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Lemon Markets / PKI Markets
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Lemon Markets

 Lemon Market: One in which buyers can’t distinguish 
between good-quality and poor-quality goods
 Won its author George Akerlof the joint Nobel Prize in 

Economics

 An analogy used to analyze the problem of information 
asymmetry
 One side knows more about the product than the other

 Tend to collapse unless a correcting force is applied
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Lemon Markets

 Buyers can’t distinguish between good-quality and 
poor-quality used cars (“lemons”), but sellers can

 Sellers of good-quality used cars can’t get a fair price 
for them
 Better-quality used cars are withdrawn from the market
 Buyers revise their expectations downwards

 Sellers of medium-quality used cars can’t get a fair 
price for them
 Medium-quality used cars are withdrawn …

 Eventually only lemons are left
 Correcting force: third-party vehicle checks, after-sales 

warranties, …

5

Insert presenter logo 
here on slide master. 
See hidden slide 2 for 
directions

Lemon Markets / PKI Markets

 What happens when neither side has accurate 
information about the quality of the product?
 This leads to a market for silver bullets
 Insert joke about “a used car salesman knows when he’s lying”

 In a lemon market, a failure is obvious
 If the car you bought breaks down, it’s a lemon

 In a silver-bullet market, failures are silent
 The security is ineffective, but no-one ever notices

 Any security technology whose effectiveness can't be empirically
determined is indistinguishable from blind luck — Geer’s Law

 The security is silently bypassed by attackers, and again no-one 
notices
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What’s the Problem?

Insert presenter logo 
here on slide master. 
See hidden slide 2 for 
directions

What’s the Problem?

 With PKI software, users do have a means of evaluating 
the product
 The more capable the software is of accepting any certificate, 

the “better” it appears to be

 Software that correctly rejects invalid and broken 
certificates gets dropped in favour of software that 
blindly accepts anything thrown at it
 With the amazing invalid certificate, the complaint was that an 

application was actually rejecting it!

 Acceptance of invalid certificates is a silent failure
 Rejection of invalid certificates is a very obvious failure of 

functionality
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What’s the Problem? (ctd)

 In economic terms users are relying not on metrics but 
on signals
 A signal is a proxy for information in the absence of a metric 

that encompasses actually useful information
 Branding of badge-engineered products is an example of a 

signaling market

 For PKI software, the deciding metric should be the 
quality of the implementation, the accuracy with which 
it rejects invalid certificates
 (On a more abstract level it’s the effectiveness with which it 

secures transactions/messages, but this is hard to quantify)

 In the absence of this information, users rely on 
signaling, the ability to accept and process the widest 
possible range of certificates
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What’s the Problem? (ctd)
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What’s the Problem? (ctd)
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What’s the Problem? (ctd)

-----BEGIN CERTIFICATE-----
MIIQojCCCIoCAQAwDQYJKoZIhvcNAQEEBQAwGDEWMBQGA1UEAxMNS29tcGxleCBM
YWJzLjAeFw01MTAxMDEwMDAwMDBaFw01MDEyMzEyMzU5NTlaMBgxFjAUBgNVBAMT
DUtvbXBsZXggTGFicy4wggggMA0GCSqGSIb3DQEBAQUAA4IIDQAwgggIAoIIAQCA
A+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+//////////////////////////////////////////////////////////////+
+//////////////////////////////////////////////////////////////+
+///++++HELLO+THERE++++////////////////////////////////////////+
+//////////////////////////////////////////////////////////////+
+///And/welcome/to/the/base64/coded/x509/pem/certificate/of////+
+//////////////////////////////////////////////////////////////+
+///KOMPLEX/MEDIA/LABS/////////////////////////////////////////+
+///www/dot/komplex/dot/org////////////////////////////////////+
+//////////////////////////////////////////////////////////////+
+///created/by/Markku+Juhani/Saarinen//////////////////////////+
+///22/June/2000///dw3z/at/komplex/dot/org/////////////////////+
+//////////////////////////////////////////////////////////////+
+///You/are/currently/reading/the/public/RSA/modulus///////////+
+///of/our/root/certification/authority/certificate////////////+
+//////////////////////////////////////////////////////////////+
+///Which/happens/to/be/16386/bits/long////////////////////////+
+//////////////////////////////////////////////////////////////+
+///And/fully/working/and/shit/////////////////////////////////+
+//////////////////////////////////////////////////////////////+
+///And/totally/insecure///////////////////////////////////////+
+//////////////////////////////////////////////////////////////+
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What’s the Problem? (ctd)

 This certificate…
 Looks a bit suspicious
 Dates from the 1950s
 Has a negative validity period
 Is unsigned (!!)

