
Availability and Security
Choose any One

Peter Gutmann

University of Auckland

Availability vs. Security
Security

• In case of any issues, raise the alarm and shut things down
Availability

• In case of any issues, keep going at any cost
Availability is more a concern in IT services

Dependability is more a concern in SCADA/embedded
• This talk will use both interchangeably

Availability concerns dictate that in the case of a problem
the system allows things to continue
• Security concerns dictate that in the case of a problem the

system doesn’t allow things to continue

1

2

Case Study: System Power
Availability concerns can be a powerful motivator

Data centre was built with marine diesel generators for
backup power
• Readily available in arbitrary sizes/power levels
• Marine diesels

also come with
a built-in
cooling system

• That would be
“the ocean”

S
ou

rc
e:

 T
hi

ng
lin

k

Case Study: System Power (ctd)
Less concern about marine diesels overheating than

conventional generators

• Makes them more compact than standard generators
• Space was a concern for the data centre in question

S
ou

rc
e:

 D
ire

ct
In

du
st

ry
3

4

Case Study: System Power (ctd)
The data centre wasn’t anywhere near the ocean

Used a stand-in
consisting of a
large water cistern
whose contents
were flushed
through the
generators’
cooling systems
• When the cistern had emptied, the generators’ thermal cut-outs

shut them down

S
ou

rc
e:

 C
lim

at
eT

ec
h

Case Study: System Power (ctd)
Management’s response to this was to have the safety

interlocks on the generators disabled
• Might get an extra five

or ten minutes out of
them

• Could potentially ride
out a power outage that
they wouldn’t
otherwise have survived

S
ou

rc
e:

 A
xo

n

5

6

Case Study: System Power (ctd)
Preferable to run the generators to destruction than to risk

having the data centre go down
• You won’t find this in the

MCSE or CCNA training
material

S
ou

rc
e:

 A
rtz

at

Dependable Systems
Theory of dependable systems…

Dependable systems can experience faults
• A fault doesn’t necessarily

reduce the dependability of
a system

Fault must result in an error in
order to cause a problem

S
ou

rc
e:

 S
pa

rk
fu

n

7

8

Dependable Systems (ctd)
If the error propagates beyond a system barrier so that it

becomes visible to the rest of the system, it becomes a
failure
A fault can manifest itself as an error […] and the error can
ultimately cause a failure

— ISO 26262, “Road Vehicles — Functional Safety”

Dependable Systems (ctd)
Only the full progression fault → error → failure is a

visible problem
• Handled via fault detection, isolation, and recovery (FDIR)

Example from computer networking
• Fault: Electrical glitch

induced onto Ethernet cable
• Error: Corrupted data packet

– Detection: Failed
CRC/FCS check

– Isolation: Packet dropped
– Recovery: Kicked upstairs, typically TCP-level

• Failure: None, fault mitigated

S
ou

rc
e:

 P
ra

ct
ic

al
 N

et
w

or
ki

ng

9

10

Dependability
Fault mitigation strategies

• Is the value within a range of plausible values?
– Vehicle engine temperature, speed, etc
– Unless the vehicle is powered by a Mr.Fusion, an engine

temperature of 3000°C is suspect
• Is the combination of values within a range of plausible values?

– Engine speed / vehicle speed / gear ratio
• Do multiple redundant sources agree?

– Angle-of-attack sensors on aircraft
• Exotic rigorous solutions

– Predictor/corrector models like Kalman filters

Dependability (ctd)
Signal metrics

• Signal quality
• Timestamps
• Sequence numbers
• Signal-changed status

Timing protection
• Protecting from activities that take too long to complete
• Excessive runtime upsets response-time guarantees for other

components

S
ou

rc
e:

 S
ta

ck
E

xc
ha

ng
e

11

12

Mitigations
Substitute values

• If a value is implausible, substitute an approximation for use in
subsequent calculations

• Malfunctioning sensor, use last known good value
Voting / redundancy

• 2oo3 or similar mechanisms
Liveness monitoring of subsystems

• Watchdogs, heartbeats
Diverse monitoring

• External monitor ensures the system remains within safety
bounds

Mitigations (ctd)
Execution sequence monitoring

• Check control flow graph (CFG)
• Monitor control flow through basic blocks

– As a convenient side-effect, severely hampers ROP
– A rare case of dependability and security

