
Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Peter Gutmann
University of Auckland

PKI:
Lemon Markets and Lemonade

Session ID: STAR-304
Session Classification: Intermediate

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Agenda

2

Lemon Markets/PKI Markets

What’s the Problem?

Consequences

Solutions

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions3

Lemon Markets / PKI Markets

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Lemon Markets

 Lemon Market: One in which buyers can’t distinguish
between good-quality and poor-quality goods
 Won its author George Akerlof the joint Nobel Prize in

Economics

 An analogy used to analyze the problem of information
asymmetry
 One side knows more about the product than the other

 Tend to collapse unless a correcting force is applied

4

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Lemon Markets

 Buyers can’t distinguish between good-quality and
poor-quality used cars (“lemons”), but sellers can

 Sellers of good-quality used cars can’t get a fair price
for them
 Better-quality used cars are withdrawn from the market
 Buyers revise their expectations downwards

 Sellers of medium-quality used cars can’t get a fair
price for them
 Medium-quality used cars are withdrawn …

 Eventually only lemons are left
 Correcting force: third-party vehicle checks, after-sales

warranties, …

5

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Lemon Markets / PKI Markets

 What happens when neither side has accurate
information about the quality of the product?
 This leads to a market for silver bullets
 Insert joke about “a used car salesman knows when he’s lying”

 In a lemon market, a failure is obvious
 If the car you bought breaks down, it’s a lemon

 In a silver-bullet market, failures are silent
 The security is ineffective, but no-one ever notices

 Any security technology whose effectiveness can't be empirically
determined is indistinguishable from blind luck — Geer’s Law

 The security is silently bypassed by attackers, and again no-one
notices

6

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions7

What’s the Problem?

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem?

 With PKI software, users do have a means of evaluating
the product
 The more capable the software is of accepting any certificate,

the “better” it appears to be

 Software that correctly rejects invalid and broken
certificates gets dropped in favour of software that
blindly accepts anything thrown at it
 With the amazing invalid certificate, the complaint was that an

application was actually rejecting it!

 Acceptance of invalid certificates is a silent failure
 Rejection of invalid certificates is a very obvious failure of

functionality

8

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

 In economic terms users are relying not on metrics but
on signals
 A signal is a proxy for information in the absence of a metric

that encompasses actually useful information
 Branding of badge-engineered products is an example of a

signaling market

 For PKI software, the deciding metric should be the
quality of the implementation, the accuracy with which
it rejects invalid certificates
 (On a more abstract level it’s the effectiveness with which it

secures transactions/messages, but this is hard to quantify)

 In the absence of this information, users rely on
signaling, the ability to accept and process the widest
possible range of certificates

9

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

10

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

11

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

12

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

13

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

14

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

15

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

16

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

-----BEGIN CERTIFICATE-----
MIIQojCCCIoCAQAwDQYJKoZIhvcNAQEEBQAwGDEWMBQGA1UEAxMNS29tcGxleCBM
YWJzLjAeFw01MTAxMDEwMDAwMDBaFw01MDEyMzEyMzU5NTlaMBgxFjAUBgNVBAMT
DUtvbXBsZXggTGFicy4wggggMA0GCSqGSIb3DQEBAQUAA4IIDQAwgggIAoIIAQCA
A+++
+//+
+//+
+///++++HELLO+THERE++++//+
+//+
+///And/welcome/to/the/base64/coded/x509/pem/certificate/of////+
+//+
+///KOMPLEX/MEDIA/LABS///+
+///www/dot/komplex/dot/org////////////////////////////////////+
+//+
+///created/by/Markku+Juhani/Saarinen//////////////////////////+
+///22/June/2000///dw3z/at/komplex/dot/org/////////////////////+
+//+
+///You/are/currently/reading/the/public/RSA/modulus///////////+
+///of/our/root/certification/authority/certificate////////////+
+//+
+///Which/happens/to/be/16386/bits/long////////////////////////+
+//+
+///And/fully/working/and/shit/////////////////////////////////+
+//+
+///And/totally/insecure///////////////////////////////////////+
+//+

17

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

18

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

 This certificate…
 Looks a bit suspicious
 Dates from the 1950s
 Has a negative validity period
 Is unsigned (!!)

