
15/10/2020

1

Software Security in the

Presence of Faults

Peter Gutmann

University of Auckland

Crypto Fault Attacks

If you get a fault during a crypto computation, an attacker
may be able to recover your encryption key(s) from the
faulty output

• First (publicly) acknowledged in the late 1990s

• Studied to death since then

15/10/2020

2

Faults in Cryptosystems

ECC is particularly susceptible to faults

• Fault with the in-memory key: Leak the private key

• Fault with the ECC computation: Leak the private key

• Fault with the RNG: Leak the private key

• You get the picture

General idea is to move the computation from the secure
curve to another, inevitably weaker, one or to produce a
faulty point on the original curve

Faults can be injected in a variety of ways and almost all parts of
the system can be targeted, e.g. the base point, system
parameters, intermediate results, dummy operations and
validation tests
— “Fault Attacks on Elliptic Curve Cryptosystems”

Faults in Cryptosystems (ctd)

RSA also has issues, but nowhere near as bad as ECC

RSA has a fault problem in the RSA-CRT computation if
you sign the exact same message twice

• This essentially never occurs

• Not in IPsec, SSH, TLS, CMS, S/MIME, PGP, SCEP, TSP,
OCSP, CMP, …

• Any protocol that allowed this would also trivially allow replay
attacks

ECC in contrast has entire catalogues of fault problems

• These don’t require duplicate signatures

15/10/2020

3

Faults in Cryptosystems (ctd)

SRP, PSK, etc have no issues

• Authentication doesn’t require the use of signatures

– Or certificates, or CAs, which is why there’s close to zero
support for it in browsers

• Built around MACs/PRFs (hash-based)

• Little research published on the issue, but probably because
there’s no obvious attack

Faults in Cryptosystems (ctd)

Symmetric crypto (e.g. AES) doesn’t have random fault
issues

Attacks require injection of specific attacker-controlled
faults, not random faults in random locations

• Example: Create 1-byte differentials in input to AES
MixColumns

• Example: Create 255 different byte faults in the AES middle
rounds

• Example: Create 1-bit fault in 128 bits of SubBytes input to
AES last round

15/10/2020

4

Faults in Cryptosystems (ctd)

Similar to RSA, attacks require encryption of the same data
two or more times

• Won’t happen for the common CBC or CTR/GCM modes

CTR/GCM mode, however, fails catastrophically on an IV
fault

• Both confidentiality and integrity protection collapse

S
ou

rc
e:

 M
ic

ro
so

ft

Faults in Cryptosystems (ctd)

The two trendiest encryption mechanisms, ECC and AES-
GCM, are also the most brittle in the presence of faults

• Worst case, a fault in the RNG, and you lose everything in one
go

• ECC private key

• AES-CTR confidentiality

• AES-GCM integrity-protection

The most robust mechanisms are probably RSA and AES-
CBC + HMAC

• They’re not fashionable

15/10/2020

5

Faults in Cryptosystems (ctd)

How to carry out the attack

• Wait

Purely passive
attack

• No need to do
anything except
watch network
traffic and wait
for it to happen S

ou
rc

e:
 M

ic
ro

so
ft

Causes of Faults

Electrical glitches

• Overvoltage

• Undervoltage

• Spikes

• Clock glitches

• Noise

Thermal issues

Radiation

• Often induces electrical glitches

• Can also change circuit operation, temporarily or permanently

S
ou

rc
e:

 E
E

T
im

es

15/10/2020

6

Characteristics of Randomly-appearing Faults

Possible: Random bit(s) 0 → 1

Possible: Random bit(s) 1 → 0

Unlikely: Random bit fault during computation

• Most CPUs have at least error detection on the CPU core

• Some have full ECC and more, e.g. Cortex A, Cortex R, IBM
Power, Intel, MIPS, Sparc

• See later slides for extreme cases, e.g. Intel, IBM, Sparc

Not present: Non-random, attacker-controlled faults

• In any case if an attacker can disassemble your device and sit
there injecting controlled hardware faults at will, it’s probably
game over anyway

Theory vs. Reality

Research results are often difficult to apply…

Fault model #5: No control over the timing or location, no
duplicate data to act on

S
ou

rc
e:

 G
em

pl
us

15/10/2020

7

Theory vs. Reality (ctd)

Lack of understanding by cryptographers…

release even _one_ any way faulty signature computed using
RSA-CRT and your private key walks
— CFRG list comment

• Garbled sound byte from a 20-year-old research paper

… or appreciation that TLS crypto exists outside the web…

[…] non-starter as web browsers […] fix the reasons why web
browsers […] the web browser vendors […]
— CFRG list comment, responding to a message that talked

specifically about non-browser TLS use

Theory vs. Reality (ctd)

… or just plain denial

I’m aware of invalid curve attacks, which can be completely
mitigated by using a twist-secure curve and point compression
— CFRG list comment

• “The mathematician looked at the fire extinguisher and the fire,
said ‘a solution exists’, and went back to bed”

Cryptographers and SCADA/embedded implementers
don’t talk to each other

• Cryptographers: They’re not using our fine
theoretical design!

• Implementers: This stuff doesn’t do what we need,
we’ll have to come up with our
own way of doing it

15/10/2020

8

Theory vs. Reality (ctd)

A few studies published, but all for code (not data)
corruption

• 2% of firewall code-memory faults caused security problems
— “Evaluating the Security Threat of Firewall Data

Corruption Caused by Instruction Transient Errors”

• 1-2% of FTP and SSH code-memory faults caused security
problems
— “An Experimental Study of Security Vulnerabilities

Caused by Errors”

Theory vs. Reality (ctd)

Code corruption isn’t normally an issue in fault-aware
embedded systems

• Code executes directly
out of nonvolatile memory

• If the code is in RAM, the
RTOS monitor process
scans the code segment
and restarts the system on
error

S
ou

rc
e:

 N
X

P

15/10/2020

9

When are there Radiation-induced Faults?

