
Hard and Not-necessarily-hard Problems

in Cryptography

Peter Gutmann

University of Auckland

Hard Crypto Problems

Some crypto problems have no known general solution

• This may be the first talk ever to admit that there exist security
problems for which adding more cryptography isn’t the answer

Why are you telling us about them if there’s no solution?

• To warn you about them so you can try alternatives

• To let you know that if you’re finding it hard to deal with them
then it’s not your fault

Example: Secure Bootstrapping of Comms

How do you securely initiate communications with an
entity that you’ve never communicated with before?

• The killer problem

• The elephant in the room

• The mixed metaphor

… of Internet security protocols

We simply have no way of doing this

Example: Secure Bootstrapping of Comms

This makes a lot of otherwise good crypto a lot less useful

• Something that the bad guys are very good at exploiting

Example: Secure Bootstrapping of Comms

Until we solve this problem…

… we may as well just be using RSA-512 with RC4/40

S
ou

rc
e:

 A
P

W
G

Example: Secure Bootstrapping of Comms

What about PKI?

S
ou

rc
e:

 D
es

pa
ir

Example: Secure Bootstrapping of Comms

What about SSH?

Do SSH Fingerprints Increase Security?
Peter Gutmann

Department of Computer Science
University of Auckland

Abstract
No.

Example: Secure Bootstrapping of Comms

What about insert-pet-mechanism-here?

• No, that won’t solve it either

Wicked Problems

So why is this so hard?

This (and many other
issues) are examples
of wicked problems

• Concept from the
field of social
planning

• Proposed in the 1970s as a means of modelling the process for
dealing with social, environmental, and political issues

S
ou

rc
e:

 W
ki

kp
ed

ia
Wicked Problems (ctd)

Amongst a wicked problem’s weaponry are such diverse
elements as…

Lack of any definitive formulation of the problem

Lack of a stopping rule

• One of the core requirements for dealing with a wicked
problem becomes not deciding too early which solution you’re
going to apply

Solutions that are rateable only as “better” or “worse” and
not true or false

• Particularly bad for security geeks

• There are only two options, absolutely secure or absolutely
insecure

Wicked Problems (ctd)

No clear idea of a which steps or operations are necessary
to get to the desired goal

A variety of ideological and political differences among
stakeholders

The difference between them is simple: [algorithm design] is
‘hard science’. [Security] is ‘people wanking around with their
opinions’
— Linus Torvalds, 2007

Wicked Problems (ctd)

A wicked problem presents...

• No clear idea of what the problem is

• No clear idea of how to get to a solution

• No easy way to tell whether you’ve reached your goal or not

• All of the participants are pulling in different directions

Example: High-performance Sports Cars

Fit a more powerful engine

• Adds extra weight

– Slows it down again

• Adds size

– If taken to extremes leaves little room for anything else,
including a driver

Example: High-performance Sports Cars (ctd)

Reduce weight by fitting a lighter engine

• Have to make the car lighter to compensate for the less
powerful engine

If taken to extremes leads to a car that’s little more than an
exoskeleton with a motorcycle engine

• Has limited appeal to the general market

Example: High-performance Sports Cars (ctd)

Use exotic materials like carbon fibre to decrease weight

• Raises the price and again discourages buyers

Example: High-performance Sports Cars (ctd)

Strip out as many weight-adding features as possible

• Trade-off between performance and comfort

• Some jurisdictions have safety regulations that affect what you
can and can’t do

• Tradeoff between being able to sell the car in a particular
market and making performance-reducing changes

Example: Audio Woo-Woo

High-end audio is like
high-performance
sports car design,
only much sillier

Example: Audio Woo-Woo (ctd)

OK, that’s not really true…

Only stopping rule is “how much money does the sucker
the customer
have?”

• Any solution
you sell is
better than
what everyone
else has
(by definition)

Limits are
defined by how much woo-woo you can come up with

S
ou

rc
e:

 H
ig

he
r-

F
i

Example: Audio Woo-Woo (ctd)

Anything goes…

Of course we’d never go for this in the security field…

Example: Audio Woo-Woo (ctd)

Example: Audio Woo-Woo (ctd)

• $30,000 iPod dock demo’d at CES 2012

• Behringer iNuke Boom car-sized dock

Example: Audio Woo-Woo

Example: Wavac SH-833 (Amps slide) using 833 tubes

• 1938 vintage RCA radio transmitting tube

Design use: Class B or C RF
modulator/power amp

• Wavac use: Class A audio amp

The audio equivalent of WEP

• Why pound a screw with a wrench when you can use a
spanner?