Reliability trumps everything
• “Limp home” mode as a design safe state
• Disable some subsystems, e.g. keep ABS (anti-lock braking)

but no ESC (electronic stability control)
• c.f. MEL in aircraft

– Minimum (functioning) equipment list for an aircraft to be
considered airworthy

13

14

Fault-Tolerance
Not just a fancy name, the system is literally tolerant of

faults
• A great deal of engineering effort goes into providing this

capability
Overreacting to faults can actually be harmful

In some situations taking recovery actions due to errors […] may
cause more damage than it does good. Reacting to such errors
may cause an over-reaction where the recovery actions may put
the system in a state where it is less safe than previously

— “Explanation of Error Handling on Application Level”,
AUTOSAR

Fault-tolerance is the diametric opposite of what crypto/
security does

Fault-Intolerance
In crypto/security, the goal is to find the single bit that’s

out of place
• One single bit out of place → fail

• “… and stop” means “fault and error and failure” all in one

a. If the length of L is greater than the input
limitation for the hash function (2^61 - 1 octets
for SHA-1), output "decryption error" and stop.

b. If the length of the ciphertext C is not k octets,
output "decryption error" and stop.

c. If k < 2hLen + 2, output "decryption error" and
stop.

— PKCS #1 v2.1

15

16

Fault-Intolerance (ctd)
Once you’ve found the discrepancy, you’ve won

No known standard covers how to continue after this point
• c.f. vast literature on fault tolerance and error recovery

S
ou

rc
e:

 :L
A

 T
im

es

Security vs. Availability at the Design Level
Any RFC ever

… the server MUST NOT … the client MUST NOT …

More common is
to leave it unspecified

S
ou

rc
e:

 IE
TF

17

18

Security vs. Availability at Design Level (ctd)
Try finding a statement in a standard for a protocol (TLS,

S/MIME, PGP, SSH, OCSP, SCEP, CMP, …) that tells
you what to do if a crypto validation fails
• Not even a “if XYZ validation fails the client MUST terminate

the connection”
There’s just… nothing

• OK, one or two small notes specifically pointing out particular
special-case oddball conditions

If a client receives an extension type in ServerHello that it did not
request in the associated ClientHello, it MUST abort the
handshake with an unsupported_extension fatal alert

— RFC 5246 / TLS

Security vs. Availability at Design Level (ctd)
You can write an implementation that ignores MAC

failures, decryption errors, and invalid signatures, and be
fully standards compliant
• As long as you deal with a small number of obscure corner

cases specifically called out as MUST NOTs
Look at the spec for your favourite protocol after the talk

• Someone else’s problem?
• It was never even considered?
• The experienced driver will usually know what’s wrong?

19

20

Fault Mitigation vs. Security
Plausibility checks: Binary yes/no

Execution sequence monitoring: No

Substitute values: No

Voting/redundancy: No (except in Type 1 crypto hardware)

Liveness checks/signal metrics: N/A

Timing protection: Public-key crypto operations are
variable-time
• Some operations like keygen only terminate probabilistically

Fault Mitigation vs. Security (ctd)
Continuing with degraded functionality

21

22

Case Study: Memory Leaks
RTOS has a memory leak problem

• Chief software engineer: “Of course it leaks!”
Solution

• Calculate the worst-case
memory usage (including
leaks)

• Provision the hardware
with double that amount
of memory

Arrghhh!!!!!!!!!!!! S
ou

rc
e:

 D
ig

ita
l T

re
nd

s

Case Study: Memory Leaks (ctd)
This memory leak was in a critical real-time system

• The OS for a missile

S
ou

rc
e:

 W
ik

ip
ed

ia

23

24

Case Study: Memory Leaks (ctd)
Only needed to run once, after which it was garbage-

collected

This was a perfectly sensible way of dealing with the leaks

S
ou

rc
e:

 N
at

io
nS

ta
te

s

Case Study: Memory Leaks (ctd)
Alternative method for dealing with leaks and similar slow

degradation issues: Rejuvenation

“We have a memory leak/loss of sensor sensitivity/
degradation of measurement accuracy, …”
• Measure/calculate performance degradation as 5% per day
• Calculate worst-case timing for sufficient loss of functionality

that the system is affected, i.e. it becomes a failure
• Schedule the system to restart before then