When you’re using the crypto to monitor nuclear materials

Used to check compliance with nonproliferation treaties

Crypto in High-radiation Environments

Monitoring of fuel storage ponds

Ensure fuel rods don’t go missing (particularly in breeder
reactors)

S
ou

rc
e:

 W
or

ld
 N

uc
le

ar
 N

ew
s

15/10/2020

10

Crypto in High-radiation Environments (ctd)

Monitoring of reactor refueling

Check what goes in and out

S
ou

rc
e:

 W
or

ld
 N

uc
le

ar
 N

ew
s

Crypto in High-radiation Environments (ctd)

Monitoring of waste management

Check what’s leaving the facility via nondestructive assay
(NDA)

S
ou

rc
e:

 C
an

be
rr

a

15/10/2020

11

Crypto in High-radiation Environments (ctd)

Most of those aren’t truly high-radiation environments

• Humans have to work there

Higher-than-normal radiation, but not classed as high-
radiation

• Other equipment is deployed to high-radiation areas

Leads to an interesting definition of tamper-discouraging
crypto

It would take you three days to put up the scaffolding and
disassemble the monitoring gear. The radiation will kill you in
one day

• Who needs “tamper-resistant” when you’ve got that…

Crypto in Harsh Environments

Not specific to reactors though…

Devices can experience faults in harsh environments in
general

• Covered by numerous standards

• EN 50128 – Railway applications – Communication, signalling
and processing systems

• EN 50129 – Railway applications – Safety related electronic
systems for signalling

• EN 50402 – Requirements on the functional safety of fixed gas
detection systems

• IEC 60601 – Medical electrical equipment safety

[Continues]

15/10/2020

12

Crypto in Harsh Environments (ctd)

[Continued]

• IEC 60880 – Nuclear power plants – Instrumentation and
control systems important to safety

• IEC 61508 – Functional Safety

• IEC 61511 – Safety instrumented systems for the process
industry sector (also ANSI S84)

• IEC 61513 – Nuclear power plants – Instrumentation and
control important to safety

• IEC 62061 – Functional safety of electrical, electronic and
programmable electronic control systems (also ISO 13849)

• ISO 26262 – Road vehicles – Functional safety

Many, many more

Notable Failures due to Ionising Radiation

Advanced Simulation and Computing Program (ASC) Q
Supercomputer at Los Alamos

• Built with DEC Alpha 21264 CPUs

S
ou

rc
e:

 L
A

N
L

15/10/2020

13

Notable Failures due to Ionising Radiation

Error detection but not correction on level 3 cache tag
(BTAG) RAM

• Too much slowdown in
this speed-critical case

• Standard data RAM does
have ECC

Faults were detected via
parity checks, but not
corrected, node crashed

• c.f. IBM Power, which
treats a cache error as a
miss, not a fault

S
ou

rc
e:

 W
ik

ip
ed

ia

Notable Failures due to Ionising Radiation

Suspected cosmic rays

ASC Q is at LANL, elevation 7,500ft (2,300m)

• Cosmic radiation is 6x as intense as at sea level

For comparison, avionics computers are at 30,000ft

• Radiation is 150x as intense as at sea level

S
ou

rc
e:

 d
00

t.o
rg

15/10/2020

14

Notable Failures due to Ionising Radiation

Single node at sea level experiences fatal soft error once in
50 years

• 500-node cluster at elevation experiences one every 1½ hours

Los Alamos just happens
to have the Los
Alamos Neutron
Science Centre
(LANSCE)

• Confirmed that it’s
radiation-induced

S
ou

rc
e:

 L
A

N
L

Notable Failures due to Ionising Radiation

Dealt with by

• Scrubbing cache RAM before program runs

– Manual equivalent of automated ECC scrubbing

– Rewrite ECC’d data with original correct data

• Checkpointing during runs to allow recovery

• Leaving spare nodes available to restart failed jobs on

• etc

(NB: Often-repeated 2016 IEEE Spectrum article mentions
more examples, but these contain multiple factual errors
and/or are unverifiable. Don’t believe what Google will
turn up).

15/10/2020

15

Modern CPU Fault Resistance

Things can fail in unexpected ways

• Expose PIII and K7 to gamma source

What failed wasn’t the CPU but the CPU fan

• A PWM fan-control chip in the fan motor died long before the
CPU did

S
ou

rc
e:

 I
nt

el

Modern CPU Fault Resistance (ctd)

During the test, all components except the CPU were
heavily shielded

• CPU was raised up above the shield by a riser board

Scattering caused faults in the shielded components

Multiple motherboards, memory modules and video cards have
lost functionality in the pursuit of the total dose limit of the DUT
processors
— “Total Ionizing Dose Testing of the Intel Pentium III and

AMD K7 Microprocessor”

15/10/2020

16

Modern CPU Fault Resistance (ctd)

PIII took 100x the dose of the K7

Intel processors verge on radiation-hardened devices
— “Terrestrial-Based Radiation Upsets: A Cautionary Tale”

• Possibly due to Intel’s bad experience with alpha-particle
induced faults in 16K DRAMs in the late 1970s

Use e.g. ECC and bit-interleaving (to fortify SECDED) in
caches (c.f. 21264 BTAG issues)

Modern CPU Fault Resistance (ctd)

It’s clear that [Intel] are addressing an issue with cosmic rays,
since they have become progressively more rad-hard over the
years
— “Terrestrial-Based Radiation Upsets: A Cautionary Tale”

S
ou

rc
e:

 P
re

lim
in

ar
y

R
ad

ia
tio

n
T

es
tin

g
of

 a
 S

ta
te

-o
f-

th
e-

A
rt

 [
…

]
C

hi
p

15/10/2020

17

Modern CPU Fault Resistance (ctd)

No apparent device degradation was apparent on any of the
samples. Cumulative dose levels for exposures ranged from 1 to
17 Mrad(Si). For comparison, the ITAR level is 500 krad(Si).

