctd)

Add a loop invariant check

#define LOOP_INVARIANT( index, lowerBound, \
upperBound ) \

( index >= lowerBound && \
index <= upperBound && \
( index - lowerBound + \

_iterationCount == MAX_COUNT ) )

• With the extras for reverse loops and ones where there’s no 
fixed relationship between the two loop variables
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Loop Invariants (ctd)

So our long-suffering loop becomes:
LOOP_MAX( i = 0, i < 10, i++ )

LOOP_INVARIANT( i, 0, 10 );

do_stuff();

ENSURES( LOOP_BOUND_OK );

• The expanded macro form is pretty ugly, not shown here

For fixed-iteration loops, also check that i == 10 at the end

Array Bounds

Static arrays have fixed bounds

• Can be evaluated at compile time
#define ARRAYSIZE( array, elementType ) \

( ( sizeof( array ) / \
sizeof( elementType ) ) - 1 )

Overallocate all (static) arrays by one element
thing_t array[] = { thing1, thing2, thing3, thing4,

NULL, NULL };

for( unsigned int i = 0; array[ i ] != NULL; i++ )

do_stuff( array[ i ];
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Array Bounds (ctd)

Safe version is:
for( signed int _iterationCount = \

ARRAYSIZE( array, thing_t ), i = 0; 
_iterationCount > 0 && array[ i ] != NULL; 
_iterationCount--, i++ )

doStuff( array[ i ] );

If the soft bound of array[ i ] != NULL isn’t hit then the 
hard array-size bound is triggered

Safe Pointers
thing_t *pointer;

for( pointer = getFirstItem(); pointer != NULL; \
pointer = getNextItem( pointer ) )

do_stuff( pointer );

Let’s make the loop safe
thing_t * pointer;

LOOP_MAX( pointer = getFirstItem(), \
pointer != NULL, \
pointer = getNextItem( pointer ) )

do_stuff( pointer );

This will terminate, but we don’t know where the pointers 
will end up going before the hard bound is triggered
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Safe Pointers (ctd)

Pointers are two-valued

• NULL = invalid/not set
• Anything else = (apparently) valid

Should be tri-state

• NULL 
• Valid pointer to item 
• Invalid pointer

Safe Pointers (ctd)

Turn pointers from vectors into scalars

• Store a pointer and its complement
typedef struct { 

void *dataPtr; 
uintptr_t dataCheck; 
} DATAPTR;

Function pointers are special because of things like IA64’s 
“totally idiotic calling conventions” (Linus)

• Hide them behind macros, not important here
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Safe Pointers (ctd)

Use the basic is-valid-pointer operation as a building block
#define DATAPTR_ISVALID( name ) \

( ( name.dataPtr ^ name.dataCheck ) == ~0 )

• Can also mix in a random value if required to make malicious 
pointer-overwrites difficult

DATAPTR_XXX() operations can return one of three 
values

• Pointer is NULL
• Pointer is valid
• Pointer is not valid

Use DATAPTR_ISVALID() rather than just checking for 
NULL

Safe Pointers (ctd)

For example to get a pointer
#define DATAPTR_GET( name ) \

( DATAPTR_ISVALID( name ) ? \
name.dataPtr : NULL )

Returns NULL on invalid or NULL pointer, pointer value 
on valid pointer

• Not as hard to work with as it sounds
• Just requires rethinking pointer use a bit
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Safe Pointers (ctd)

Standard list-walking loop
LOOP_LARGE( listPtr = DATAPTR_GET( listHead ),

listPtr != NULL,
listPtr = DATAPTR_GET( listPtr->next ) )

do_thing( listPtr );

Bounded loop guaranteed to pass a valid pointer to 
do_thing()

• Can add a DATAPTR_ISVALID() check if you need a hard 
error on an invalid pointer rather than just exiting the loop