Rejuvenation is a standard fault-mitigation technique in
critical control systems
• You don’t need to fix the fault, just mitigate it

25

26

Availability vs. Security
High-availability systems (e.g. SCADA) cannot go down

• Ever
MTBF requirements of

ten years are not
uncommon
• May be run for decades

Often can’t be patched
or updated S

ou
rc

e:
 E

le
te

c
G

lo
ba

l

Availability vs. Security (ctd)
These systems are incredibly long-lived

• Trying to apply current security technologies to them is
difficult

There are PLCs currently in
active use that might be
expected to run TLS, but
that predate
• TLS
• SSL
• Web browsers using SSL
• The companies that make the web browsers
• The web itself

S
ou

rc
e:

 E
le

te
c

G
lo

ba
l

27

28

Availability vs. Security (ctd)
Problem: CA-issued certificates are valid for one year

• MTBF 12 months ≪ MTBF 10 years or more
• Ignore certificate expiry

– In any case it’s just a CA billing mechanism
– Certificate that’s perfectly fine on day n doesn’t become

completely insecure on day n + 1
• Issue your own certificates with infinite lifetimes

Problem: Certificates may suddenly stop working due to
revocation
• Ignore CRLs and OCSP

Availability vs. Security (ctd)
Problem: Devices don’t have DNS names, or even fixed IP

addresses
• Identity = address often doesn’t hold in any case
• Device might be identified by an IEEE EUI64 ID (OUI +

unique ID)
• ID the device by EUI64 or similar after you connect

The more checking you do, the greater the chance of
something breaking
• Disable the safety interlocks nuisance checks to make sure

things keep running

29

30

Availability vs. Security (ctd)
Having a reactor control system shut down because its

certificate has expired is seen as something of a liability
When PLCs’ certificates expire, they just disappear off the
network. Plus, 99 percent of the industrial world has no idea what
a certificate is, so how do they troubleshoot the problem at 2am?

— “Control Systems Security from the Front Lines”

To ensure it works, ignore ID
info, expiry dates, and
revocations
• That’s the entire certificate

except for the key

Availability vs. Security (ctd)
Standard practice for the military is to turn off crypto when

things go hot
• Availability is more

important than security
• By the time the enemy

has intercepted,
processed, and acted on
cleartext tactical
comms, it’s too late to
do much with the
information

S
ou

rc
e:

 E
le

te
c

G
lo

ba
l

31

32

Availability vs. Security (ctd)
Air Force has a similar issue

• (US) Air Force study for the
European tactical air
environment indicated that
their vulnerabilities from
losing comms (due to
jamming) were greater than
those from unencrypted
comms

• Senior Air Force officer said that he needed an anti-jam
capability (i.e. availability) so badly “he would trade aircraft
for it”

S
ou

rc
e:

 W
ik

ip
ed

ia

Availability vs. Security (ctd)
This issue was explicitly recognised in the Ware Report,

1970
In a military command and control system where delay can mean
disaster, operational urgency may dictate that a calculated risk of
unauthorized divulgence be assumed in order to maintain
continued service to users

— “Security Controls for Computer Systems”,
Willis Ware

33

34

Case Study: Hardcoded Passwords
Hardcoded passwords are bad

Endless security vulnerabilities due to hardcoded
credentials

Case Study: Hardcoded Passwords (ctd)
Vendor advertises that the hardcoded passwords in their

devices are more
secure than the
hardcoded
passwords used
by their
competitors

S
ou

rc
e:

 T
wi

tte
r

35

36

Case Study: Hardcoded Passwords (ctd)

Think about that one for a minute…
S

ou
rc

e:
 D

ai
ly

 K
os

Case Study: Hardcoded Passwords (ctd)
This makes sense in critical-infrastructure applications like

power grid control
• Repair crew locked out of a system for lack of a password is a

far bigger problem than cyberbogeymen
– Too little access to a system is vastly worse than too much

• If the default password is hard to guess then a random scanning
attack won’t get in

• It would require a specific, targeted attack, not an automated
scan

Using a complex hardcoded password is a genuine feature
since it’s more secure than using a simple one

37

38

Case Study: Hardcoded Passwords (ctd)
[Pause to allow collection

of scattered brain
fragments]

S
ou

rc
e:

 T
wi

tte
r

It’s Security Jim, but Not as we Know It
The term “security” as used with control systems is very

different from the way that security people use it
• Often refers to reliable communications rather than what

cryptographers would think of as security
Security measures include

• CRC checks
• Message sequence numbering
• Requirement to receive multiple trigger messages in order to

initiate a high-consequence event
• Redundant encoding of control messages to make sure that a

particular command really is what was intended
• …

39

40

It’s Security Jim, but Not as we Know It (ctd)
Security means not flipping a 240MW generator in and out

of circuit due to improper signalling, not something
involving digital signatures or firewalls

S
ou

rc
e:

 M
os

co
w

 T
im

es

It’s Security Jim, but Not as we Know It (ctd)
Ultimate case of this is the weak link/stronglink design

used for managing nuclear weapons triggering

Weak link prevents initiating the detonation
Shown to predictably fail prior to the barrier or strong links
losing their integrity in the event of catastrophically severe
environments which would eventually breach the exclusion
region barrier to the warhead or the strong links

— “Designing and Building Nuclear Weapons to Meet
High Safety Standards”

41

42

It’s Security Jim, but Not as we Know It (ctd)
Stronglink controls initiation of the detonation

The two strong links are in series and are of different designs, in
order to minimize the risk of common-mode failures. One strong
link is operated by human intent […] The second strong link must
receive unique preprogrammed features of the designated
trajectory of the weapon system during delivery to the target
— “Designing and Building Nuclear Weapons to Meet

High Safety Standards”
This technology is called ENDS (enhanced nuclear detonation
safety)

It’s Security Jim, but Not as we Know It (ctd)
Designed to minimise the chances of accidental triggering

• Conceptually, requires navigating through a multi-level tree
making exactly the right choice at each fork to initiate a
detonation
If it receives a wrong signal in the event of an accident, or
due to hostile action, it will lock up the system and no arming
signal can be transmitted
— “Designing and Building Nuclear Weapons to Meet …”
Strong links require an enabling input different from any
electrical, mechanical, or environmental stimuli produced by
exposure to an abnormal environment or accident
— “Designing and Building Nuclear Weapons to Meet …”

43

44

It’s Security Jim, but Not as we Know It (ctd)
Created in response to

B-47/B-52 accidents
that came close to
triggering detonations
• Most notorious case

was the Goldsboro
accident in 1961

• One bomb went through
almost all the steps of the
arming sequence, with
only one or two minor measures preventing detonation (reports
vary)

Diggers found the ARM/SAFE switch. It was in the ARM position
— “Orange resident recalls holding future in his hands”

S
ou

rc
e:

 T
wi

tte
r

It’s Security Jim, but Not as we Know It (ctd)
How do we design a trigger mechanism that’s as immune

to false triggering as possible
• Even remote possibilities have to be accounted for due to the

high stakes
Solution: Unique signal generator

The purpose of a unique signal (UQS) in a nuclear weapon
system is to provide an unambiguous communication of intent to
detonate […] in a manner that is highly unlikely to be duplicated
or simulated in normal environments and in a broad range of ill-
defined abnormal environments. Thus, the UQS serves both a
reliability function and a safety function

— “The Unique Signal Concept for Detonation Safety
in Nuclear Weapons”

45

46

It’s Security Jim, but Not as we Know It (ctd)
Initial designs looked at how electrical signalling could be

done in a manner that wasn’t subject to false triggering
• What if a nuclear-

armed bomber
crashed and wiring
was exposed in the
wreckage?

• Power cable swinging
back and forth across
it creates a pulse train

Calculate a statistically unlikely signal and require that as
part of the stronglink process

S
ou

rc
e:

 T
wi

tte
r

It’s Security Jim, but Not as we Know It (ctd)
OK, if you really need to know…

47

48

It’s Security Jim, but Not as we Know It (ctd)
Control systems security is implemented through a more

limited version of this style of design

Differential signalling on all circuits
• True = 0 + 1, False = 1 + 0
• Both lines powered (short circuit) or both lines unpowered →

fault
• Signal is present statically (circuit latch-up) rather than

dynamically (driven by a clock pulse) → fault

It’s Security Jim, but Not as we Know It (ctd)
Clock pulse isn’t necessarily a standard CPU clock

