
Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Peter Gutmann
University of Auckland

PKI:
Lemon Markets and Lemonade

Session ID: STAR-304
Session Classification: Intermediate

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Agenda

2

Lemon Markets/PKI Markets

What’s the Problem?

Consequences

Solutions

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions3

Lemon Markets / PKI Markets

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Lemon Markets

 Lemon Market: One in which buyers can’t distinguish
between good-quality and poor-quality goods
 Won its author George Akerlof the joint Nobel Prize in

Economics

 An analogy used to analyze the problem of information
asymmetry
 One side knows more about the product than the other

 Tend to collapse unless a correcting force is applied

4

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Lemon Markets

 Buyers can’t distinguish between good-quality and
poor-quality used cars (“lemons”), but sellers can

 Sellers of good-quality used cars can’t get a fair price
for them
 Better-quality used cars are withdrawn from the market
 Buyers revise their expectations downwards

 Sellers of medium-quality used cars can’t get a fair
price for them
 Medium-quality used cars are withdrawn …

 Eventually only lemons are left
 Correcting force: third-party vehicle checks, after-sales

warranties, …

5

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Lemon Markets / PKI Markets

 What happens when neither side has accurate
information about the quality of the product?
 This leads to a market for silver bullets
 Insert joke about “a used car salesman knows when he’s lying”

 In a lemon market, a failure is obvious
 If the car you bought breaks down, it’s a lemon

 In a silver-bullet market, failures are silent
 The security is ineffective, but no-one ever notices

 Any security technology whose effectiveness can't be empirically
determined is indistinguishable from blind luck — Geer’s Law

 The security is silently bypassed by attackers, and again no-one
notices

6

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions7

What’s the Problem?

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem?

 With PKI software, users do have a means of evaluating
the product
 The more capable the software is of accepting any certificate,

the “better” it appears to be

 Software that correctly rejects invalid and broken
certificates gets dropped in favour of software that
blindly accepts anything thrown at it
 With the amazing invalid certificate, the complaint was that an

application was actually rejecting it!

 Acceptance of invalid certificates is a silent failure
 Rejection of invalid certificates is a very obvious failure of

functionality

8

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

 In economic terms users are relying not on metrics but
on signals
 A signal is a proxy for information in the absence of a metric

that encompasses actually useful information
 Branding of badge-engineered products is an example of a

signaling market

 For PKI software, the deciding metric should be the
quality of the implementation, the accuracy with which
it rejects invalid certificates
 (On a more abstract level it’s the effectiveness with which it

secures transactions/messages, but this is hard to quantify)

 In the absence of this information, users rely on
signaling, the ability to accept and process the widest
possible range of certificates

9

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

10

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

11

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

12

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

13

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

14

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

15

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

16

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

-----BEGIN CERTIFICATE-----
MIIQojCCCIoCAQAwDQYJKoZIhvcNAQEEBQAwGDEWMBQGA1UEAxMNS29tcGxleCBM
YWJzLjAeFw01MTAxMDEwMDAwMDBaFw01MDEyMzEyMzU5NTlaMBgxFjAUBgNVBAMT
DUtvbXBsZXggTGFicy4wggggMA0GCSqGSIb3DQEBAQUAA4IIDQAwgggIAoIIAQCA
A+++
+//+
+//+
+///++++HELLO+THERE++++//+
+//+
+///And/welcome/to/the/base64/coded/x509/pem/certificate/of////+
+//+
+///KOMPLEX/MEDIA/LABS///+
+///www/dot/komplex/dot/org////////////////////////////////////+
+//+
+///created/by/Markku+Juhani/Saarinen//////////////////////////+
+///22/June/2000///dw3z/at/komplex/dot/org/////////////////////+
+//+
+///You/are/currently/reading/the/public/RSA/modulus///////////+
+///of/our/root/certification/authority/certificate////////////+
+//+
+///Which/happens/to/be/16386/bits/long////////////////////////+
+//+
+///And/fully/working/and/shit/////////////////////////////////+
+//+
+///And/totally/insecure///////////////////////////////////////+
+//+

17

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

18

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

 This certificate…
 Looks a bit suspicious
 Dates from the 1950s
 Has a negative validity period
 Is unsigned (!!)