 Apart from trust-related bookkeeping issues, 
neither Windows nor Firefox see a problem with 
this

19

Insert presenter logo 
here on slide master. 
See hidden slide 2 for 
directions

What’s the Problem? (ctd)

20



Insert presenter logo 
here on slide master. 
See hidden slide 2 for 
directions

What’s the Problem? (ctd)

 This certificate has…
 An invalid issuer name
 An invalid subject name
 An invalid start date
 An invalid end date
 An invalid public key
 An invalid signature

 It’s actually hard to find anything in this 
certificate that’s valid
 Well there’s the serial number…

 It’s OK though, Windows and OpenSSL accept it
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What’s the Problem? (ctd)

 Admittedly some of the problems illustrated 
are more due to-lax-to-nonexistent CA checking
 Getting screenshots of bugs in software is difficult

 Still, we have a (serious) problem
 There is no economic term for such a situation
 This is something that can’t occur in conventional 

economics, since it leads to market failure

 Since there isn’t a term defined for this, I 
propose “PKI Market” to match the existing 
concept of a “Lemon Market”
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Consequences

 A PKI market produces a toxic codependency of broken 
certificates and broken code
 Certificates can be broken because the code doesn’t reject 

them
 As a result, code can’t reject broken certificates because there 

are too many of them out there, and users would switch to 
code that doesn’t reject them

 Why is this stuff so hard to get right?
 ACLs/Firewall rules: Allow/disallow based on a pattern-match
 Certificates: Vast amounts of custom business logic
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Consequences (ctd)

 Disabling validity checks in order to make PKI “work” is 
fairly widespread
 Two widely-used security toolkits allow user-defined 

verification callbacks to supplement or replace standard checks
 Many applications implement this as ‘return 1’
 Practice is institutionalised in manuals and user guides
 Financial transaction processor “by way of some awful 

documentation and sample code” tells vendors how to make an 
SSL connection insecurely

 stunnel does this by default
 German national ID card software didn’t bother performing any 

checking, so any certificate was regarded as valid
 Many, many more examples of PKI apps doing similar things
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Discussion Overview 

 Problems
 BasicConstraints/KeyUsage
 Key Identifiers
 DNs
 CRLs
 PKI Services

 Solutions
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Basic Constraints

 basicConstraints.cA flag
 The single most basic value in a certificate
 Boolean flag, “is a CA” / “is not a CA”

 Many major platforms simply ignored this until 2002 
when bad publicity involving a fake Amazon site 
“certified” by Verisign forced a fix
 For the first ~10 years in which some of these technology 

platforms were deployed, they couldn’t get a basic boolean
flag right

32



Insert presenter logo 
here on slide master. 
See hidden slide 2 for 
directions

Key Usage

 Conformance is more or less arbitrary
 One often-seen practice is to ignore the flag and use the first 

certificate you find for any purpose you feel like

 Windows happily uses encryption-only 
(AT_KEYEXCHANGE) keys for signing…
 … and signing-only keys for encryption:
 “the certificates [has the digitalSignature flag set] so the 

public key can only be used to verify a signature, but in the 
logon procedure the key is also used to [decrypt]. This is NOT 
allowed because the [keyEncipherment flag is not set]”

 This was particularly distressing in this case because it 
voided guarantees provided under European digital 
signature laws
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Key Usage (ctd)

 European PKI vendor ran an interop server for other PKI 
vendors to test against
 A who’s-who of vendors successfully did
 After two years someone pointed out that the keyUsage in the 

server’s certificate didn’t actually allow this

 Global software vendor ran an interop site for its 
flagship server product
 Server authentication key was marked as unusable for server 

authentication
 After several years’ operation, no-one had noticed
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Key Usage (ctd)