• Capacitively-coupled AC signal that acts as an additional
gating signal

• Applying DC power to the circuit won’t produce an output
Passive (through-hole) components may be mounted by

having the circuit traces they’re soldered to run on
opposite sides of a double-sided circuit board
• Mitigates short circuits due to something falling across them

49

50

It’s Security Jim, but Not as we Know It (ctd)
Logic is implemented with

• Redundant buses
• Self-checking logic designs

– AND gate can be implemented as a ∧ b and ¬a ∨ ¬b and
cross-checked

• Majority-logic decoding
• Whole books full of exotic design techniques

It’s Security Jim, but Not as we Know It (ctd)
Programming is also pretty alien

• PLCs don’t run a program in any conventional sense
• Run scan cycles and are programmed in ladder logic or more

modern forms like instruction list (IL), most of which boil
down to fancy ladder logic

• Scan cycle takes input from various sensors, processes it, and
sends out signals to control devices like plant machinery

• PLC operates in a tightly-coupled loop with the physical
systems that it monitors and controls, responding to external
stimuli and using internal components like counters and timers
to control external physical devices

Applying conventional notions of security is… interesting

51

52

It’s Security Jim, but Not as we Know It (ctd)
Leads to odd definitions of “security”

• German term
“Informationssicherheit” =
Information + Sicherheit =
Information Security

• “Sicherheitsgerichtete
Echtzeitsysteme” =

Security-oriented Real-time systems
or Security for Real-time systems

It’s “security” in the other sense, i.e.
how to make real-time systems
highly reliable
• No mention of cryptography or anything similar

S
ou

rc
e:

 S
pr

in
ge

r

Case Study: It is Good that No-one Knows
In medicine, saving the patient’s life overrides all other

issues
• Messing around with computer authentication gets in the way

of this
Typical example: Surgeon’s interns and residents do all of

the surgeon’s computer work
• Surgeon’s time is far too valuable to spend messing around

with data entry
• (Patient records are now accessible to anyone who works for or

with the surgeon)

53

54

Case Study: It is Good that No-one Knows (ct
More general solution: The first person who comes in in

the morning logs on
• Everyone else uses

this person’s logon
to do their work

• Most successful
deployment of
single sign-on
ever

S
ou

rc
e:

 W
is

eg
ee

k

Case Study: It is Good that No-one Knows (ct
Variant: The person with the greatest level of access does

the logging on

Variant: The lowest-status person gets tasked with going
around everyone’s computers hitting the space bar to
prevent auto-logout
System designers and managers may not even know their
assumptions do not hold — and may make policy and other
decisions based on fantasy. These rule-bending scenarios may,
in fact, be closer to general operating procedures than are often
recognised. The unreal views of the system designers remain
untouched by feedback

— “Healthcare Information Technology’s Relativity
Problems”

55

56

Case Study: It is Good that No-one Knows (ct
When hospitals strictly enforce login policies, the impact is

catastrophic
• Clinician at a UK hospital estimated he spent 1½ hours of his

14-hour day just logging on
– (To get a hundred-hour week, you work 14-hour days)

• UK allocated £40M just to try and reduce logon times to
medical IT systems

It is frankly ridiculous how much time our doctors and nurses
waste logging on to multiple systems

— UK Health Secretary Matt Hancock

Case Study: It is Good that No-one Knows (ct
Variant of this single sign-on method is used with banks

that require that traders log out at the end of the day
• Traders hired interns with

clipboards containing
everyone’s passwords to
go around before trading
opened and log in all the
traders

• Like surgeons, traders’
time is valuable

• More single sign-on in
action

S
ou

rc
e:

 T
ra

di
ng

 R
oo

m
 L

is
bo

a

57

58

Case Study: It is Good that No-one Knows (ct
Another variant of this appears in grid computing

• One project member obtains a magic certificate to make things
work and everyone else shares it

• Site security manager had to complain to users that although
they didn’t mind everyone using the same cert, its original
owner had been dead for some time and could they please have
someone generate a new one to share around

Grid computing security is often handled through short-
lived certificates
• Do the same thing as Kerberos tickets, but badly
• Rope in grad students to continuously renew certs for staff

members who have long-running grid jobs

Case Study: It is Good that No-one Knows (ct
A rare few institutions have actually addressed the problem