 Apart from trust-related bookkeeping issues,
neither Windows nor Firefox see a problem with
this

19

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

20

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

 This certificate has…
 An invalid issuer name
 An invalid subject name
 An invalid start date
 An invalid end date
 An invalid public key
 An invalid signature

 It’s actually hard to find anything in this
certificate that’s valid
 Well there’s the serial number…

 It’s OK though, Windows and OpenSSL accept it

21

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

22

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

23

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

24

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

25

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

26

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

 Admittedly some of the problems illustrated
are more due to-lax-to-nonexistent CA checking
 Getting screenshots of bugs in software is difficult

 Still, we have a (serious) problem
 There is no economic term for such a situation
 This is something that can’t occur in conventional

economics, since it leads to market failure

 Since there isn’t a term defined for this, I
propose “PKI Market” to match the existing
concept of a “Lemon Market”

27

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions28

Consequences

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Consequences

 A PKI market produces a toxic codependency of broken
certificates and broken code
 Certificates can be broken because the code doesn’t reject

them
 As a result, code can’t reject broken certificates because there

are too many of them out there, and users would switch to
code that doesn’t reject them

 Why is this stuff so hard to get right?
 ACLs/Firewall rules: Allow/disallow based on a pattern-match
 Certificates: Vast amounts of custom business logic

29

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Consequences (ctd)

 Disabling validity checks in order to make PKI “work” is
fairly widespread
 Two widely-used security toolkits allow user-defined

verification callbacks to supplement or replace standard checks
 Many applications implement this as ‘return 1’
 Practice is institutionalised in manuals and user guides
 Financial transaction processor “by way of some awful

documentation and sample code” tells vendors how to make an
SSL connection insecurely

 stunnel does this by default
 German national ID card software didn’t bother performing any

checking, so any certificate was regarded as valid
 Many, many more examples of PKI apps doing similar things

30

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Discussion Overview

 Problems
 BasicConstraints/KeyUsage
 Key Identifiers
 DNs
 CRLs
 PKI Services

 Solutions

31

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Basic Constraints

 basicConstraints.cA flag
 The single most basic value in a certificate
 Boolean flag, “is a CA” / “is not a CA”

 Many major platforms simply ignored this until 2002
when bad publicity involving a fake Amazon site
“certified” by Verisign forced a fix
 For the first ~10 years in which some of these technology

platforms were deployed, they couldn’t get a basic boolean
flag right

32

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage

 Conformance is more or less arbitrary
 One often-seen practice is to ignore the flag and use the first

certificate you find for any purpose you feel like

 Windows happily uses encryption-only
(AT_KEYEXCHANGE) keys for signing…
 … and signing-only keys for encryption:
 “the certificates [has the digitalSignature flag set] so the

public key can only be used to verify a signature, but in the
logon procedure the key is also used to [decrypt]. This is NOT
allowed because the [keyEncipherment flag is not set]”

 This was particularly distressing in this case because it
voided guarantees provided under European digital
signature laws

33

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage (ctd)

 European PKI vendor ran an interop server for other PKI
vendors to test against
 A who’s-who of vendors successfully did
 After two years someone pointed out that the keyUsage in the

server’s certificate didn’t actually allow this

 Global software vendor ran an interop site for its
flagship server product
 Server authentication key was marked as unusable for server

authentication
 After several years’ operation, no-one had noticed

34

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage (ctd)