 Microsoft NDES SCEP server used to provision Apple 
iPhones
 iPhone happily encrypts to a signature-only certificate, ignoring 

the keyUsage constraint
 Works OK though because the Microsoft server at the other end 

ignores it as well

 European CA marked its signature key as not being valid 
for signatures
 CA marked a certificate used to encrypt data for a national tax 

authority as usable only for digital signatures
 Another CA reversed the order of the flags in keyUsage due to 

confusion over endianness, effectively setting random flags
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Key Usage (ctd)

 keyUsage flags seem to be set arbitrarily by some 
public CAs
 Specify keyUsage.keyEncipherment or keyUsage.keyAgreement

when the algorithm in the cert isn’t capable of doing this

 One CA set DH keyUsage.keyAgreement (for an RSA 
key)
 Set keyUsage.encipherOnly
 Just to be fair, set keyUsage.decipherOnly as well
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Key Usage (ctd)

 European PKI project approached this from another 
angle
 Marked encryption-only certificates with “ENC” in the DN and 

signature-only certificates with “SIG”
 Tested the certificates with PKI software
 “ENC” certificates worked fine for encryption, “SIG”

certificates worked fine for signatures
 Product was shipped and widely used
 Quite some time later, a technically-minded user noticed that 

the software would select and use “ENC” and “SIG” keys more 
or less at random
 “ENC” keys had supposedly been kept in escrow
 Destroyed the validity of the signing process since keys held by a 

third party had been used for signing
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Key Identifiers

 Certificates contain two binary identifier fields, 
subjectKeyIdentifier (SKID) and authorityKeyIdentifier
(AKID)
 These have very different encodings

 Some CAs memcpy() the SKID to the AKID, creating an 
invalid encoding
 When tested against a wide range of PKI software, nothing 

noticed this
 Not only were they not paying any attention to the 

keyIdentifier values, they weren’t even trying to decode the 
extension that held it
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Key Identifiers (ctd)

 Variations on this abound…
 European CA encoded the AKID as an empty value

 Implying the certificate was issued by nobody?

 CAs create circular references
 AKID points back to itself
 Presumably an implementation would need to go into an 

endless loop to process this

 CAs use duplicate SKIDs
 In one case probably due to it being derived from a time-based 

value, because batches of certificates issued in close proximity
had identical SKIDs

 Adobe’s cert handling for signed PDFs does pretty much 
the exact reverse of what it’s supposed to with the KIDs
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Key Identifiers (ctd)

 Copy-and-paste PKI
 Find something that works elsewhere and copy and paste it into 

your PKI
 A good idea for regex’s, SQL expressions, Perl scripts, …
 Less good for PKI

 AKIDs point to random unrelated CAs
 SKIDs for all certificates are identical
 authorityInfoAccess points to unrelated CAs

 Blacklist-based operation in CRLs and OCSP means that such 
certificates can never be revoked

 The use of blacklist- rather than whitelist-based checking also 
means that the failure isn’t noticed during normal use
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DNs

 If two implementations disagree over what goes where 
in a DN, they will/won’t check different portions of the 
DN and related fields

 How to abuse DNs/altNames as hiding places
 Request a certificate with different identifiers placed in 

locations regarded as being equivalent
 See earlier screenshots of RFC 1918 certificates

 CA verifies the identifier in one location
 PKI software uses a supposedly-equivalent but unverified 

identifier from another location
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DNs

 Examples include Moxie Marlinspike’s ‘\0’ DN strings
 Request a certificate for 

‘www.microsoft.com\0mydomain.com’
 CA verifies ‘mydomain.com’, PKI software uses 

‘www.microsoft.com\0’
 At Defcon 2009, a selection of geeks bought certificates for 

Adobe, Apple, Microsoft, Verisign, Yahoo, and others, until 
they ran out of money

 As with many other PKI failures, this wasn’t fixed until 
it got media attention due to the creation of a bogus 
Paypal certificate

42



Insert presenter logo 
here on slide master. 
See hidden slide 2 for 
directions

DNs (ctd)