S
ou

rc
e:

 e
B

ay

Example: Crypto Woo-Woo

There are equivalents to this in crypto…

Wireless USB (WUSB)

• Short-range, low-power
communications

In 2004:

• 4096-bit DH!

• 3072-bit RSA!

• SHA-256!

• AES-CCM!

• Did we miss out anything else we could throw in?

Implementing it on $0.15 chip is Someone Else’s Problem

S
ou

rc
e:

 F
T

D
I

Example: Crypto Woo-Woo (ctd)

“Smart” meters

• Digital signatures!

• X.509 certificates!

• CRLs!

• The whole PKI shebang!

MSP430F148 CPU

• 8 MHz 16-bit CPU

• 16-bit multiplier as external
functional unit (no divide)

• 2kB RAM, 48kB flash

• Additional analog/digital circuitry for a power meter

You can guess how much PKI this actually implements…

S
ou

rc
e:

 r
di

st

Getting Back to Sports Cars

S
ou

rc
e:

 S
ta

rs
A

nd
C

ar
s

Wicked Problems

This perfectly illustrates the characteristics of a wicked
problem…

No definitive formulation of what’s required for a sports
car

No stopping rule to tell you that you’ve definitely reached
your goal

• Running out of money is one oft-encountered stopping rule

The various options can only be rated in terms of tradeoffs
against each other

continues…

Wicked Problems (ctd)

…continued

It’s not obvious which steps are the best ones to take in
getting to your goal

All manner of
externalities

• Participants’ opinions
of which option is best

• Bikeshedding comes as
an automatic built-in

• Externally-applied materials and regulatory constraints on what
you can and can’t do

S
ou

rc
e:

 T
op

 G
ea

r
Problem: Secure Ops on Insecure Systems

Trying to perform safe operations on an untrusted system
has historically been mostly of academic interest

• “Programming Satan’s Computer”, Anderson and Needham,
1995

– Satan’s Computer in 1995 was positively benign compared
to what’s hiding inside many current PCs

• On the off chance that your machine gets compromised,
reformat and reinstall from clean media

Today the sheer scale and scope of the problem has made
this approach all but impossible

Problem: Secure Ops on Insec.Systems (ctd)

In any case this was before the cloud came along

• “The cloud” = marketing-
speak for “someone else’s
computer”

“How do I secure my data
when it’s in the cloud on
someone else’s
computer?”

• This is a trick question,
right?

S
ou

rc
e:

 N
ov

el
as

pe
ct

Problem: Secure Ops on Insec.Systems (ctd)

What about trusted computing?

• Yeah, any year now...

Even if it could be deployed, it can protect only a small
part of the system, typically the OS core

• A fully-protected computer on which you can’t make any
changes isn’t terribly useful

Problem: Secure Ops on Insec.Systems (ctd)

Even for the portions that it does protect, all it guarantees is
that they’re unchanged from the state they were in when
the TPM initially examined them

• Just because it’s TPM-
verified doesn’t mean
that it’s safe

TPMs and cloud-based
VMs are even messier

S
ou

rc
e:

 S
up

er
m

ic
ro

Problem: Secure Ops on Insec.Systems (ctd)

A typical industry figure for code defects is about twenty
bugs in every thousand lines of code (KLOC)

• Feel free to substitute your own pet value at this point

• The important thing isn’t the absolute value but the rough order
of magnitude for estimation purposes

Widely-used operating systems like Linux and Windows
weigh in at 50-100 million lines of code

• Again, depending on which version and what you count as
being part of “Linux” and “Windows”

Problem: Secure Ops on Insec.Systems (ctd)

That’s between one and two million bugs in the OS

• Ignores the additional code that’ll be added in the form of user-
installed device drivers and other kernel components

– A majority of Windows OS crashes are due to these
additional drivers

Ignores the perpetual churn of updates

• TPMs weren’t really designed for a constantly-changing code
base

So your TPM-verified boot guarantees that you’re loading
an OS core with only a million bugs

• As opposed to a tampered one with a million and one bugs

Problem: Secure Ops on Insec.Systems (ctd)

Accept the fact that you can never really trust anything
that’s done on a PC and treat it purely as a router?

• Forward encrypted/authenticated content from a remote server
to a self-contained device via USB or Bluetooth or NFC

Problem: Secure Ops on Insec.Systems (ctd)

This “solution” gets re-invented every six to twelve months
by academics and vendors

Problem: Secure Ops on Insec.Systems (ctd)

The process has been ongoing for at least thirty years

It’s a remarkably persistent meme

• Latest iteration was only recently, with Google pushing U2F
tokens as the solution to all your authentication problems

This card is
from 1986!