 Microsoft NDES SCEP server used to provision Apple
iPhones
 iPhone happily encrypts to a signature-only certificate, ignoring

the keyUsage constraint
 Works OK though because the Microsoft server at the other end

ignores it as well

 European CA marked its signature key as not being valid
for signatures
 CA marked a certificate used to encrypt data for a national tax

authority as usable only for digital signatures
 Another CA reversed the order of the flags in keyUsage due to

confusion over endianness, effectively setting random flags

35

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage (ctd)

 keyUsage flags seem to be set arbitrarily by some
public CAs
 Specify keyUsage.keyEncipherment or keyUsage.keyAgreement

when the algorithm in the cert isn’t capable of doing this

 One CA set DH keyUsage.keyAgreement (for an RSA
key)
 Set keyUsage.encipherOnly
 Just to be fair, set keyUsage.decipherOnly as well

36

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage (ctd)

 European PKI project approached this from another
angle
 Marked encryption-only certificates with “ENC” in the DN and

signature-only certificates with “SIG”
 Tested the certificates with PKI software
 “ENC” certificates worked fine for encryption, “SIG”

certificates worked fine for signatures
 Product was shipped and widely used
 Quite some time later, a technically-minded user noticed that

the software would select and use “ENC” and “SIG” keys more
or less at random
 “ENC” keys had supposedly been kept in escrow
 Destroyed the validity of the signing process since keys held by a

third party had been used for signing

37

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Identifiers

 Certificates contain two binary identifier fields,
subjectKeyIdentifier (SKID) and authorityKeyIdentifier
(AKID)
 These have very different encodings

 Some CAs memcpy() the SKID to the AKID, creating an
invalid encoding
 When tested against a wide range of PKI software, nothing

noticed this
 Not only were they not paying any attention to the

keyIdentifier values, they weren’t even trying to decode the
extension that held it

38

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Identifiers (ctd)

 Variations on this abound…
 European CA encoded the AKID as an empty value

 Implying the certificate was issued by nobody?

 CAs create circular references
 AKID points back to itself
 Presumably an implementation would need to go into an

endless loop to process this

 CAs use duplicate SKIDs
 In one case probably due to it being derived from a time-based

value, because batches of certificates issued in close proximity
had identical SKIDs

 Adobe’s cert handling for signed PDFs does pretty much
the exact reverse of what it’s supposed to with the KIDs

39

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Identifiers (ctd)

 Copy-and-paste PKI
 Find something that works elsewhere and copy and paste it into

your PKI
 A good idea for regex’s, SQL expressions, Perl scripts, …
 Less good for PKI

 AKIDs point to random unrelated CAs
 SKIDs for all certificates are identical
 authorityInfoAccess points to unrelated CAs

 Blacklist-based operation in CRLs and OCSP means that such
certificates can never be revoked

 The use of blacklist- rather than whitelist-based checking also
means that the failure isn’t noticed during normal use

40

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

DNs

 If two implementations disagree over what goes where
in a DN, they will/won’t check different portions of the
DN and related fields

 How to abuse DNs/altNames as hiding places
 Request a certificate with different identifiers placed in

locations regarded as being equivalent
 See earlier screenshots of RFC 1918 certificates

 CA verifies the identifier in one location
 PKI software uses a supposedly-equivalent but unverified

identifier from another location

41

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

DNs

 Examples include Moxie Marlinspike’s ‘\0’ DN strings
 Request a certificate for

‘www.microsoft.com\0mydomain.com’
 CA verifies ‘mydomain.com’, PKI software uses

‘www.microsoft.com\0’
 At Defcon 2009, a selection of geeks bought certificates for

Adobe, Apple, Microsoft, Verisign, Yahoo, and others, until
they ran out of money

 As with many other PKI failures, this wasn’t fixed until
it got media attention due to the creation of a bogus
Paypal certificate

42

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

DNs (ctd)

 LDAP format represents DNs in reverse order to how
they’re present a certificates and cert-using protocols
 Some Java implementations do this too
 As a result, DNs in certificates can be encoded forwards or

backwards

 .NET GetIssuerName and GetSerialNumber return the
information in reverse order to the MMC certificate
snap-in
 Different versions of software, e.g. IIS 4 and IIS 5, processed

the bytes in opposite order

 This interferes destructively with X.509’s blacklist-
based checking

43

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

DNs (ctd)