 LDAP format represents DNs in reverse order to how 
they’re present a certificates and cert-using protocols
 Some Java implementations do this too
 As a result, DNs in certificates can be encoded forwards or 

backwards

 .NET GetIssuerName and GetSerialNumber return the 
information in reverse order to the MMC certificate 
snap-in
 Different versions of software, e.g. IIS 4 and IIS 5, processed 

the bytes in opposite order

 This interferes destructively with X.509’s blacklist-
based checking
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DNs (ctd)

 Not only can DNs end up encoded forwards or 
backwards, they can even be forwards and backwards 
in the same certificate
 One European national CA encodes DNs forwards and backwards 

apparently at random
 Others are more consistent and get the DN backwards in all 

certificates
 Others get the issuer name, via memcpy(), forwards, but the 

subject name backwards
 Some certificates contain DN components in more or less 

arbitrary order
 This includes duplicate AVA instances in different parts of the DN
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Make it a Feature!

 Some European CAs use this to their advantage when 
the CA is also the PKI vendor
 CA will only process certificates produced by its own buggy 

software
 Software will only accept buggy certificates issued by the CA

 Use of a particular European CA was mandated by 
government decree
 Would only issue certificates to users using the CA’s broken PKI 

toolkit
 The term for this in the country in question is apparently 

“appointing a goat as gardener”
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Make it a Feature! (ctd)

 Another CA quietly dropped requests created by 
anything other than its own software
 Use of the CA’s services was government-mandated
 Ensured that only products sold by the CA’s consulting arm 

could be used

 Another CA added incompatible modifications to a 
standard PKI protocol “for security reasons”
 The financial security of the CA, that is
 Had to buy the CA’s software to get your request processed
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PKI Services

 No better than the basic certificate handling…
 TSA had a soft-failure that caused it to reject any 

request for a timestamp
 No-one using the service, which delivers tens of thousands of 

timestamps a month, noticed that their data wasn’t being 
timestamped any more

 TSA client submitted not a hash of the document to be 
timestamped but the entire document
 Server took the first 20 bytes and timestamped that
 Used with European high-assurance (qualified) signatures
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Summary

 After twenty years, we’ve almost got to the point 
where we can rely on the most basic extension in a 
certificate, basicConstraints.cA
 Even the next most basic one, keyUsage, is handled more or 

less arbitrarily
 Beyond that, it’s a crapshoot

 “There’s not a single X.509v3 extension defined in PKIX 
a PKI designer can really rely on.  For each and every 
extension somebody planning/deploying a PKI has to 
check each and every implementation if and how this 
implementation interprets this extension.  This is 
WEIRD!”

― PKI developer Michael Ströder 
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Summary (ctd)

 There is a complete absence of any kind of quality 
control in PKI software
 One large PKI vendor for many years had no documentation 

whatsoever for their code’s functionality
 Developers were handed the code and told that the software’s 

functionality was defined to be whatever you got when you fed 
it a certificate

 One new developer’s first task was to reverse-engineering what 
the code did based on observed behaviour with various 
certificates

 You can’t build something so broken that it can’t claim 
to be X.509…
 … and vendors frequently do
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Solutions

 Good news: We have near-infinite scope for 
improvement!

 There are four ways to deal with this problem…
 1. The Ostrich algorithm
 2. PKI overlay networks
 3. Field-qualify your PKI applications
 4. Work defensively
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1. The Ostrich Algorithm

 Everything’s working fine, nothing to see here, move 
along

 Popular with PKI created for its own sake
 Target for the consultants was “You asked for PKI, here is PKI, 

you didn’t specify that it had to work”

 This isn’t as bad as it sounds: Attackers seem to be 
using the Ostrich Algorithm as well
 Baffled by its complexity?
 Easier targets elsewhere?
 Not protecting anything worth attacking?