Problem: Secure Ops on Insec.Systems (ctd)

PC-as-a-router for secure tokens doesn’t work too well as a
general solution…

• Expensive

• Requires deployment of specialised hardware

• Requires custom protocols and mechanisms both on the client
and the server in order to handle the constraints imposed by the
attached device

• A royal pain to use

Usefulness/inconvenience ratio is just too big

Problem: Secure Ops on Insec.Systems (ctd)

What if we use a cellphone as the external device?

• That one’s been reinvented for about ten to fifteen years too

Cellphone ≡ Windows 95
PC

• Bloated OS riddled with
buggy, never-updated
(Android) components
running every random
app the user can
download

• Hack like it’s 1997! S
ou

rc
e:

 Z
D

N
et

Problem: Security vs. Availability

Availability concerns dictate that in the case of a problem
the system allows things to continue

• Security concerns dictate that
in the case of a problem the
system doesn’t allow things to
continue

This is an umbrella problem that
encompasses several other
unsolvable sub-problems
(covered later) as subclasses

• Unattended key storage

• Upgrade a product or device after a security breach

S
ou

rc
e:

 S
pa

rk
fu

n

Problem: Security vs. Availability (ctd)

Availability concerns can be a powerful motivator

Data centre was built with marine diesel generators for
backup power

• Marine diesels
come with a
built-in cooling
system

• That would be
“the ocean”

S
ou

rc
e:

 T
hi

ng
lin

k

Problem: Security vs. Availability (ctd)

Less concern about marine diesels overheating than
conventional generators

• Makes them more compact than standard generators

• Space was a concern for the data centre in question

S
ou

rc
e:

 D
ir

ec
tI

nd
us

tr
y

Problem: Security vs. Availability (ctd)

The data centre wasn’t anywhere near the ocean

Used a stand-in
consisting of a
large water cistern
whose contents
were flushed
through the
generators’
cooling systems

• When the cistern had emptied, the generators’ thermal cut-outs
shut them down

S
ou

rc
e:

 C
lim

at
eT

ec
h

Problem: Security vs. Availability (ctd)

Management’s response to this was to have the safety
interlocks on the generators disabled

• Might get an extra five
or ten minutes out of
them

• Could potentially ride
out a power outage that
they wouldn’t
otherwise have survived

S
ou

rc
e:

 A
xo

n

Problem: Security vs. Availability (ctd)

Preferable to run the generators to destruction than to risk
having the data centre go down

• You won’t find this in the
MCSE or CCNA training
material

S
ou

rc
e:

 A
rt

za
t

Problem: Security vs. Availability (ctd)

High-availability systems (e.g. SCADA) cannot go down

• Ever

MTBF requirements of
ten years are not
uncommon

• May be run for decades

Often can’t be patched
or updated S

ou
rc

e:
 E

le
te

c
G

lo
ba

l

Problem: Security vs. Availability (ctd)

Problem: CA-issued certificates are valid for one year

• MTBF 12 months ≪ MTBF 10 years

• Ignore certificate expiry

– In any case it’s just a CA billing mechanism

– Certificate that’s perfectly fine on day n doesn’t become
completely insecure on day n + 1

• Issue your own certificates with infinite lifetimes

Problem: Certificates may suddenly stop working due to
revocation

• Ignore CRLs and OCSP

Problem: Security vs. Availability (ctd)

Problem: Devices don’t have DNS names, or even fixed IP
addresses

• Identity = address often doesn’t hold in any case

• Device can be identified by IEEE EUI64 ID (OUI + unique ID)

• ID the device by EUI64 or similar after you connect

The more checking you do, the greater the chance of
something breaking

• Disable the safety interlocks nuisance checks to make sure
things keep running

Problem: Security vs. Availability (ctd)

To ensure it works, ignore ID info, expiry dates, and
revocations

• That’s the entire certificate
except for the key

And it now works fine on
an MSP430!

Problem: Security vs. Availability (ctd)

Random number generation

• /dev/random blocks until enough entropy is available

• /dev/urandom doesn’t

Tinfoil-hat response

• Only ever use /dev/random

Linux kernel provides a system call getrandom()

• In the kernel for years but wasn’t supported in glibc

• Google “ulrich drepper”

• Some support finally added in late 2016

Problem: Security vs. Availability (ctd)

Blocks, but also uses /dev/urandom

• Worst of both worlds

getrandom() → make_application_hang_at_random()

• Quite literally so

If you disabled the blocking, what would happen?

• (Your application wouldn’t appear to hang/crash at random any
more)

• “Somewhere on the Internet there may be a system that may be
running with reduced entropy”

• How is that exploitable by an attacker?