 Not only can DNs end up encoded forwards or
backwards, they can even be forwards and backwards
in the same certificate
 One European national CA encodes DNs forwards and backwards

apparently at random
 Others are more consistent and get the DN backwards in all

certificates
 Others get the issuer name, via memcpy(), forwards, but the

subject name backwards
 Some certificates contain DN components in more or less

arbitrary order
 This includes duplicate AVA instances in different parts of the DN

44

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Make it a Feature!

 Some European CAs use this to their advantage when
the CA is also the PKI vendor
 CA will only process certificates produced by its own buggy

software
 Software will only accept buggy certificates issued by the CA

 Use of a particular European CA was mandated by
government decree
 Would only issue certificates to users using the CA’s broken PKI

toolkit
 The term for this in the country in question is apparently

“appointing a goat as gardener”

45

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Make it a Feature! (ctd)

 Another CA quietly dropped requests created by
anything other than its own software
 Use of the CA’s services was government-mandated
 Ensured that only products sold by the CA’s consulting arm

could be used

 Another CA added incompatible modifications to a
standard PKI protocol “for security reasons”
 The financial security of the CA, that is
 Had to buy the CA’s software to get your request processed

46

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

PKI Services

 No better than the basic certificate handling…
 TSA had a soft-failure that caused it to reject any

request for a timestamp
 No-one using the service, which delivers tens of thousands of

timestamps a month, noticed that their data wasn’t being
timestamped any more

 TSA client submitted not a hash of the document to be
timestamped but the entire document
 Server took the first 20 bytes and timestamped that
 Used with European high-assurance (qualified) signatures

47

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Summary

 After twenty years, we’ve almost got to the point
where we can rely on the most basic extension in a
certificate, basicConstraints.cA
 Even the next most basic one, keyUsage, is handled more or

less arbitrarily
 Beyond that, it’s a crapshoot

 “There’s not a single X.509v3 extension defined in PKIX
a PKI designer can really rely on. For each and every
extension somebody planning/deploying a PKI has to
check each and every implementation if and how this
implementation interprets this extension. This is
WEIRD!”

― PKI developer Michael Ströder

48

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Summary (ctd)

 There is a complete absence of any kind of quality
control in PKI software
 One large PKI vendor for many years had no documentation

whatsoever for their code’s functionality
 Developers were handed the code and told that the software’s

functionality was defined to be whatever you got when you fed
it a certificate

 One new developer’s first task was to reverse-engineering what
the code did based on observed behaviour with various
certificates

 You can’t build something so broken that it can’t claim
to be X.509…
 … and vendors frequently do

49

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions50

Solutions

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Solutions

 Good news: We have near-infinite scope for
improvement!

 There are four ways to deal with this problem…
 1. The Ostrich algorithm
 2. PKI overlay networks
 3. Field-qualify your PKI applications
 4. Work defensively

51

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

1. The Ostrich Algorithm

 Everything’s working fine, nothing to see here, move
along

 Popular with PKI created for its own sake
 Target for the consultants was “You asked for PKI, here is PKI,

you didn’t specify that it had to work”

 This isn’t as bad as it sounds: Attackers seem to be
using the Ostrich Algorithm as well
 Baffled by its complexity?
 Easier targets elsewhere?
 Not protecting anything worth attacking?