Safe Booleans
#define FALSE 0
#define TRUE 1

Yes-biased boolean

• One FALSE value
• 4,294,967,295 TRUE values

Example of booleans that shouldn’t be yes-biased

• Access authorised
• Cryptographic verification succeeded
• Eject reactor core

Almost any fault or (malicious) overwrite of any kind will 
set a boolean to TRUE
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Safe Booleans (ctd)

NXP LPC devices notoriously used one of the following 
values to flag security measures

• 0x12345678, 0x87654321, 0x43218765, and 0x4E697370 
(‘Nisp’) = Enabled

• Remaining ~4 billion values = Disabled

STM’s config was no better

• { 0xCC, 0x33 } = High security
• { 0xAA, 0x55 } = No security
• Remaining 64K - 2 values = Medium/low security

Safe Booleans (ctd)

Should be:

• One FALSE value
• One TRUE value
• 4,294,967,294 INVALID values
The values of each configuration datum SHALL be stored 
as distinctive multibit values such that no single or double 
bit corruption would lead to another valid value
— “Embedded Software Development for Safety-Critical

Systems”, p.73.
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Safe Booleans (ctd)

Store bit patterns calculated to be most vulnerable to SEUs

#define TRUE 0x0F3C569F

• This is for radiation-induced upsets, for security store an 
unpredictable pattern

0000 0000 1111 1111 0011 0011 1100 1100

0 0 F F 3 3 C C

0000 1111 0011 1100 0101 0110 1001 1111

0 F 3 C 5 6 9 F

Safe Booleans (ctd)

However, the compiler strikes again

The means of storing multibit values [...] SHALL be such 
that the compiler does not reduce them to a single bit, 
irrespective of the optimisation level used

— “Embedded Software Development for Safety-Critical
Systems”, p.73.

Apply design-by-contract again
int doThing( …, BOOLEAN doOtherThing, … )

{
REQUIRES( doOtherThing == TRUE || \

doOtherThing == FALSE );
…
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Safe Integers

Requires compiler support

clang and gcc have intrinsics
bool __builtin_sadd_overflow( int x, int y, int *sum );
bool __builtin_smul_overflow( int x, int y, 

int *prod );

Compiles to two instructions, the arithmetic operation and 
a setcc

Safe Integers (ctd)

Windows has ‘portable’ intsafe operations
HRESULT IntAdd( INT iAugend, INT iAddend, 

INT *piResult );
HRESULT IntMult( INT iMultiplicand, INT iMultiplier, 

INT *piResult );

• Can produce dozens of instructions and even function calls

Ugly and messy, needs better compiler support

• Better to perform range/bounds checks during/after operations 
as required
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Safe Buffers

Another perpetual C problem, buffer overruns

Allocate buffers with cookies/canaries at the ends
#define SAFEBUFFER_SIZE( size ) \

( SAFEBUFFER_COOKIE_SIZE + size + \
SAFEBUFFER_COOKIE_SIZE )

#define SAFEBUFFER_PTR( buffer ) \
( buffer + SAFEBUFFER_COOKIE_SIZE )

Allocate and access buffers using the above macros
BYTE safeBuffer[ SAFEBUFFER_SIZE( 1024 ) ]; 

safeBufferInit( SAFEBUFFER_PTR( safeBuffer ), 1024 );
readData( ioStream, safeBuffer, 1024 ); 

Safe Buffers (ctd)
int readData( IOSTREAM ioStream, BYTE safeBuffer, 

const int safeBufferSize )
{
REQUIRES( safeBufferCheck( safeBuffer, \

safeBufferSize ) );
…
do_stuff();
…
ENSURES( safeBufferCheck( safeBuffer, \

safeBufferSize ) );
}

Obviously won’t catch all overwrites, but will catch off-by-
one overruns/underruns

• Can tune cookie size for how large an over/underrun you want 
to catch
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Control-Flow Integrity Checks

Make sure function B was called from function A and 
nowhere else

• Make sure function B was the one that was supposed to be 
called

• Call to exportPrivateKey() or shutdownReactor() should not be 
accidental

Make sure control flows through function B in the expected 
manner

• Apart from the obvious error control, also makes ROP a lot 
harder

Control-Flow Integrity Checks (ctd)