As noted, total dose and DR [dose rate] device tolerances exceed
the ITAR limits for this [AMD A4-3300, 2011 vintage budget
desktop CPU] off-shore fabricated design. To the best of the
authors’ knowledge, AMD has not intentionally radiation hardened
the device for these environments, but the technology itself
supports these characteristics
— “Hardness Assurance for Total Dose and Dose Rate Testing

of a State-Of-The-Art Off-Shore 32 nm CMOS Processor”

• ITAR = International Traffic in Arms Regulations (now
Wassenaar), who set the limits where something becomes an
export-controlled rad-hard military device

Modern CPU Fault Resistance (ctd)

IBM Power is just as careful

• ECC, parity, residue checking, bit-interleaving (‘chipkill’),
automatic instruction retry, …

• Tested by proton-beam irradiation

S
ou

rc
e:

 I
B

M

15/10/2020

18

Modern CPU Fault Resistance (ctd)

Other server-grade CPUs like Sparc64 contain similar
measures

• SECDED on level 2 caches

• Parity check on level 1 cache causes a reload from ECC-
protected level 2

– c.f. Alpha fail on parity error

• TLB also has parity check, error treated as a miss

• ALU has parity and mod-3 arithmetic checking of results

– Failed instructions are restarted on error

• 10% of transistors are for error handling

Under intense neutron bombardment, 94% of errors
vanished, 5% were recovered from, 2% resulted in an
observable fault

Modern CPU Fault Resistance (ctd)

Rate of SEUs is measured in Mean Time To Upset, MTTU

Intel claim MTTU of 25 years for server-grade CPUs

• Presumably at sea level

• Possibly in a lead vault?

IBM claim “dramatic
improvements in soft-
error recovery”

• Compared to what?

Fujitsu (Sparc64) claim 10
FIT at sea level

• FIT = failure in time, per billion hours, MTTF of 10K years

S
ou

rc
e:

 I
B

M

15/10/2020

19

Whole-System Fault Resistance

This is for $1,000 server CPUs

• And server-grade hardware in general, e.g. ECC RAM

Everything else isn’t so seriously engineered

• Consumer-grade CPUs
• Embedded CPUs
• DRAM
• System buses
• I/O devices

How do we build a reliable system from unreliable
components?

Fault-tolerant Systems

Numerous architectures designed for functional safety

• General terminology is XooY

• X out of Y units must fail for a system failure

Standard systems are 1oo1

• Failure of any part causes system failure

Sensor Processor Actuator

15/10/2020

20

Fault-tolerant Systems (ctd)

1oo2 for fail-safe systems

• Failure in both systems is required for an inadvertent activation
to occur

Sensor Processor Actuator

Sensor Processor Actuator

Fault-tolerant Systems (ctd)

2oo2 for high-availability systems

• Both systems must fail for overall failure

Sensor Processor Actuator

Sensor Processor Actuator

15/10/2020

21

Fault-tolerant Systems (ctd)

Even more complex systems are possible

• 2oo3 with voting circuits

All of these (except 1oo1) require custom hardware designs

• Not practical to require this

• Can’t demand completely new hardware just to accommodate
an obscure crypto issue, or even a less obscure security issue

None are really practical for general-purpose use

• May be feasible, but not really practical

Fault-Resistant Systems

There’s a special variant that requires little to no custom
work…

1oo1D

• Standard 1oo1 with diagnostic channel

• If a failure is detected by the monitoring system, halt or restart
the main system

Fail-fast

• 1oo1D is pretty standard for radiation-tolerant systems

• Actually it’s pretty standard for properly-designed (SCADA,
not IoT) embedded in general

Goal: Make general-purpose software 1001D

15/10/2020

22

Fault-Resistant Systems (ctd)

Swiss Cheese Model of Failure (Prevention)

• Developed by Prof.James Reason, “The Contribution of Latent
Human Failures to the Breakdown of Complex Systems”

Widely used in

• Risk management
• Healthcare
• Engineering
• Aviation
• ...

Fault-Resistant Systems (ctd)

Basic premise: Defences
are imperfect

• Think Swiss Cheese

With enough layers,
even Swiss cheese
can stop most failures

• All the holes have to
line up exactly for a
failure to occur

S
ou

rc
e:

 Q
ua

lit
y

an
d

S
af

et
y

of
 M

in
im

al
ly

 I
nv

as
iv

e
S

ur
ge

ry
: P

as
t,

P
re

se
nt

, a
nd

 F
ut

ur
e

15/10/2020

23

Fault-Resistant Systems (ctd)

Need to constrain control and data flow in such a manner
that error propagation through the entire system is
(highly) unlikely

• Or at least to minimise the occurrence of faults as much as
possible

Turn the Swiss Cheese Model (of Fault Prevention) into
programming practice

• Enough layers of constraints ensure that faults moving
processing outside the permitted envelope is unlikely

Design by Contract

Concept introduced by Bertrand Meyer in the 1980s

Basic form is that a routine must assert pre-conditions that
hold before it executes and postconditions that hold after
it executes

• Well-supported in languages like Eiffel (also by Meyer)

Easy to implement in C as macros
• REQUIRES(precondition);
• ENSURES(postcondition);

#define REQUIRES(x) if(!(x)) throw_error();

15/10/2020

24

Design by Contract (ctd)
int getItem(const CRYPT_KEYID_TYPE keyIDtype,

const void *keyID, const int keyIDlength,
const KEYMGMT_ITEM_TYPE itemType,
const int options)

{
REQUIRES(keyIDtype == CRYPT_KEYID_NAME || \

keyIDtype == CRYPT_IKEYID_KEYID);
REQUIRES(keyIDlength >= MIN_NAME_LENGTH && \

keyIDlength < MAX_ATTRIBUTE_SIZE);
REQUIRES(itemType == KEYMGMT_ITEM_PUBLICKEY);
REQUIRES(isFlagRangeZ(options, KEYMGMT));

...