 Apart from trust-related bookkeeping issues,
neither Windows nor Firefox see a problem with
this

19

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

20

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

 This certificate has…
 An invalid issuer name
 An invalid subject name
 An invalid start date
 An invalid end date
 An invalid public key
 An invalid signature

 It’s actually hard to find anything in this
certificate that’s valid
 Well there’s the serial number…

 It’s OK though, Windows and OpenSSL accept it

21

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

22

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

23

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

24

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

25

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

26

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

What’s the Problem? (ctd)

 Admittedly some of the problems illustrated
are more due to-lax-to-nonexistent CA checking
 Getting screenshots of bugs in software is difficult

 Still, we have a (serious) problem
 There is no economic term for such a situation
 This is something that can’t occur in conventional

economics, since it leads to market failure

 Since there isn’t a term defined for this, I
propose “PKI Market” to match the existing
concept of a “Lemon Market”

27

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions28

Consequences

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Consequences

 A PKI market produces a toxic codependency of broken
certificates and broken code
 Certificates can be broken because the code doesn’t reject

them
 As a result, code can’t reject broken certificates because there

are too many of them out there, and users would switch to
code that doesn’t reject them

 Why is this stuff so hard to get right?
 ACLs/Firewall rules: Allow/disallow based on a pattern-match
 Certificates: Vast amounts of custom business logic

29

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Consequences (ctd)

 Disabling validity checks in order to make PKI “work” is
fairly widespread
 Two widely-used security toolkits allow user-defined

verification callbacks to supplement or replace standard checks
 Many applications implement this as ‘return 1’
 Practice is institutionalised in manuals and user guides
 Financial transaction processor “by way of some awful

documentation and sample code” tells vendors how to make an
SSL connection insecurely

 stunnel does this by default
 German national ID card software didn’t bother performing any

checking, so any certificate was regarded as valid
 Many, many more examples of PKI apps doing similar things

30

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Discussion Overview

 Problems
 BasicConstraints/KeyUsage
 Key Identifiers
 DNs
 CRLs
 PKI Services

 Solutions

31

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Basic Constraints

 basicConstraints.cA flag
 The single most basic value in a certificate
 Boolean flag, “is a CA” / “is not a CA”

 Many major platforms simply ignored this until 2002
when bad publicity involving a fake Amazon site
“certified” by Verisign forced a fix
 For the first ~10 years in which some of these technology

platforms were deployed, they couldn’t get a basic boolean
flag right

32

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage

 Conformance is more or less arbitrary
 One often-seen practice is to ignore the flag and use the first

certificate you find for any purpose you feel like

 Windows happily uses encryption-only
(AT_KEYEXCHANGE) keys for signing…
 … and signing-only keys for encryption:
 “the certificates [has the digitalSignature flag set] so the

public key can only be used to verify a signature, but in the
logon procedure the key is also used to [decrypt]. This is NOT
allowed because the [keyEncipherment flag is not set]”

 This was particularly distressing in this case because it
voided guarantees provided under European digital
signature laws

33

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage (ctd)

 European PKI vendor ran an interop server for other PKI
vendors to test against
 A who’s-who of vendors successfully did
 After two years someone pointed out that the keyUsage in the

server’s certificate didn’t actually allow this

 Global software vendor ran an interop site for its
flagship server product
 Server authentication key was marked as unusable for server

authentication
 After several years’ operation, no-one had noticed

34

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage (ctd)