Problem: Security vs. Availability (ctd)

Sometimes you can reach a compromise…

Microsoft did this with the Windows XP SP2 firewall
settings

• Finally, finally turned on by default in XP SP2

Found that home networks in which a computer acts as a
file/print server were broken by having ports closed by
default

• Open the ports required for print and file sharing…

… but only for the local subnet

Problem: Security vs. Availability (ctd)

Home users are unlikely to be running computers on
multiple subnets

• Anyone sophisticated enough do this will presumably know
what a firewall is and what to do with it

Protects home users from Internet-based attacks without
breaking their existing network setup

Security vs. Availability at the Design Level

Any RFC ever

… the server MUST NOT … the client MUST NOT …

More common is
to leave it unspecified

S
ou

rc
e:

 IE
T

F

Security vs. Availability at Design Level (ctd)

Try finding a statement in a standard for a protocol (TLS,
S/MIME, PGP, SSH, OCSP, SCEP, CMP, …) that tells
you what to do if a crypto validation fails

• Not even a “if XYZ validation fails the client MUST terminate
the connection”

There’s just… nothing

• OK, one or two small notes specifically pointing out particular
special-case oddball conditions

Security vs. Availability at Design Level (ctd)

You can write an implementation that ignores MAC
failures, decryption errors, and invalid signatures, and be
fully standards compliant

• As long as you deal with a small number of obscure corner
cases specifically called out as MUST NOTs

Look at the spec for your favourite protocol after the talk

• Someone else’s problem?

• It was never even considered?

• The experienced driver will usually know what’s wrong?

Security vs. Availability at Design Level (ctd)

Any security RFC ever

• “Here is a security protocol. Whatever it happens to defend
against is the threat model”

The Inside-Out Threat Model

Here is some crypto. If it happens to do what you want, go
ahead and use it
— Matt Blaze?, Protocols Workshop

Security vs. Availability at Design Level (ctd)

Crypto designer assumptions: Our protocol is secure in the
XYZ model

“Can a computationally unbounded attacker who operates
within the bounds of the protocol compromise it?”

• An attacker that somehow
has near-infinite computing
power is however
constrained to do what the
defender wants

Prove that the protocol is secure
within the XYZ model

• In other words, within the bounds that are defined by the
defender

Security vs. Availability at Design Level (ctd)

Attacker assumptions: Ø

• Attackers don’t even know that the XYZ model exists, let
alone feel bound to abide by it

• If this cartoon was text-only, I’d have it permanently saved in a
paste buffer for use in mailing list debates

S
ou

rc
e:

 X
K

C
D

Security vs. Availability at Design Level (ctd)

OK, we can’t really create rubber-hose-proof crypto

• (No really, we can’t. Stop trying to imagine that we can)

We should however be able to scope out the areas that the
crypto doesn’t defend against

Security vs. Availability at Design Level (ctd)

Question: Should TLS defend against phishing?

S
ou

rc
e:

 P
C

W
or

ld

Security vs. Availability at Design Level (ctd)

TLS designers: No, of course not. Everyone knows that

• Except 99.99% of all web users everywhere

• “If you can see the padlock/green bar, you’re safe”

TLS has no threat model

• Nor does SSH, S/MIME, or PGP

• DNSSEC model was reverse-engineering from the spec a
decade after it was published

• IPsec was similar

Security vs. Availability at Design Level (ctd)

IEEE standards require a rationale

• Explanation for why the standard does something

No major security RFC (TLS, SSH, PGP, S/MIME, IPsec,
etc) contains one

• There are things in RFCs that cannot be rationally explained

• Seriously! When the authors were asked, they had no idea why
their protocol design required XYZ

Rationale serves two purposes

• Guidance to implementers on how to apply a feature

• Sanity check on why the spec requires an action

Security vs. Availability in Practice

For browsers, mail clients, …

• Pop up a dialog and
wait for the user to
click “Continue
anyway”

For unattended/non-
interactive devices

• Continue anyway

Problem: Upgrading Insecure Crypto

How do you recover from the catastrophic compromise of a
security system?