Design by Contract (ctd)

Function’s design-by-contract precondition is that input
parameters are as expected

• Basic good sanitation
• Catches wild jumps into code

– Precondition won’t be met
– Using ROP to jump into exportPrivateKey() will be caught

Fundamental building block for most later safety measures

15/10/2020

25

Range Checking

Commonly-used memory copy/move/append
memcpy(destination, source, count);

The function is actually
void *memcpy(void *destination,

const void *source,
size_t num);

int count → size_t num means negative count value
becomes a huge positive value

• Has led to a number of security vulnerabilities

Making everything unsigned is a kludge

• Bites you in locations where you actually need a signed value

Range Checking (ctd)

Create integer bounds-checking functions for the most
common cases
• isIntegerRange(value) →

range(0 ... some_bound)
• isIntegerRangeNZ(value) →

range(1 ... some_bound)
• isShortIntegerRange(value) →

range(0 ... some_small_bound)
• isShortIntegerRangeNZ(value) →

range(1 ... some_small_bound)

Each memory operation can now be checked
REQUIRES(isShortIntegerRangeNZ(count));
memcpy(dest, src, count);

15/10/2020

26

Range Checking (ctd)

Can do the same for enums and flags by following a
standard naming convention when declaring them

typedef enum { OPERATION_NONE, OPERATION_READ,
OPERATION_WRITE, OPERATION_EXECUTE,
OPERATION_FORMAT, OPERATION_LAST }
OPERATION_TYPE;

#define isEnumRange(value, name) \
(value > name##_NONE && value < name##_LAST)

REQUIRES(isEnumRange(enumValue, OPERATION));
REQUIRES(isFlagRange(flagValue, FLAG));

Range Checking (ctd)

Can also be used to deal with compiler braindamage

15/10/2020

27

Bounds Checking

C has no bounds checking

• A long-standing complaint

To some extent this is turning C into Pascal/Ada/…

Need to check an index into a block of memory

• Is ‘index’ within the range { start, end } is straightforward

What about ‘is { start, length } within { 0, totalLength }’?

• Very common requirement when working with blocks of
memory

• Also very common exploit vector, see ‘buffer overrun’

Bounds Checking (ctd)
#define boundsCheck(start, length, totalLength) \

((start <= 0 || length < 1 || \
start + length > totalLength) ? \

FALSE : TRUE)

SSH packet-assembly code:
REQUIRES(boundsCheck(keyDataHeaderSize,

keyexInfoLength, receiveBufferSize));
memmove(keyexInfoPtr + keyDataHeaderSize,

keyexInfoPtr, keyexInfoLength);

15/10/2020

28

Safe Loops

Standard form of a loop
for(int i = 0; i != 10; i++)

do_stuff(i);

Iterations

• do_stuff(0);
• do_stuff(1);
• ...
• do_stuff(9);

Safe Loops (ctd)

What if there's a fault on i?
• do_stuff(18263);
• do_stuff(2374176);
• do_stuff(-372145);

• If your do_stuff() follows design-by-contract:
REQUIRES(isShortIntegerRange(value));

you’re protected from the worst of it, but it’s still invalid input

Loop never terminates (until numeric wraparound) because
i has gone outside the range [0…10]

15/10/2020

29

Safe Loops, Attempt #1

Make loop variables unsigned, use less-than rather than
equality comparison

for(unsigned int i = 0; i < 10; i++)

do_stuff(i);

Will this loop terminate?

• Yes, for a simple loop
• Not necessarily, for a complex loop

for(unsigned int i = 0; i < 10; i++)

i = complex_calculation();

Actually even the simple loop may not work, see later
slides

Safe Loops, Attempt #1 (ctd)

Will this loop terminate?
thing_t *pointer;

for(pointer = getFirstItem(); pointer != NULL; \
pointer = getNextItem(pointer))

do_stuff(pointer);

Well, it's supposed to terminate…

15/10/2020

30

Safe Loops, Attempt #2

All loops should be statically bounded

• Include explicit limit counters in loops
for(pointer = getFirstItem(), count = 0;

pointer != NULL && count < MAX_COUNT;
pointer = getNextItem(pointer), count++)

do_stuff(pointer);

Guarantees termination after MAX_COUNT iterations

• Different bounds values for different loops

For most loops there’s a reasonable idea what the upper
bound should be

Safe Loops, Attempt #2 (ctd)

Implement bounded loops via macros
#define LOOP_MAX(a, b, c) \

for(unsigned int _iterationCount = 0, a; \
_iterationCount < MAX_COUNT && b; \
_iterationCount++, c)

#define LOOP_BOUND_OK _iterationCount < MAX_COUNT

So the previous loop is:
LOOP_MAX(i = 0, i < 10, i++)

do_stuff();

ENSURES(LOOP_BOUND_OK);

15/10/2020

31

Safe Loops, Attempt #2 (ctd)

And then the compiler screws it up
for(unsigned int _iterationCount = 0, i = 0; \

_iterationCount < MAX_COUNT && i < 10; \
_iterationCount++, i++)

do_stuff();

Merge the two loops, since both are incrementing the same
value and 10 < MAX_COUNT

for(__x = 0; __x < 10; __x++)

do_stuff();

Safe Loops, Attempt #3

Need to have one variable counting up and the other down:
#define LOOP_MAX(a, b, c) \

for(signed int _iterationCount = \
MAX_COUNT, a; \

_iterationCount > 0 && b; \
_iterationCount--, c)

#define LOOP_BOUND_OK _iterationCount > 0

Loops that count down have the second variable counting
up instead:

#define LOOP_MAX(a, b, c) \
for(signed int _iterationCount = 0, a; \

_iterationCount < MAX_COUNT && b; \
_iterationCount++, c)

#define LOOP_BOUND_OK _iterationCount < MAX_COUNT

15/10/2020

32

Safe Loops, Attempt #3 (ctd)

The expanded form is then
for(signed int _iterationCount = MAX_COUNT, i = 0;

_iterationCount > 0 && i < 10;
_iterationCount--, i++)

do_stuff();

ENSURES(_iterationCount > 0);

Now all loops are statically bounded and we can guarantee
termination

Safe Loops, Attempt #3 (ctd)

And then the compiler screws it up again…

Wait, what could possibly go wrong with:
int array[512];
int i;
unsigned int j;

for(i = 0; i < 512; i++)
array[i] = 5;

for(j = 0; j < 512; j++)
array[j] = 3;

gcc –O1 –S loops.c / gcc –O2 –S loops.c

• -O3 is similar but vectorised

15/10/2020

33

Safe Loops, Attempt #3, x86
.L2: movl $5, (%rax) # store $5 to address

addq $4, %rax # increment address pointer
cmpq %rbp, %rax # compare to bound
jne .L2 # loop if not equal