 Microsoft NDES SCEP server used to provision Apple
iPhones
 iPhone happily encrypts to a signature-only certificate, ignoring

the keyUsage constraint
 Works OK though because the Microsoft server at the other end

ignores it as well

 European CA marked its signature key as not being valid
for signatures
 CA marked a certificate used to encrypt data for a national tax

authority as usable only for digital signatures
 Another CA reversed the order of the flags in keyUsage due to

confusion over endianness, effectively setting random flags

35

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage (ctd)

 keyUsage flags seem to be set arbitrarily by some
public CAs
 Specify keyUsage.keyEncipherment or keyUsage.keyAgreement

when the algorithm in the cert isn’t capable of doing this

 One CA set DH keyUsage.keyAgreement (for an RSA
key)
 Set keyUsage.encipherOnly
 Just to be fair, set keyUsage.decipherOnly as well

36

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Usage (ctd)

 European PKI project approached this from another
angle
 Marked encryption-only certificates with “ENC” in the DN and

signature-only certificates with “SIG”
 Tested the certificates with PKI software
 “ENC” certificates worked fine for encryption, “SIG”

certificates worked fine for signatures
 Product was shipped and widely used
 Quite some time later, a technically-minded user noticed that

the software would select and use “ENC” and “SIG” keys more
or less at random
 “ENC” keys had supposedly been kept in escrow
 Destroyed the validity of the signing process since keys held by a

third party had been used for signing

37

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Identifiers

 Certificates contain two binary identifier fields,
subjectKeyIdentifier (SKID) and authorityKeyIdentifier
(AKID)
 These have very different encodings

 Some CAs memcpy() the SKID to the AKID, creating an
invalid encoding
 When tested against a wide range of PKI software, nothing

noticed this
 Not only were they not paying any attention to the

keyIdentifier values, they weren’t even trying to decode the
extension that held it

38

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Identifiers (ctd)

 Variations on this abound…
 European CA encoded the AKID as an empty value

 Implying the certificate was issued by nobody?

 CAs create circular references
 AKID points back to itself
 Presumably an implementation would need to go into an

endless loop to process this

 CAs use duplicate SKIDs
 In one case probably due to it being derived from a time-based

value, because batches of certificates issued in close proximity
had identical SKIDs

 Adobe’s cert handling for signed PDFs does pretty much
the exact reverse of what it’s supposed to with the KIDs

39

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Key Identifiers (ctd)

 Copy-and-paste PKI
 Find something that works elsewhere and copy and paste it into

your PKI
 A good idea for regex’s, SQL expressions, Perl scripts, …
 Less good for PKI

 AKIDs point to random unrelated CAs
 SKIDs for all certificates are identical
 authorityInfoAccess points to unrelated CAs

 Blacklist-based operation in CRLs and OCSP means that such
certificates can never be revoked

 The use of blacklist- rather than whitelist-based checking also
means that the failure isn’t noticed during normal use

40

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

DNs

 If two implementations disagree over what goes where
in a DN, they will/won’t check different portions of the
DN and related fields

 How to abuse DNs/altNames as hiding places
 Request a certificate with different identifiers placed in

locations regarded as being equivalent
 See earlier screenshots of RFC 1918 certificates

 CA verifies the identifier in one location
 PKI software uses a supposedly-equivalent but unverified

identifier from another location

41

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

DNs

 Examples include Moxie Marlinspike’s ‘\0’ DN strings
 Request a certificate for

‘www.microsoft.com\0mydomain.com’
 CA verifies ‘mydomain.com’, PKI software uses

‘www.microsoft.com\0’
 At Defcon 2009, a selection of geeks bought certificates for

Adobe, Apple, Microsoft, Verisign, Yahoo, and others, until
they ran out of money

 As with many other PKI failures, this wasn’t fixed until
it got media attention due to the creation of a bogus
Paypal certificate

42

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

DNs (ctd)

 LDAP format represents DNs in reverse order to how
they’re present a certificates and cert-using protocols
 Some Java implementations do this too
 As a result, DNs in certificates can be encoded forwards or

backwards

 .NET GetIssuerName and GetSerialNumber return the
information in reverse order to the MMC certificate
snap-in
 Different versions of software, e.g. IIS 4 and IIS 5, processed

the bytes in opposite order

 This interferes destructively with X.509’s blacklist-
based checking

43

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

DNs (ctd)