Use Bernstein hashing to identify functions and code 
blocks

• Good hash function for ASCII strings
• (Very) Low probability of collisions

– Good enough, we need something that’s OK, not perfect

Done via the preprocessor

• Really beats up the compiler
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Control-Flow Integrity Checks (ctd)

Calling a function with an access token
shutdownReactor( MK_TOKEN( "shutdownReactor", \

12 ), … );

Called function
int shutdownReactor( const ACCESS_TOKEN 

accessToken, … )
{
REQUIRES( CHECK_TOKEN( "shutdownReactor", 12 ) );
…
}

Control-Flow Integrity Checks (ctd)

Can also be used to enforce control-flow integrity within 
functions

Creates two expressions of the control flow

• Implicitly coded into the function 
• Explicitly stated at the end of the function

If the final values don’t match then there’s a problem with 
the control flow
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Control-Flow Integrity Checks (ctd)
if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, \
&clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, \
&serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, \
&signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

Control-Flow Integrity Checks (ctd)

Usage is as follows

CFI_CHECK_TYPE CFI_CHECK_VALUE = CFI_CHECK_INIT;

• Sets initial value to the file and/or function name

code;
CFI_CHECK_UPDATE( sequencePoint1Name ); 
code;
CFI_CHECK_UPDATE( sequencePoint2Name ); 
code;
CFI_CHECK_UPDATE( sequencePoint3Name ); 

• Updates the value as each sequence point is passed
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Control-Flow Integrity Checks (ctd)
ENSURES( \

CFI_CHECK_SEQUENCE_3( sequencePoint1Name, 
sequencePoint2Name, 
sequencePoint3Name ) );

• Recomputes the value and checks that it matches the running 
total

– Various tricks to ensure that the compiler still evaluates 
each value

• For portability can’t use varargs macros, so the summing-up at 
the end gets a bit ugly

Control-Flow Integrity Checks (ctd)

Apple case would be:
CFI_CHECK_TYPE CFI_CHECK_VALUE = CFI_CHECK_INIT;

if ((err = SSLFreeBuffer(&hashCtx)) != 0)
goto fail;

CFI_CHECK_UPDATE( "SSLFreeBuffer" ); 
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;
CFI_CHECK_UPDATE( "ReadyHash" ); 
if ((err = SSLHashSHA1.update(&hashCtx, \

&clientRandom)) != 0)
goto fail;

CFI_CHECK_UPDATE( "SSLHashSHA1.update 1" );

(continues…) 
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Control-Flow Integrity Checks (ctd)

(continued…)
if ((err = SSLHashSHA1.update(&hashCtx, \

&serverRandom)) != 0)
goto fail;

CFI_CHECK_UPDATE( "SSLHashSHA1.update 2" ); 
if ((err = SSLHashSHA1.update(&hashCtx, \

&signedParams)) != 0)
goto fail;
goto fail;

CFI_CHECK_UPDATE( "SSLHashSHA1.update 3" ); 
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;
CFI_CHECK_UPDATE( "SSLHashSHA1.final" );

(continues…) 

Control-Flow Integrity Checks (ctd)

(continued…)

ENSURES( \
CFI_CHECK_SEQUENCE_6( "SSLFreeBuffer", 

"ReadyHash", 
"SSLHashSHA1.update 1",
"SSLHashSHA1.update 2", 
"SSLHashSHA1.update 3",
"SSLHashSHA1.final" ) );

Postcondition wouldn’t be met since the sequence points 
“SSLHashSHA1.update 3” and “SSLHashSHA1.final” 
were skipped

This is a somewhat extreme case

• Typically one sequence point per basic block, not per line of 
code
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Conclusion

Real-world systems experience faults

• Sometimes attackers can help these faults along

Those faults impact not just availability but also security

• Many systems have just a single bit separating “safe” from 
“unsafe”

Can mitigate the effects via 1oo1D system design

• And then need to fight the compiler to get it working as 
intended