Extremely rare in properly-designed systems

• Actually, more like totally unknown

We’ve always had years and years of advance notice

• MD4, MD5, SHA-1, RC4, …

Problem: Upgrading Insecure Crypto

Attackers target the implementation, the way it’s used, or
some other aspect unrelated to the crypto

• Shamir’s Law:
“Crypto is bypassed,
not attacked”

• Cryptographers are
the people who are
so busy patching the
mouse holes in the
floor that they don’t notice
that an entire wall of the barn is missing

Easiest approach is to ignore it and hope that it never
occurs

Problem: Upgrading Insecure Crypto (ctd)

Consider a system that uses two authentication algorithms
in case one fails

• Device receives a message authenticated with algorithm A
saying “Algorithm B has been broken, don’t use it any more”

• Device also receives a message authenticated with algorithm B
saying “Algorithm A has been broken, don’t use it any more”

• Device may also receive a third message saying “All Cretans
are liars”

Could address this with fault-tolerant design concepts

• Voting protocols for algorithm replacement

Adds a huge amount of design complexity and new attack
surface

Problem: Upgrading Insecure Crypto (ctd)

Capability will only be exercised in extremely rare
circumstances

• Complex, error-prone code that’s never really exercised

• Has to sit there unused (but resisting all attacks) for years until
it’s needed

• Has to work perfectly the first time

How do you safely load a replacement algorithm into a
remote device when the existing algorithm that’s
required to secure the load has been broken?

Problem: Upgrading Insecure Crypto (ctd)

Security geeks want to replace half the security
infrastructure that you’re relying on as a side-effect of
any algorithm upgrade

S
ou

rc
e:

 W
aw

as
m

us
in

gs
, 1

23
R

F

Problem: Upgrading Insecure Crypto (ctd)

Example: TLS 1.2

• Deployment lagged for years because the change from TLS 1.1
to 1.2 was far bigger than from SSL to TLS

Scan carried out by a browser vendor in mid-2010 found
exactly two public web servers supporting TLS 1.2

• Both were specially set-up test servers

Even in 2016, the most widely-encountered TLS version
was 1.0 from 1999

• In SCADA/embedded, TLS 1.0 will probably be around
forever

Problem: Upgrading Insecure Crypto (ctd)

Example: TLS 1.3 4.0 2017 1.3, a.k.a. TLS4Google

• Even worse than 1.2
Apart from the different algorithms, cipher suites, messages,
message fields, message flow, handshaking, negotiation,
extensions, and crypto, it’s practically the same thing
— IETF-TLS list comment

• Complete redesign of the protocol to optimise performance for
large content providers

• Zero input from embedded, SCADA, IoT, etc

• c.f. HTTP/2, a.k.a HTTP4Google, “anyone who doesn’t like it
can stay with HTTP 1.1”

• Sites using HTTP/2, in order: Google, Google, Google,
Google, Facebook, Google, Google

Problem: Upgrading Insecure Crypto (ctd)

• If the TLS 1.2 experience (15+ year lag to general
deployment) is anything to go by, we could see general
adoption of 1.3 (outside of Google, Facebook, Akamai,
etc) by 2030 or 2035

• For SCADA/embedded, that date could be “never”

• HTTP/2 was explicitly forked, HTTP/2 for large Silicon
Valley Internet companies, HTTP 1.1 for everyone else

• They’re still planning the move to 1.2 within the next 5-10
years

Problem: Upgrading Insecure Crypto (ctd)

Situation-specific solutions are possible…

Small number of high-cost units

• Courier out replacement devices that clone their state from the
existing one

• Used by some hardware
security modules (HSMs)

S
ou

rc
e:

 T
ha

le
s

Problem: Upgrading Insecure Crypto (ctd)

Remote boxes administered from a central server

• Boxes communicate their state to the central server

• Central site loads it into a new device that gets sent out

• Used by some VoIP boxes rented from a provider

Watch out for
supply-chain attacks!

S
ou

rc
e:

 S
no

w
de

n

Problem: Upgrading Insecure Crypto (ctd)

Opportunistic upgrade of algorithms

• If the other side presents a certificate with algorithm n + 1 then
switch all communication with the certificate owner to n + 1 as
well

• Lots of fun for security geeks
to play with

May be subject to rollback
attacks

S
ou

rc
e:

 M
S

D
N

Problem: Key Storage for Unattended Use

Another variant of security vs. availability

Storing keys in plaintext form is a cardinal sin in
cryptography

• A user is expected to enter a password or PIN to unlock or
decrypt keys so that they can be used

How do you do this for devices that have to be able to
operate unattended?

How do you recover from a crash/power outage/OS
upgrade/VM migration without explicit human
intervention?