 Not only can DNs end up encoded forwards or
backwards, they can even be forwards and backwards
in the same certificate
 One European national CA encodes DNs forwards and backwards

apparently at random
 Others are more consistent and get the DN backwards in all

certificates
 Others get the issuer name, via memcpy(), forwards, but the

subject name backwards
 Some certificates contain DN components in more or less

arbitrary order
 This includes duplicate AVA instances in different parts of the DN

44

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Make it a Feature!

 Some European CAs use this to their advantage when
the CA is also the PKI vendor
 CA will only process certificates produced by its own buggy

software
 Software will only accept buggy certificates issued by the CA

 Use of a particular European CA was mandated by
government decree
 Would only issue certificates to users using the CA’s broken PKI

toolkit
 The term for this in the country in question is apparently

“appointing a goat as gardener”

45

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Make it a Feature! (ctd)

 Another CA quietly dropped requests created by
anything other than its own software
 Use of the CA’s services was government-mandated
 Ensured that only products sold by the CA’s consulting arm

could be used

 Another CA added incompatible modifications to a
standard PKI protocol “for security reasons”
 The financial security of the CA, that is
 Had to buy the CA’s software to get your request processed

46

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

PKI Services

 No better than the basic certificate handling…
 TSA had a soft-failure that caused it to reject any

request for a timestamp
 No-one using the service, which delivers tens of thousands of

timestamps a month, noticed that their data wasn’t being
timestamped any more

 TSA client submitted not a hash of the document to be
timestamped but the entire document
 Server took the first 20 bytes and timestamped that
 Used with European high-assurance (qualified) signatures

47

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Summary

 After twenty years, we’ve almost got to the point
where we can rely on the most basic extension in a
certificate, basicConstraints.cA
 Even the next most basic one, keyUsage, is handled more or

less arbitrarily
 Beyond that, it’s a crapshoot

 “There’s not a single X.509v3 extension defined in PKIX
a PKI designer can really rely on. For each and every
extension somebody planning/deploying a PKI has to
check each and every implementation if and how this
implementation interprets this extension. This is
WEIRD!”

― PKI developer Michael Ströder

48

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Summary (ctd)

 There is a complete absence of any kind of quality
control in PKI software
 One large PKI vendor for many years had no documentation

whatsoever for their code’s functionality
 Developers were handed the code and told that the software’s

functionality was defined to be whatever you got when you fed
it a certificate

 One new developer’s first task was to reverse-engineering what
the code did based on observed behaviour with various
certificates

 You can’t build something so broken that it can’t claim
to be X.509…
 … and vendors frequently do

49

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions50

Solutions

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Solutions

 Good news: We have near-infinite scope for
improvement!

 There are four ways to deal with this problem…
 1. The Ostrich algorithm
 2. PKI overlay networks
 3. Field-qualify your PKI applications
 4. Work defensively

51

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

1. The Ostrich Algorithm

 Everything’s working fine, nothing to see here, move
along

 Popular with PKI created for its own sake
 Target for the consultants was “You asked for PKI, here is PKI,

you didn’t specify that it had to work”

 This isn’t as bad as it sounds: Attackers seem to be
using the Ostrich Algorithm as well
 Baffled by its complexity?
 Easier targets elsewhere?
 Not protecting anything worth attacking?