Air traffic control uses shared (group) passwords for
systems that control radar, navigation and
communications gear,
the instrument landing
system (ILS), and
similar equipment
• This is by design, not

as a workaround
• Everyone in the group knows the password
• Something won’t be inaccessible for lack of a password
• 41% of FAA facilities in the US use group passwords

S
ou

rc
e:

 A
er

ot
im

e
H

ub

59

60

Case Study: It is Good that No-one Knows (ct
Another institutionalised practice is the 24-hour logon

• No-one ever logs out
• Used in high-availability systems that can’t risk inaccessibility

due to lack of a password
• Speeds up shift changes in continuously-manned systems

A variant is the immortal certificate (see earlier slides)
• Certificate has an infinite lifetime, or
• Certificate details are never checked

Case Study: It is Good that No-one Knows (ct
Problem comes about from the 1960s mainframe model for

security
• Walk into the (singular)

physically secured
terminal room

• Sit down at one of the
terminals

• Access the (singular)
mainframe

S
ou

rc
e:

 W
ik

ip
ed

ia

61

62

Case Study: It is Good that No-one Knows (ct
Has never been updated for modern use

• Nomadic system/device use
• Work is collaborative/shared rather than single-user
• Conventional access-control models don’t work

This is yet another of the many reasons for the enduring
ubiquity of passwords
• None of this critical-to-availability functionality would work

with other authentication mechanisms

Case Study: Random Numbers
Random number generation

• /dev/random blocks until enough entropy is available
• /dev/urandom doesn’t

Tinfoil-hat response
• Only ever use /dev/random

Linux kernel provides a system call getrandom()

• In the kernel for years but wasn’t supported in glibc
• Google “ulrich drepper”
• Some support finally added in late 2016

63

64

Case Study: Random Numbers (ctd)
Blocks, but also uses /dev/urandom

• Worst of both worlds
getrandom() → make_application_hang_at_random()

• Quite literally so
Two years after this issue was first pointed out…

Openssh taking minutes to become available, booting takes half an
hour... because your server waits for a few bytes of randomness
[4.428797] EXT4-fs (vda1): mounted filesystem with
ordered data mode. Opts: data=ordered
[130.970863] random: crng init done

Systemd makes this behaviour worse
• Just wanted to point that out…

Case Study: Random Numbers (ctd)
Nearly a year after that…

It began to be common for Embedded Linux systems to "get stuck at
boot“ […] Over time, the issue began to even creep into consumer-level
x86 laptops […] It can therefore be argued that there is no way to use
getrandom() on Linux correctly

Patch submitted to make it nonblocking as a user-settable
option
• Followed by an interminable thread stretching to hundreds of

messages arguing about it

65

66

Case Study: Random Numbers (ctd)
If you disabled the blocking, what would happen?

• (Your application wouldn’t appear to hang/crash at random any
more)

• “Somewhere on the Internet there may be a system that may be
running with reduced entropy”

• How is that exploitable by an attacker?

Wicked Problems
So why is this so hard?

This (and many other
issues) are examples
of wicked problems
• Concept from the

field of social
planning

• Proposed in the 1970s as a means of modelling the process for
dealing with social, environmental, and political issues

S
ou

rc
e:

 W
ki

kp
ed

ia

67

68

Wicked Problems (ctd)
Amongst a wicked problem’s weaponry are such diverse

elements as…

Lack of any definitive formulation of the problem

Lack of a stopping rule
• One of the core requirements for dealing with a wicked

problem becomes not deciding too early which solution you’re
going to apply

Solutions that are rateable only as “better” or “worse” and
not true or false
• Particularly bad for security geeks
• There are only two options, absolutely secure or absolutely

insecure

Wicked Problems (ctd)
No clear idea of a which steps or operations are necessary

to get to the desired goal

A variety of ideological and political differences among
stakeholders
The difference between them is simple: [algorithm design] is
‘hard science’. [Security] is ‘people wanking around with their
opinions’
— Linus Torvalds, 2007

69

70

Wicked Problems (ctd)
A wicked problem presents...