Problem: Key Storage for Unattended Use

Various cat-and-mouse games possible

• Poke hierarchies of keys into
various locations

• Use them to decrypt other
keys

• Hope that an attacker can’t
work their way back far
enough to grab the real keys

For unattended operation at
some point you need to
fall back to a fixed key stored in plaintext-equivalent
form that can survive a crash or reboot

S
ou

rc
e:

 T
D

LP

Problem: Key Storage for Unattended Use

None of the “obvious” general-purpose solutions to this
problem actually solve it

TPMs can only store the fixed storage-protection key that’s
required to decrypt the real key

• TPMs are just repurposed smart cards and don’t have the
horsepower to perform anything more than lightweight crypto
themselves

• Can’t offload the overall encryption processing to them

For unattended operation they have to release their secrets
without a PIN

• Merely provide plaintext key storage with one level of
indirection

Problem: Key Storage for Unattended Use

Add custom encryption hardware and perform all of the
crypto in that

• Most manufacturers will be reluctant to add $500 of specialised
encryption hardware to a $50 embedded device

• Scaled up to PC terms, a $20,000 hardware security module
(HSM) added to a $2,000 server

• If the HSM vendor has particularly good salespeople they’ll
sell the client at least two $20,000 HSMs (each storing a single
key) for disaster recovery purposes.

Problem: Key Storage for Unattended Use

Not very secure against an attack that compromises the
host system

• All the HSM does is move the key from the compromised
machine into an external box that does anything that the
compromised host tells it to

Useful however for meeting auditing or regulatory
requirements

• Adds an auditable physical artefact to the process

• “The box is still there, so we’ll assume that the key is also still
there”

Problem: Key Storage for Unattended Use

If you’re really concerned about security, move more of the
security functionality into the HSM

• Instead of acting as a yes-box for crypto ops, implement whole
portions of the underlying security protocol in the HSM

• Takes a large amount of programming effort

Problem: Key Storage for Unattended Use (c

IBM used to sell a fully programmable high-security crypto
coprocessor

• Almost no-one took advantage
of its programming capabilities

A good idea in theory but
practical experience has shown
that few users will make the
effort

S
ou

rc
e:

 IB
M

Hard and Not-so-Hard Problems

So that was all the bad news

• Is there any good news?

Yes, if you’re prepared to be flexible

• Some problems are most
easily solved by moving
the goalposts to where the
ball is going, not the other
way round

S
ou

rc
e:

 N
at

ur
al

ga
sn

ow

Hard and Not-so-Hard Problems (ctd)

Move the problem to an easier space and then solve that

Accept the fact that there are no perfect solutions

• Well, OK, there are perfect solutions

• Smart cards, PKI, biometrics, quantum anything, …

• Monorails, cold fusion, power too cheap to meter, …

Le mieux est l’ennemi du bien
— Voltaire (and others)

The good you can have right now, the perfect you’ll have to
wait forever for

Hard and Not-so-Hard Problems (ctd)

You don’t need perfection

• Even a small change will stop at least some attackers

“The world’s most ineffective CAPTCHA” (CodingHorror)

Please enter the word “orange”

• Kept the comments section free of comment spam for many
years

• (Now outsourced to Discourse, which requires creating an
account, logging in, etc etc)

Hard and Not-so-Hard Problems (ctd)

And that’s not just effective on lesser-known blogs

CodingHorror is already a pretty popular blog, but it works
just as well for major targets like this one

• “What was the colour of the Lone Ranger’s white horse?”

Hard and Not-so-Hard Problems (ctd)

Boxes the attacker into smaller and smaller corners

• Standard defence-
in-depth measure

Several relatively
weak measures
piled up can be
phenomenally
effective

• Or just cut down
the overall noise
level for an otherwise-unsolvable problem

• Allows you to focus on the real attackers, not the anklebiters

S
ou

rc
e:

 D
ig

ve
nt

ur
es

User Identification /Authentication

Allow users to sign up for online information (mailing lists,
web sites)

• Fraudsters sign up in other people’s names

– Used for DoS, not just pure fraud

• Bots sign up large numbers of addresses to obtain accounts for
spam purposes

Email-based Identification

Use the ability to receive mail as a form of (weak)
authentication

• Sign up using an email address

• Server sends an authenticator to the given address

• Address owner responds with the authenticator to confirm the
subscription

• Sometimes known as double opt-in

Widely used for password resets, mailing list subscriptions,
blog registration

• Good enough unless the opponent is the ISP

Email-based Identification (ctd)

Self-auditing via email confirmation

• Attempting to use the account results in the legitimate owner
being notified

• Changing the email address should result in a notification
being sent to the original address

Enhanced version: Get users to set up a separate email-
auth-only account

• Not used for anything else

• Not publicly visible

• Little chance of being phished

Email-based Identification (ctd)

Low-value authentication, but relatively difficult to defeat
compared to what it’s protecting

• An attacker who goes to the trouble of compromising your
email account probably isn’t interested in using it for mailing
list access or blog spam

Comment/Link Spam

Use comments in blogs to post spam links

• Close enough to real posts to avoid triggering spam filters

• Can render the comments section of any blog unusable

S
ou

rc
e:

 S
ta

ck
E

xc
ha

ng
e

Comment/Link Spam (ctd)

How to deal with this

5 Tips to Prevent WordPress Spam Comments

1. Delete All Spam Comments

2. Hold Comments for Moderation

3. Modifying .htaccess to Prevent WordPress Spam Comments

(Deny bots with no Referrer)

4. Ban the Spammer’s IP
Address

5. Install Anti-Spam Plugins

S
ou

rc
e:

 U
rb

an
A

no
m

ie

Comment/Link Spam (ctd)

OK, how else to deal with this

• Go full crypto on them
S

ou
rc

e:
 W

or
dp

re
ss

Comment/Link Spam (ctd)

Gaahhh!! There’s got to be a better way

blog text

user comments

Blog software knows which text came from the blogger
and which came from random users

• Software can HTMarkupL the untrusted content

• Using <div> structures is also possible, but a bit more complex

Crypto non-Woo-Woo

Remember this?

• WUSB security specification

Crypto non-Woo-Woo (ctd)

The HomePlug folks had the same problem to address

• Needs to work with low-powered devices

• Can’t require a user input device or display (which WUSB
does)

Move the goalposts

• Provide pre-paired
adapters in sets of two

• Use location-limited
channels

• Rely on attackers not
being able to (easily)
reverse-engineer
OFDM tone maps

S
ou

rc
e:

 T
en

da

Crypto non-Woo-Woo (ctd)

Results: HomePlug

• Impressive considering it’s long been superseded by WiFi
S

ou
rc

e:
 A

m
az

on

Crypto non-Woo-Woo (ctd)

Results: WUSB

• Need to be specific with search results since “wireless USB”
returns all 802.11 results not WUSB, official name is “certified
wireless USB” + WUSB

• “Wireless USB” means 802.11, not WUSB

S
ou

rc
e:

 A
m

az
on

Opportunistic Encryption

After twenty years of effort, S/MIME and PGP use is lost
in the noise floor

• Most mail clients include S/MIME support

• Many (OSS) clients include PGP support

Usage is virtually nonexistent

• It’s too much bother for most people

The vast majority of users detest anything they must configure
and tweak. Any really mass-appeal tool must allow an
essentially transparent functionality as default behaviour;
anything else will necessarily have limited adoption

— Bo Leuf, “Peer to Peer: Collaboration and
Sharing over the Internet”

STARTTLS/STLS/AUTH TLS

Opportunistic encryption for SMTP/POP/IMAP/FTP

220 mail.foo.com ESMTP server ready

EHLO server.bar.com

250-STARTTLS

STARTTLS

220 Ready to start TLS

<encrypted transfer>

• Totally transparent, (almost) idiot-proof, etc

Most commonly encountered in SMTP/POP/IMAP

• Protects mail in transit

• Authenticates sender/prevents unauthorised relaying/spamming

STARTTLS/STLS/AUTH TLS (ctd)

A year after first appearing, STARTTLS was protecting
more email than all other email encryption protocols
combined, despite their 10-15 year lead

• Just as SSH has displaced telnet, so STARTTLS has mostly
displaced straight SMTP

• The fact that it helps authenticate/authorise users no doubt
helped

Not perfect, but boxes attackers into narrower and narrower
channels

Key Continuity Management

Where’s the PKI?

It’s too…

• Expensive

• Complex

• Difficult to deploy

• Doesn’t meet any real business need

• etc etc etc

Key Continuity Management (ctd)

The only visible use of PKI is SSL

• This is certificate manufacturing, not PKI

• Once a year, exchange a credit card number for a pile of bits

• See a near-infinite
number of papers,
blogs, and articles
on the failure of web
PKI to prevent any
real attacks

S
ou

rc
e:

 R
an

do
m

T
ho

ug
ht

s

Assurance through Continuity

Continuity = knowing that what you’re getting now is what
you’ve had before/what you were expecting

• McDonalds primary product line is the same no matter which
country you’re in

• Coke is Coke no matter
what shape bottle (or
can) it’s in, or what
language the label is
in

Image removed
following
copyright

infringement claim
from the Coca
Cola Company

Assurance through Continuity (ctd)

Continuity is more important than third-party attestation

• Equivalent to brand loyalty in the real world

• Businesses place more trust in established, repeat customers

Use continuity for key management

• Verify that the current key is the same as the one you got
previously

Key Continuity in SSH

First app to standardise its key management this way

On first connect, the client software asks the user to verify
the key

• Done via the key fingerprint, a hash of the key components

• Standard feature for PGP, X.509, …

On subsequent connects, the client software verifies that
the current server key matches the initial one

• Warn the user if it changes

Key Continuity in SSH (ctd)

OK, so the fingerprint part doesn’t work so well, but the
continuity does

Do SSH Fingerprints Increase Security?
Peter Gutmann

Department of Computer Science
University of Auckland

Abstract
No.