 (Probably the last one on the list)

52

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

2. PKI Overlay Networks

 Layer your own custom security controls on top of the
general-purpose PKI
 Requires at least some control over the PKI software

 Leverages existing investment in PKI software while
providing add-on functionality that provides the
services/functionality that you need
 A bit like an overlay network built on top of the Internet

53

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

2. PKI Overlay Networks (ctd)

 Done by Microsoft for its code-signing certificates
 Code-signing certificates need a special code-signing

extendedKeyUsage
 Must be present in CA root certificates to prevent a

downstream CA from manufacturing their own code-signing
certificates

 Signatures can be verified after the certificate expires via a
countersignature mechanism

 Assorted other special-case handling, e.g. for boot code that
can’t rely on a CRL being available

 Verification code is created and controlled by Microsoft to do
what it wants

 Disadvantage: Not everyone is Microsoft

54

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

3. Field-qualify Your PKI Apps

 Try to field-qualify every version of every application
on every platform that you plan to use
 This is impossible in general

 It may be effectively impossible even for specific
cases…
 One survey of SSL/TLS server certificates found 219 different

combinations of keyUsage and basicConstraints.cA flags,
including many that were totally illogical

55

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

3. Field-qualify Your PKI Apps

 Tests are extremely tricky and tedious
 Need to verify that things that should happen, do happen
 Need to verify that things that shouldn’t happen, don’t happen
 This comes close to trying to prove a negative
 Need to re-run the tests every time an application update

occurs

 CRLs and OCSP make this especially tricky
 A successful verification against a blacklist is indistinguishable

from a failed check

56

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

3a. Field-qualify Your PKI Apps (ctd)

 Variant: Require the use of one specific piece of
software everywhere

 Possible in closed environments
 Inside corporates
 Closed B2B

 Still need to qualify the PKI software, but now the
scope of the operation is limited

57

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

3b. Field-qualify Your PKI Apps (ctd)

 Variant: Only use the restricted subset of PKI
functionality that you can verify works
 Don’t discard it all, since it least some of it works some of the

time

 Possible in controlled environments
 All parties agree in advance on which subset to use

 As before, still need to qualify the PKI software, but
again the scope of the operation is limited

58

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

4. Work Defensively

 Assume that nothing will quite work as expected and
build your system appropriately
 When building a system from unreliable components, the less

of the unreliable components that you have to depend on, the
smaller the chances of an unpleasant surprise later on

 There’s nothing to say that you have to use certificates
as anything more than a complex bit-bagging
mechanism

59

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

4. Work Defensively (ctd)

 Example: Use standard presence checks to replace
unreliable PKI mechanisms
 Certificate present in a database access allowed /

certificate is OK
 To revoke access, remove the certificate from the database

 Avoids the need for CAs, CRLs, OCSP, bridge PKI,
certificate path building, chain verification, …
 All the dysfunctional portions of PKI are eliminated

 Use of Active Directory to manage certificates for
account login is an example of this

60

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

4. Work Defensively (ctd)

 Variant: Drop PKI entirely
 Why exactly are you using it?

 “It seems to be the expected thing to do” isn’t a reason

 Seriously, why do you actually need a PKI for what
you’re doing?
 Name five alternative options that solve the same problem, and

provide reasons why PKI is the better choice

61

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

4. Work Defensively (ctd)

 Example: Network authentication
 TLS-SRP and TSL-PSK solves this problem far better than PKI

ever can
 True failsafe mutual authentication
 PKI can only provide unilateral authentication in both

directions …
 … and then you have to deploy, manage, and run a PKI to get

there

 Example: Secure email between corporate offices
 STARTTLS solves this problem far better than S/MIME can
 S/MIME: … and then you have to deploy a PKI …

 Do you really want to hold your business hostage to PKI?

62

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Apply Slide

 Assume that a certificate may be little more than a
complex bit-bagging scheme

 Treat certificates as a simple signed access token

 No need for external CAs, PKI heirarchies, OCSP
servers, or other complex and expensive PKI folderol

 Presence in a database certificate is OK

 Access control is handled by removing the certificate
from the database, not hoping that a CRL or other
check works

 Do you really need a PKI for what you’re trying to do?

63

Insert presenter logo
here on slide master.
See hidden slide 2 for
directions

Further Reading

 Detailed writeup, background material, and references
to sources can be found in

 http://www.cs.auckland.ac.nz/
~pgut001/pubs/book.pdf

 Chapters “Problems” and “PKI”

64