• No clear idea of what the problem is
• No clear idea of how to get to a solution
• No easy way to tell whether you’ve reached your goal or not
• All of the participants are pulling in different directions

Case Study: High-performance Sports Cars
Fit a more powerful engine

• Adds extra weight
– Slows it down again

• Adds size
– If taken to extremes leaves little room for anything else,

including a driver

71

72

Case Study: High-performance Sports Cars (c
Reduce weight by fitting a lighter engine

• Have to make the car lighter to compensate for the less
powerful engine

If taken to extremes leads to a car that’s little more than an
exoskeleton with a motorcycle engine
• Has limited appeal to the general market

Case Study: High-performance Sports Cars (c
Use exotic materials like carbon fibre to decrease weight

• Raises the price and again discourages buyers

73

74

Case Study: High-performance Sports Cars (c
Strip out as many weight-adding features as possible

• Trade-off between performance and comfort
• Some jurisdictions have safety regulations that affect what you

can and can’t do
• Tradeoff between being able to sell the car in a particular

market and making performance-reducing changes

Case Study: Audio Woo-Woo
High-end audio is like

high-performance
sports car design,
only much sillier

75

76

Case Study: Audio Woo-Woo (ctd)
OK, that’s not really true…

Only stopping rule is “how much money does the sucker
the customer
have?”
• Any solution

you sell is
better than
what everyone
else has
(by definition)

Limits are
defined by how much woo-woo you can come up with

S
ou

rc
e:

 H
ig

he
r-F

i

Case Study: Audio Woo-Woo (ctd)

Anything goes…

77

78

Of course we’d never go for this in the security field…

Case Study: Audio Woo-Woo (ctd)

Case Study: Audio Woo-Woo (ctd)

• $30,000 iPod dock demo’d at CES 2012
• Behringer iNuke Boom car-sized dock

79

80

Case Study: Audio Woo-Woo (ctd)
Example: Wavac SH-833 ($350,000 amp from earlier

slide) using 833 tubes

• 1938 vintage 300W RCA radio
transmitting tube

• Popular in many types of tube
amplifiers, not just the Wavac

• Sells for ~$100-200 per tube

S
ou

rc
e:

 e
B

ay

Case Study: Audio Woo-Woo (ctd)
Design use: Class B or C RF

modulator/power amp

Wavac use: Class A audio amp

Why pound a screw with a wrench when you can use a
spanner?

S
ou

rc
e:

 N
at

io
na

l V
al

ve
 M

us
eu

m

81

82

Case Study: Audio Woo-Woo (ctd)
If you really want to get the

genuine valve sound, you
buy or build something to
add all the distortion back
in on a standard amp

S
ou

rc
e:

 N
at

io
na

l V
al

ve
 M

us
eu

m

Case Study: Audio Woo-Woo (ctd)
Pair that with a generic 300W amp for $40-100…

S
ou

rc
e:

 e
B

ay

83

84

Case Study: Crypto Woo-Woo
There are equivalents to this in crypto…

Wireless USB (WUSB)
• Short-range, low-power

communications
In 2004:

• 4096-bit DH!
• 3072-bit RSA!
• SHA-256!
• AES-CCM!
• Did we miss out anything else we could throw in?

Implementing it on $0.15 chip is Someone Else’s Problem

S
ou

rc
e:

 F
TD

I

Case Study: Crypto Woo-Woo (ctd)
“Smart” meters

• Digital signatures!
• X.509 certificates!
• CRLs!
• The whole PKI shebang!

MSP430F148 CPU
• 8 MHz 16-bit CPU
• 16-bit multiplier as external

functional unit (no divide)
• 2kB RAM, 48kB flash
• Additional analog/digital circuitry for a power meter

You can guess how much PKI this actually implements…

S
ou

rc
e:

 rd
is

t

85

86

Getting Back to Sports Cars

S
ou

rc
e:

 S
ta

rs
A

nd
C

ar
s

Getting Back to Sports Cars (alt)

87

88

Wicked Problems
This perfectly illustrates the characteristics of a wicked

problem…

No definitive formulation of what’s required for a sports
car

No stopping rule to tell you that you’ve definitely reached
your goal
• Running out of money is one oft-encountered stopping rule

The various options can only be rated in terms of tradeoffs
against each other

continues…

Wicked Problems (ctd)
…continued

It’s not obvious which steps are the best ones to take in
getting to your goal

All manner of
externalities
• Participants’ opinions

of which option is best
• Bikeshedding comes as

an automatic built-in
• Externally-applied materials and regulatory constraints on what

you can and can’t do

S
ou

rc
e:

 T
op

 G
ea

r

89

90

Conclusion

A

91