Key Continuity Abstract Model

Concept was formalised in the Resurrecting Duckling
Security Model, Stajano and Anderson, 1999

• Device imprints on
the first item that it
sees

• Device trusts that
item for future
exchanges

S
ou

rc
e:

 U
pr

ox
x

Key Continuity Abstract Model (ctd)

Already used by billions of devices worldwide

Key Continuity Abstract Model (ctd)

OK, so we still have a long way to go in some cases…

S
ou

rc
e:

 O
W

A
S

P

Key Continuity in SIP

Same general model as SSH

• First connect exchanges self-signed certificates

• Connection is authenticated via voice recognition

Same principle has been used in several secure IP-phone
protocols

• Users read a hash of the
session key over the link

• (This is 20-year-old tech)

S
ou

rc
e:

 R
an

do
m

T
ho

ug
ht

s

Key Continuity in SSL

The web guys had a go at this for SSL

RFC 6797: HTTP Strict Transport Security (HSTS)

• Server can specify a
duration over which
the client must connect
using SSL

• No mention of tracking
server key changes

In any case it’s not the
host that should be
controlling things but the client app

• On-by-default, not opt-in

S
ou

rc
e:

 W
he

el
fa

na
ty

k

Key Continuity in SSL (ctd)

Finally got it right at the second attempt

RFC 7469: Public Key Pinning Extension for HTTP

• Only accept one of the following set of certificates for the next
time period x

Well, they tried…

• Tied to HTTP, so doesn’t work for any other SSL use

• Google Chrome is the only major browser to support it

– Guess who wrote the spec?

Key Continuity in S/MIME

S/MIME has a built-in mechanism to address the lack of a
PKI

• Include all signing certificates in every message you send

• Lazy-update PKI distributes certificates on an on-demand basis

S/MIME gateways add two further stages

• Auto-generate certificates for new users

• Perform challenge-response for new certificates they encounter

Self-Authenticating URLs

Uniquely tie a DNS name to a key

• URL posted on web page
or sent in email

• Connect to SSL server via
the URL

URL contains a hash
of the key or
certificate

• Only that URL can be
accessed with that key

Self-Authenticating URLs (ctd)

Client compares the SSL key to the hash of the key in the
URL

• If they match then it’s the actual server in the URL, not a fake
server or MITM from DNS spoofing

Fully compatible with existing applications, just with
reduced security guarantees

But wait, this leads to ugly URLs!

https://a6ewc3n4p6ra27j2mexqd.downloadsite.com

• Have you looked at an Amazon/eBay/whatever URL recently?

• No worse than existing mangled URLs

Self-Authenticating URLs (ctd)

Used by PyPI (Python Package Index) to authenticate
packages

Link to package is posted as http://pypi.python.org/-
packages/foo.tar.gz#sha1=23cb[…]e5fc

• Link contains hash needed to check the package

• Packed into the HTTP fragment identifier

Python install tools automatically verify its integrity on
download

Self-Authenticating URLs (ctd)

Deals with the global PPI (Per-Per-Install) industry

• Repackage existing distros to include malware

Transforms the problem of

• Signing every package

• Managing a PKI

• Providing client-side software capable of interpreting the code-
signing data

To

• Providing a secure location to post URLs

That’s moving a very large goalpost!

Self-Authenticating URLs (ctd)

BitTorrent uses something a bit like this

• Actually just a fragment identifier to identify a piece of a large
file

• Has the convenient side-effect that the torrent metadata also
provides something like a self-authenticating URL

Other P2P protocols similarly use hashes to uniquely
identify content online

More generally, DHTs use them to create self-certifying
named objects

• Get me the object with this hash

• Does this object correspond to the hash I’ve got for it

Self-Authenticating URLs (ctd)

A general form was proposed as link fingerprints

Attempts to standardise it were torpedoed due to concerns
that it sapped and impurified the precious bodily fluids
of URLs

• Added to Firefox, but removed again due to concerns that
people might actually use it

• Seriously!

Supported in various plugins and download managers

Conclusion

Yeah, OK, so playing with crypto is fun

• There are some problems that just aren’t practically solvable
with crypto

• That doesn’t mean you can’t publish fun papers on them, but
still…

Nope, you can win if you change the rules of the game

• Redefine the problem to make it solvable

S
ou

rc
e:

 Y
ou

tu
be