.L3: movl $3, (%rbx) # store $3 to address
addq $4, %rbx # increment address pointer
cmpq %rbp, %rbx # compare to bound
jne .L3 # loop if not equal

Safe Loops, Attempt #3, Arm
mov w1, 5

.L3: str w1, [x0],4 # store word from W1 to address
X0, add 4

cmp x0, x19 # compare to limit in X19
bne .L3 # loop if not equal

mov w1, 3
.L5: str w1, [x0],4 # store word from W1 to address

X0, add 4
cmp x0, x19 # compare to limit in X19
bne .L5 # loop if not equal

15/10/2020

34

Safe Loops, Attempt #3, MIPS
li $3,5

$L2: sw $3,0($2) # store data
addiu $2,$2,4 # increment address pointer
bne $2,$17,$L2 # loop if not equal

li $2,3
$L3: sw $2,0($16) # store data

addiu $16,$16,4 # increment address pointer
bne $16,$17,$L3 # loop if not equal

Safe Loops, Attempt #3, PPC
li 8,512
mtctr 8 # move 512 to CTR register

via GPR 8
li 10,5

.L3: stwu 10,4(9) # store word with update from
GPR 10

bdnz .L3 # decrement count, branch if
nonzero

li 8,512
mtctr 8 # move 512 to CTR register

via GPR 8
li 10,3

.L5: stwu 10,4(9) # store word with update from
GPR 10

bdnz .L5 # decrement count, branch if
nonzero

15/10/2020

35

Safe Loops, Attempt #3, RISC-V
li a4,5

.L2: sw a4,0(a5) # store word in A4 in address
addi a5,a5,4 # increment address pointer
bne a5,s1,.L2 # branch if address less than

bound

li a5,3
.L3: sw a5,0(s0) # store word in A4 in address

addi s0,s0,4 # increment address pointer
bne s0,s1,.L3 # branch if address less than

bound

Safe Loops, Attempt #3, Sparc
mov 5, %g2
st %g2, [%g1]

.L7: add %g1, 4, %g1 # add 4
cmp %g1, %i4 # compare to bound
bne %xcc, .L7 # loop if not equal
st %g2, [%g1] # store data in delay slot

mov 3, %g1
st %g1, [%i5]

.L8: add %i5, 4, %i5 # add 4
cmp %i5, %i4 # compare to bound
bne %xcc, .L8 # loop if not equal
st %g1, [%i5] # store data in delay slot

15/10/2020

36

Safe Loops, Attempt #3 (ctd)

This isn’t architecture-specific

• It’s universal across all gcc-produced code

gcc converts all loops from a safe [0…n] index bound to an
unsafe index != n

• No (known) version of gcc will compile this loop correctly
• “Correctly” = preserving the semantics of the original code

Safe Loops, Attempt #3 (ctd)

gcc bonus feature: If there’s a bounds check within the
loop…

XXX: note: in expansion of macro 'boundsCheck’
XXX: warning: comparison of unsigned expression

>= 0 is always true [-Wtype-limits]

Emitted code treats loop index as signed

• Or at least don’t-care, via = / !=

Emitted code treats bounds check as unsigned and removes
it

• Loses both safe-loop and safe-bounds operations in one go

15/10/2020

37

Safe Loops, Attempt #3 (ctd)

What about the competition?

• clang -O2 -S loops.c
• icc -O2 -S loops.c
• MSVC
• xlc -O2 -S loops.c
• suncc -O2 -S loops.c

Safe Loops, Attempt #4, clang
.LBB0_1: movaps %xmm0, (%rsp,%rax,4)

...
movaps %xmm0, 240(%rsp,%rax,4)

store data via XMMs
addq $64, %rax # increment address ptr
cmpq $512, %rax # compare to bound
jne .LBB0_1 # branch if not equal

.LBB0_3: movaps %xmm0, (%rsp,%rax,4)
...
movaps %xmm0, 240(%rsp,%rax,4)

store data via XMMs
addq $64, %rax # increment address ptr
cmpq $512, %rax # compare to bound
jne .LBB0_3 # branch if not equal

15/10/2020

38

Safe Loops, Attempt #4, clang (ctd)
movi v0.4s, #5 # vector load data

.LBB0_1: add x10, x9, x8
add x8, x8, #32 # increment address ptr
cmp x8, #2048 # compare to bound
stp q0, q0, [x10] # store quadword reg pair
b.ne .LBB0_1 # branch if not equal

movi v0.4s, #3 # vector load data
.LBB0_3: add x9, x19, x8

add x8, x8, #32 # increment address ptr
cmp x8, #2048 # compare to bound
stp q0, q0, [x9] # store quadword reg pair
b.ne .LBB0_3 # branch if not equal

Safe Loops, Attempt #4, icc
..B1.2: movdqu XMMWORD PTR [rsp+rax*4], xmm0

...
movdqu XMMWORD PTR [48+rsp+rax*4], xmm0
add rax, 16 # increment address ptr
cmp rax, 512 # compare to bound
jb ..B1.2 # branch if below

..B1.5: lea edx, DWORD PTR [4+rax]
movdqu XMMWORD PTR [rsp+rdx*4], xmm0
...
lea esi, DWORD PTR [12+rax]
movdqu XMMWORD PTR [rsp+rax*4], xmm0
add eax, 16 # increment address ptr
cmp eax, 512 # compare to bound
jb ..B1.5 # branch if below

Unsigned
comparison/
branch!