 (Probably the last one on the list)

52



Insert presenter logo 
here on slide master. 
See hidden slide 2 for 
directions

2. PKI Overlay Networks

 Layer your own custom security controls on top of the 
general-purpose PKI
 Requires at least some control over the PKI software

 Leverages existing investment in PKI software while 
providing add-on functionality that provides the 
services/functionality that you need
 A bit like an overlay network built on top of the Internet
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2. PKI Overlay Networks (ctd)

 Done by Microsoft for its code-signing certificates
 Code-signing certificates need a special code-signing 

extendedKeyUsage
 Must be present in CA root certificates to prevent a 

downstream CA from manufacturing their own code-signing 
certificates

 Signatures can be verified after the certificate expires via a 
countersignature mechanism

 Assorted other special-case handling, e.g. for boot code that 
can’t rely on a CRL being available

 Verification code is created and controlled by Microsoft to do 
what it wants

 Disadvantage: Not everyone is Microsoft
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3. Field-qualify Your PKI Apps

 Try to field-qualify every version of every application 
on every platform that you plan to use
 This is impossible in general

 It may be effectively impossible even for specific 
cases…
 One survey of SSL/TLS server certificates found 219 different 

combinations of keyUsage and basicConstraints.cA flags, 
including many that were totally illogical
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3. Field-qualify Your PKI Apps

 Tests are extremely tricky and tedious
 Need to verify that things that should happen, do happen
 Need to verify that things that shouldn’t happen, don’t happen
 This comes close to trying to prove a negative
 Need to re-run the tests every time an application update 

occurs

 CRLs and OCSP make this especially tricky
 A successful verification against a blacklist is indistinguishable 

from a failed check
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3a. Field-qualify Your PKI Apps (ctd)

 Variant: Require the use of one specific piece of 
software everywhere

 Possible in closed environments
 Inside corporates
 Closed B2B

 Still need to qualify the PKI software, but now the 
scope of the operation is limited
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3b. Field-qualify Your PKI Apps (ctd)

 Variant: Only use the restricted subset of PKI 
functionality that you can verify works
 Don’t discard it all, since it least some of it works some of the 

time

 Possible in controlled environments
 All parties agree in advance on which subset to use

 As before, still need to qualify the PKI software, but 
again the scope of the operation is limited
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4. Work Defensively

 Assume that nothing will quite work as expected and 
build your system appropriately
 When building a system from unreliable components, the less 

of the unreliable components that you have to depend on, the 
smaller the chances of an unpleasant surprise later on

 There’s nothing to say that you have to use certificates 
as anything more than a complex bit-bagging 
mechanism
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4. Work Defensively (ctd)

 Example: Use standard presence checks to replace 
unreliable PKI mechanisms
 Certificate present in a database  access allowed / 

certificate is OK
 To revoke access, remove the certificate from the database

 Avoids the need for CAs, CRLs, OCSP, bridge PKI, 
certificate path building, chain verification, …
 All the dysfunctional portions of PKI are eliminated

 Use of Active Directory to manage certificates for 
account login is an example of this
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4. Work Defensively (ctd)

 Variant: Drop PKI entirely
 Why exactly are you using it?

 “It seems to be the expected thing to do” isn’t a reason

 Seriously, why do you actually need a PKI for what 
you’re doing?
 Name five alternative options that solve the same problem, and 

provide reasons why PKI is the better choice
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4. Work Defensively (ctd)

 Example: Network authentication
 TLS-SRP and TSL-PSK solves this problem far better than PKI 

ever can
 True failsafe mutual authentication
 PKI can only provide unilateral authentication in both 

directions …
 … and then you have to deploy, manage, and run a PKI to get 

there

 Example: Secure email between corporate offices
 STARTTLS solves this problem far better than S/MIME can
 S/MIME: … and then you have to deploy a PKI …

 Do you really want to hold your business hostage to PKI?
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Apply Slide

 Assume that a certificate may be little more than a 
complex bit-bagging scheme

 Treat certificates as a simple signed access token 

 No need for external CAs, PKI heirarchies, OCSP 
servers, or other complex and expensive PKI folderol

 Presence in a database  certificate is OK

 Access control is handled by removing the certificate 
from the database, not hoping that a CRL or other 
check works

 Do you really need a PKI for what you’re trying to do?
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Further Reading

 Detailed writeup, background material, and references 
to sources can be found in 

 http://www.cs.auckland.ac.nz/
~pgut001/pubs/book.pdf

 Chapters “Problems” and “PKI”
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