 (Probably the last one on the list)

52

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

2. PKI Overlay Networks

 Layer your own custom security controls on top of the
general-purpose PKI
 Requires at least some control over the PKI software

 Leverages existing investment in PKI software while
providing add-on functionality that provides the
services/functionality that you need
 A bit like an overlay network built on top of the Internet

53

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

2. PKI Overlay Networks (ctd)

 Done by Microsoft for its code-signing certificates
 Code-signing certificates need a special code-signing

extendedKeyUsage
 Must be present in CA root certificates to prevent a

downstream CA from manufacturing their own code-signing
certificates

 Signatures can be verified after the certificate expires via a
countersignature mechanism

 Assorted other special-case handling, e.g. for boot code that
can’t rely on a CRL being available

 Verification code is created and controlled by Microsoft to do
what it wants

 Disadvantage: Not everyone is Microsoft

54

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

3. Field-qualify Your PKI Apps

 Try to field-qualify every version of every application
on every platform that you plan to use
 This is impossible in general

 It may be effectively impossible even for specific
cases…
 One survey of SSL/TLS server certificates found 219 different

combinations of keyUsage and basicConstraints.cA flags,
including many that were totally illogical

55

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

3. Field-qualify Your PKI Apps

 Tests are extremely tricky and tedious
 Need to verify that things that should happen, do happen
 Need to verify that things that shouldn’t happen, don’t happen
 This comes close to trying to prove a negative
 Need to re-run the tests every time an application update

occurs

 CRLs and OCSP make this especially tricky
 A successful verification against a blacklist is indistinguishable

from a failed check

56

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

3a. Field-qualify Your PKI Apps (ctd)

 Variant: Require the use of one specific piece of
software everywhere

 Possible in closed environments
 Inside corporates
 Closed B2B

 Still need to qualify the PKI software, but now the
scope of the operation is limited

57

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

3b. Field-qualify Your PKI Apps (ctd)

 Variant: Only use the restricted subset of PKI
functionality that you can verify works
 Don’t discard it all, since it least some of it works some of the

time

 Possible in controlled environments
 All parties agree in advance on which subset to use

 As before, still need to qualify the PKI software, but
again the scope of the operation is limited

58

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

4. Work Defensively

 Assume that nothing will quite work as expected and
build your system appropriately
 When building a system from unreliable components, the less

of the unreliable components that you have to depend on, the
smaller the chances of an unpleasant surprise later on

 There’s nothing to say that you have to use certificates
as anything more than a complex bit-bagging
mechanism

59

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

4. Work Defensively (ctd)

 Example: Use standard presence checks to replace
unreliable PKI mechanisms
 Certificate present in a database  access allowed /

certificate is OK
 To revoke access, remove the certificate from the database

 Avoids the need for CAs, CRLs, OCSP, bridge PKI,
certificate path building, chain verification, …
 All the dysfunctional portions of PKI are eliminated

 Use of Active Directory to manage certificates for
account login is an example of this

60

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

4. Work Defensively (ctd)

 Variant: Drop PKI entirely
 Why exactly are you using it?

 “It seems to be the expected thing to do” isn’t a reason

 Seriously, why do you actually need a PKI for what
you’re doing?
 Name five alternative options that solve the same problem, and

provide reasons why PKI is the better choice

61

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

4. Work Defensively (ctd)

 Example: Network authentication
 TLS-SRP and TSL-PSK solves this problem far better than PKI

ever can
 True failsafe mutual authentication
 PKI can only provide unilateral authentication in both

directions …
 … and then you have to deploy, manage, and run a PKI to get

there

 Example: Secure email between corporate offices
 STARTTLS solves this problem far better than S/MIME can
 S/MIME: … and then you have to deploy a PKI …

 Do you really want to hold your business hostage to PKI?

62

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Apply Slide

 Assume that a certificate may be little more than a
complex bit-bagging scheme

 Treat certificates as a simple signed access token

 No need for external CAs, PKI heirarchies, OCSP
servers, or other complex and expensive PKI folderol

 Presence in a database  certificate is OK

 Access control is handled by removing the certificate
from the database, not hoping that a CRL or other
check works

 Do you really need a PKI for what you’re trying to do?

63

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Further Reading

 Detailed writeup, background material, and references
to sources can be found in

 http://www.cs.auckland.ac.nz/
~pgut001/pubs/book.pdf

 Chapters “Problems” and “PKI”

64