15/10/2020

39

Safe Loops, Attempt #4, MSVC

mov ecx, 32
mov rdx, 0000000500000005H

$LL1@main:mov QWORD PTR [rax], rdx
...
mov QWORD PTR [rax+16], rdx
lea rax, QWORD PTR [rax+64]
mov QWORD PTR [rax-40], rdx
...
mov QWORD PTR [rax-8], rdx # store data
sub rcx, 1 # dec count
jne SHORT $LL1@main # branch if

not equal

[…]

Safe Loops, Attempt #4, MSVC (ctd)

[…]

mov ebx, 32
mov rcx, 0000000300000003H

$LL2@main:mov QWORD PTR [rax], rcx
...
mov QWORD PTR [rax+16], rcx
lea rax, QWORD PTR [rax+64]
mov QWORD PTR [rax-40], rcx
...
mov QWORD PTR [rax-8], rcx # store data
sub rbx, 1 # dec count
jne SHORT $LL2@main # branch if

not equal

15/10/2020

40

Safe Loops, Attempt #4, xlc
cal r4,64(r0)
mtspr CTR,r4 # move 64 to CTR reg via GPR 4

__L30:st r0,4(r3)
...
st r0,32(r3) # store data, unrolled
cal r3,32(r3) # add 32 to address
bc BO_dCTR_NZERO,CR0_LT,__L30

branch if counter nonzero

cal r4,64(r0)
mtspr CTR,r4 # move 64 to CTR reg via GPR 4

__L80:st r0,4(r31)
...
st r0,32(r31) # store data, unrolled
cal r31,32(r31) # add 32 to address
bc BO_dCTR_NZERO,CR0_LT,__L80

branch if counter nonzero

Safe Loops, Attempt #4, suncc
or %g0,5,%i5
st %i5,[%i1]
or %g0,0,%i0 # zero counter

.L19: add %i0,1,%i0 # increment counter
add %i1,4,%i1 # increment address
cmp %i0,511 # compare to bound
ble %icc,.L19 # branch if less or equal
st %i5,[%i1] # store data in delay slot

or %g0,3,%i4
sll %i2,2,%i5

.L18: add %i2,1,%i2 # increment counter
st %i4,[%i5+%i3] # store data
cmp %i2,511 # compare to bound
bleu %icc,.L18 # branch if less or equal,

unsigned
sll %i2,2,%i5 # address = counter * 4 in

delay slot

Correct signed/
unsigned branch!

15/10/2020

41

Safe Loops, Attempt #4 (ctd)

There exists at least one compiler, running on at least one
computer, which will compile the safe-loop code
correctly

Need to defeat the compiler’s braindamage optimiser

• Add invariant check in loop body
ENSURES(LOOP_INVARIANT(i, 0, 10));
• See later slides

Safe Loops, Attempt #4 (ctd)

Examples from the real-time control
world

• Compile with optimisation disabled
since this destroys the 1:1 mapping
of source → object code

– IEC 61508-3 §7.4.4.4 / ISO 26262-8
§11.4.4.2 warn against optimising
compilers

• Build on 1990s-vintage PCs scrounged
from eBay because that’s what was
certified

• See “Automotive Control Systems Security” talk

S
ou

rc
e:

 e
B

ay

15/10/2020

42

Safe Loops, Attempt #4 (ctd)

Does disabling optimisation really fix things?

gcc –O0 -S loops.c
jmp .L2

.L3: movl -4(%rbp), %eax # load address
cltq # convert long to quad
movl $5, -2064(%rbp,%rax,4) # store data
addl $1, -4(%rbp) # increment address

.L2: cmpl $511, -4(%rbp) # compare to bound
jle .L3 # branch if less or equal

Correct signed branch

Safe Loops, Attempt #4 (ctd)
jmp .L4

.L5: movl -8(%rbp), %eax # load address
movl $3, -2064(%rbp,%rax,4) # store data
addl $1, -8(%rbp) # increment address

.L4: cmpl $511, -8(%rbp) # compare to bound
jbe .L5 # branch if below or eq

• Yes, but the resulting code is pretty bad

Correct unsigned
branch

15/10/2020

43

Safe Loops, Attempt #4 (ctd)

What about CompCert?

• Formally verified optimizing compiler developed at INRIA,
France

“Mathematical proof that the generated executable code
behaves exactly as prescribed by the semantics of the
source program”
— CompCert documentation

• Mechanism for getting people to swear in French

Safe Loops, Attempt #5

ccomp –O2 –S loops.c
.L10: leaq 8(%rsp), %rcx

movslq %r9d, %r10
movl $5, %r8d
movl %r8d, 0(%rcx,%r10,4) # store data
leal 1(%r9d), %r9d
cmpl $512, %r9d # compare to bound
jl .L10 # branch if less than

.L11: leaq 8(%rsp), %rax
movl %edx, %edi
movl $3, %esi
movl %esi, 0(%rax,%rdi,4) # store data
leal 1(%edx), %edx
cmpl $512, %edx # compare to bound
jb .L11 # branch if less than, unsigned

Correct signed/
unsigned branch

15/10/2020

44

Safe Loops, Attempt #5 (ctd)

Correct as advertised, but not the most optimal of code

• Lots of unnecessary memory loads and register transfers
• About as bad as gcc –O0

Is this a side-effect of semantics-preserving
transformations, or just poor code generation?

Loop Invariants

We know that we got to the end of the loop OK, but what
happens inside the loop body?

• If a fault happens while executing the loop, the postcondition is
met but the loop wasn’t executed as intended

for(signed int _iterationCount = MAX_COUNT, i = 0;
_iterationCount > 0 && i < 10;
_iterationCount--, i++)

do_stuff();

ENSURES(_iterationCount > 0);

• Exit at i = 7, _iterationCount > 0 so all appears OK

15/10/2020

45

Loop Invariants (ctd)

Great for glitch attacks

• Glitch a password-checking loop to bypass password checks

Timing-neutral password check loop
ld r0, 0
ld r1, 16

loop: ld r2, requiredPassword[i]
xor r2, userPassword[i]
or r0, r2
dec r1
jnz loop

Clock glitch steps the PC twice but the ALU only once

• Break out of the loop after checking only one character of the
password

Glitch

Loop Invariants (ctd)

Long history of attacks going back to the 1990s with smart
card unloopers

• DOS-based control
software run over
serial port

Today more likely to be
voltage or EM glitches

• Inject EMI via probe

• Voltage brownout

• Reset-signal glitch S
ou

rc
e:

 C
el

lu
la

re
nt

er

15/10/2020

46

Loop Invariants (ctd)

Address by using loop invariants

for(signed int _iterationCount = MAX_COUNT, i = 0;
_iterationCount > 0 && i < 10;
_iterationCount--, i++)

do_stuff();

ENSURES(_iterationCount > 0);

Note that the ratio between the two loop counters remains
constant

• i + _iterationCount == MAX_COUNT at all times

Loop Invariants (ctd)

Add a loop invariant check

#define LOOP_INVARIANT(index, lowerBound, \
upperBound) \

(index >= lowerBound && \
index <= upperBound && \
(index - lowerBound + \

_iterationCount == MAX_COUNT))

• With the extras for reverse loops and ones where there’s no
fixed relationship between the two loop variables

15/10/2020

47

Loop Invariants (ctd)

So our long-suffering loop becomes:
LOOP_MAX(i = 0, i < 10, i++)

LOOP_INVARIANT(i, 0, 10);

do_stuff();

ENSURES(LOOP_BOUND_OK);

• The expanded macro form is pretty ugly, not shown here

For fixed-iteration loops, also check that i == 10 at the end

Array Bounds

Static arrays have fixed bounds

• Can be evaluated at compile time
#define ARRAYSIZE(array, elementType) \

((sizeof(array) / \
sizeof(elementType)) - 1)

Overallocate all (static) arrays by one element
thing_t array[] = { thing1, thing2, thing3, thing4,

NULL, NULL };

for(unsigned int i = 0; array[i] != NULL; i++)

do_stuff(array[i];

15/10/2020

48

Array Bounds (ctd)

Safe version is:
for(signed int _iterationCount = \

ARRAYSIZE(array, thing_t), i = 0;
_iterationCount > 0 && array[i] != NULL;
_iterationCount--, i++)

doStuff(array[i]);

If the soft bound of array[i] != NULL isn’t hit then the
hard array-size bound is triggered

Safe Pointers
thing_t *pointer;

for(pointer = getFirstItem(); pointer != NULL; \
pointer = getNextItem(pointer))

do_stuff(pointer);

Let’s make the loop safe
thing_t * pointer;

LOOP_MAX(pointer = getFirstItem(), \
pointer != NULL, \
pointer = getNextItem(pointer))

do_stuff(pointer);

This will terminate, but we don’t know where the pointers
will end up going before the hard bound is triggered

15/10/2020

49

Safe Pointers (ctd)

Pointers are two-valued

• NULL = invalid/not set
• Anything else = (apparently) valid

Should be tri-state

• NULL
• Valid pointer to item
• Invalid pointer

Safe Pointers (ctd)

Turn pointers from vectors into scalars

• Store a pointer and its complement
typedef struct {

void *dataPtr;
uintptr_t dataCheck;
} DATAPTR;

Function pointers are special because of things like IA64’s
“totally idiotic calling conventions” (Linus)

• Hide them behind macros, not important here

15/10/2020

50

Safe Pointers (ctd)

Use the basic is-valid-pointer operation as a building block
#define DATAPTR_ISVALID(name) \

((name.dataPtr ^ name.dataCheck) == ~0)

• Can also mix in a random value if required to make malicious
pointer-overwrites difficult

DATAPTR_XXX() operations can return one of three
values

• Pointer is NULL
• Pointer is valid
• Pointer is not valid

Use DATAPTR_ISVALID() rather than just checking for
NULL

Safe Pointers (ctd)

For example to get a pointer
#define DATAPTR_GET(name) \

(DATAPTR_ISVALID(name) ? \
name.dataPtr : NULL)

Returns NULL on invalid or NULL pointer, pointer value
on valid pointer

• Not as hard to work with as it sounds
• Just requires rethinking pointer use a bit

15/10/2020

51

Safe Pointers (ctd)

Standard list-walking loop
LOOP_LARGE(listPtr = DATAPTR_GET(listHead),

listPtr != NULL,
listPtr = DATAPTR_GET(listPtr->next))

do_thing(listPtr);

Bounded loop guaranteed to pass a valid pointer to
do_thing()

• Can add a DATAPTR_ISVALID() check if you need a hard
error on an invalid pointer rather than just exiting the loop

Safe Booleans
#define FALSE 0
#define TRUE 1

Yes-biased boolean

• One FALSE value
• 4,294,967,295 TRUE values

Example of booleans that shouldn’t be yes-biased

• Access authorised
• Cryptographic verification succeeded
• Eject reactor core

Almost any fault or (malicious) overwrite of any kind will
set a boolean to TRUE

15/10/2020

52

Safe Booleans (ctd)

NXP LPC devices notoriously used one of the following
values to flag security measures

• 0x12345678, 0x87654321, 0x43218765, and 0x4E697370
(‘Nisp’) = Enabled

• Remaining ~4 billion values = Disabled

STM’s config was no better

• { 0xCC, 0x33 } = High security
• { 0xAA, 0x55 } = No security
• Remaining 64K - 2 values = Medium/low security

Safe Booleans (ctd)

Should be:

• One FALSE value
• One TRUE value
• 4,294,967,294 INVALID values
The values of each configuration datum SHALL be stored
as distinctive multibit values such that no single or double
bit corruption would lead to another valid value
— “Embedded Software Development for Safety-Critical

Systems”, p.73.

15/10/2020

53

Safe Booleans (ctd)

Store bit patterns calculated to be most vulnerable to SEUs

#define TRUE 0x0F3C569F

• This is for radiation-induced upsets, for security store an
unpredictable pattern

0000 0000 1111 1111 0011 0011 1100 1100

0 0 F F 3 3 C C

0000 1111 0011 1100 0101 0110 1001 1111

0 F 3 C 5 6 9 F

Safe Booleans (ctd)

However, the compiler strikes again

The means of storing multibit values [...] SHALL be such
that the compiler does not reduce them to a single bit,
irrespective of the optimisation level used

— “Embedded Software Development for Safety-Critical
Systems”, p.73.

Apply design-by-contract again
int doThing(…, BOOLEAN doOtherThing, …)

{
REQUIRES(doOtherThing == TRUE || \

doOtherThing == FALSE);
…

15/10/2020

54

Safe Integers

Requires compiler support

clang and gcc have intrinsics
bool __builtin_sadd_overflow(int x, int y, int *sum);
bool __builtin_smul_overflow(int x, int y,

int *prod);

Compiles to two instructions, the arithmetic operation and
a setcc

Safe Integers (ctd)

Windows has ‘portable’ intsafe operations
HRESULT IntAdd(INT iAugend, INT iAddend,

INT *piResult);
HRESULT IntMult(INT iMultiplicand, INT iMultiplier,

INT *piResult);

• Can produce dozens of instructions and even function calls

Ugly and messy, needs better compiler support

• Better to perform range/bounds checks during/after operations
as required

15/10/2020

55

Safe Buffers

Another perpetual C problem, buffer overruns

Allocate buffers with cookies/canaries at the ends
#define SAFEBUFFER_SIZE(size) \

(SAFEBUFFER_COOKIE_SIZE + size + \
SAFEBUFFER_COOKIE_SIZE)

#define SAFEBUFFER_PTR(buffer) \
(buffer + SAFEBUFFER_COOKIE_SIZE)

Allocate and access buffers using the above macros
BYTE safeBuffer[SAFEBUFFER_SIZE(1024)];

safeBufferInit(SAFEBUFFER_PTR(safeBuffer), 1024);
readData(ioStream, safeBuffer, 1024);

Safe Buffers (ctd)
int readData(IOSTREAM ioStream, BYTE safeBuffer,

const int safeBufferSize)
{
REQUIRES(safeBufferCheck(safeBuffer, \

safeBufferSize));
…
do_stuff();
…
ENSURES(safeBufferCheck(safeBuffer, \

safeBufferSize));
}

Obviously won’t catch all overwrites, but will catch off-by-
one overruns/underruns

• Can tune cookie size for how large an over/underrun you want
to catch

15/10/2020

56

Control-Flow Integrity Checks

Make sure function B was called from function A and
nowhere else

• Make sure function B was the one that was supposed to be
called

• Call to exportPrivateKey() or shutdownReactor() should not be
accidental

Make sure control flows through function B in the expected
manner

• Apart from the obvious error control, also makes ROP a lot
harder

Control-Flow Integrity Checks (ctd)

Use Bernstein hashing to identify functions and code
blocks

• Good hash function for ASCII strings
• (Very) Low probability of collisions

– Good enough, we need something that’s OK, not perfect

Done via the preprocessor

• Really beats up the compiler

15/10/2020

57

Control-Flow Integrity Checks (ctd)

Calling a function with an access token
shutdownReactor(MK_TOKEN("shutdownReactor", \

12), …);

Called function
int shutdownReactor(const ACCESS_TOKEN

accessToken, …)
{
REQUIRES(CHECK_TOKEN("shutdownReactor", 12));
…
}

Control-Flow Integrity Checks (ctd)

Can also be used to enforce control-flow integrity within
functions

Creates two expressions of the control flow

• Implicitly coded into the function
• Explicitly stated at the end of the function

If the final values don’t match then there’s a problem with
the control flow

15/10/2020

58

Control-Flow Integrity Checks (ctd)
if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, \
&clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, \
&serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, \
&signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

Control-Flow Integrity Checks (ctd)

Usage is as follows

CFI_CHECK_TYPE CFI_CHECK_VALUE = CFI_CHECK_INIT;

• Sets initial value to the file and/or function name

code;
CFI_CHECK_UPDATE(sequencePoint1Name);
code;
CFI_CHECK_UPDATE(sequencePoint2Name);
code;
CFI_CHECK_UPDATE(sequencePoint3Name);

• Updates the value as each sequence point is passed

15/10/2020

59

Control-Flow Integrity Checks (ctd)
ENSURES(\

CFI_CHECK_SEQUENCE_3(sequencePoint1Name,
sequencePoint2Name,
sequencePoint3Name));

• Recomputes the value and checks that it matches the running
total

– Various tricks to ensure that the compiler still evaluates
each value

• For portability can’t use varargs macros, so the summing-up at
the end gets a bit ugly

Control-Flow Integrity Checks (ctd)

Apple case would be:
CFI_CHECK_TYPE CFI_CHECK_VALUE = CFI_CHECK_INIT;

if ((err = SSLFreeBuffer(&hashCtx)) != 0)
goto fail;

CFI_CHECK_UPDATE("SSLFreeBuffer");
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;
CFI_CHECK_UPDATE("ReadyHash");
if ((err = SSLHashSHA1.update(&hashCtx, \

&clientRandom)) != 0)
goto fail;

CFI_CHECK_UPDATE("SSLHashSHA1.update 1");

(continues…)

15/10/2020

60

Control-Flow Integrity Checks (ctd)

(continued…)
if ((err = SSLHashSHA1.update(&hashCtx, \

&serverRandom)) != 0)
goto fail;

CFI_CHECK_UPDATE("SSLHashSHA1.update 2");
if ((err = SSLHashSHA1.update(&hashCtx, \

&signedParams)) != 0)
goto fail;
goto fail;

CFI_CHECK_UPDATE("SSLHashSHA1.update 3");
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;
CFI_CHECK_UPDATE("SSLHashSHA1.final");

(continues…)

Control-Flow Integrity Checks (ctd)

(continued…)

ENSURES(\
CFI_CHECK_SEQUENCE_6("SSLFreeBuffer",

"ReadyHash",
"SSLHashSHA1.update 1",
"SSLHashSHA1.update 2",
"SSLHashSHA1.update 3",
"SSLHashSHA1.final"));

Postcondition wouldn’t be met since the sequence points
“SSLHashSHA1.update 3” and “SSLHashSHA1.final”
were skipped

This is a somewhat extreme case

• Typically one sequence point per basic block, not per line of
code

15/10/2020

61

Conclusion

Real-world systems experience faults

• Sometimes attackers can help these faults along

Those faults impact not just availability but also security

• Many systems have just a single bit separating “safe” from
“unsafe”

Can mitigate the effects via 1oo1D system design

• And then need to fight the compiler to get it working as
intended

