
14/01/2016

1

Fuzzing with AFL

Peter Gutmann

University of Auckland

Fuzzing before AFL

Download a fuzzer

Stare at the extensive, half-page long manual for awhile

Figure out the arcane scripting notation used to generate
input data

• Spend even longer trying to figure out whether you’ve got a
good level of coverage

Run the fuzzer on your code

• Possibly under a coverage tool to tell you whether you’re doing
something useful or just wasting CPU cycles

14/01/2016

2

Fuzzing after AFL

Download AFL

Get one or more test input files

• Example: Basic JPEG image for an image viewer

• (Actually you don’t even need that, see the next slide)

Run AFL on your code

How does it Work?

It’s an instrumentation-guided fuzzer

• Use the compiler to instrument the code being fuzzed

• Mutate the input to explore all code paths

Gives it some pretty astounding capabilites

• Synthesised a series of valid JPEG files starting from the text
string “hello”

– NB: “Valid” doesn’t mean “decodes to produce a
meaningful image” merely “is accepted by the parser as a
JPEG file”

• Synthesised a PGP keyring starting from a PKCS #15 key file

14/01/2016

3

How does it Work? (ctd)

Original PKCS #15 file:
00000000 30 82 04 BA 06 0A 2A 86 48 86 F7 0D 01 0F 03 01

00000010 A0 82 04 AA 30 82 04 A6 02 01 00 30 82 04 9F A0

00000020 82 01 96 A0 82 01 92 A0 82 01 8E 30 18 0C 16 54

00000030 65 73 74 20 45 43 44 53 41 20 73 69 67 6E 69 6E

Mutated PGP file:
00000000 99 01 A2 04 37 38 F7 27 11 04 00 97 AB 53 62 04

00000010 7F 8C BB 1A 25 0A 58 CA 63 20 9D 43 D4 8D 50 15

00000020 70 68 E3 76 3D 7B C2 76 78 28 23 B6 9A 40 BC CF

00000030 14 88 A3 80 47 3B 5F 17 5F 73 72 5A 60 1F D3 1B

Came as something of a surprise to find the debugger inside PGP
code when fuzzing PKCS #15

Using AFL

What do you need?

• Michal Zalewski’s AFL

• gcc or LLVM

• Address sanitizer (ASAN) to help find… code excursions

ASAN requires a fairly recent compiler

• gcc… oh dear God no!

• LLVM FTW

14/01/2016

4

Building AFL

In brief (some steps omitted), first build the compiler:
svn co https://llvm.org/svn/llvm-

project/llvm/trunk LLVM

svn co https://llvm.org/svn/llvm-project/cfe/trunk
LLVM/tools/clang

svn co https://llvm.org/svn/llvm-project/compiler-
rt/trunk LLVM/projects/compiler-rt

Build all the LLVM stuff (compiler + additional tools
needed for ASAN):

cmake --build .

• Don’t use whatever old pre-built version may be present in
some repository, build it from scratch and get it right

Building AFL (ctd)

Then build the fuzzer
wget http://lcamtuf.coredump.cx/afl/releases/afl-

latest.tgz

make

cd llvm_mode

make

Finally build the instrumented app:
export AFL_HARDEN=1 ; export AFL_USE_ASAN=1 ; make

CC=afl-clang-fast CFLAGS=-fsanitize=address

• Built with AFL instrumentation and ASAN support

14/01/2016

5

Running AFL

Run your code under afl-fuzz, telling it where to find input
files and where to put output files

afl-fuzz -i in -o out ./a.out @@

• ‘@@’ is a placeholder arg for AFL’s fuzzed file

Running AFL (ctd)

Results shown on annoying screen-hogging status page

• Prevents running more than one copy on multi-core systems

• Use nohup to deal with it

14/01/2016

6

Running AFL (ctd)

The useful stats…

• Execs per second: How fast are you going?

• Total execs: How far have you got?

• Unique hangs and crashes: Self-explanatory

– Hangs aren’t terribly useful, mostly false positives due to
timing glitches (page faults, I/O, etc)

• Cycles done: Number of full sets of mutations exercised

Data from cycle n is fed into cycle n+1

• Cycles can take from days to weeks to complete

Optimisations

Many apps have a high startup overhead

AFL uses a fork server to preload the app, but this still
triggers the startup overhead

• Defer the forking until the startup has completed

In your code, manually start the fork server after the startup
has completed

__afl_manual_init();

Tell AFL that you’re using deferred init
export AFL_DEFER_FORKSRV=1

14/01/2016

7

Notes on Use

You’re going to make yourself unpopular when you run
this…

• 100% CPU per afl task

– Maximise the loa^H^H^H^Hutilisation with one task per
getconf _NPROCESSORS_ONLN

• 20 terabytes of VM for ASAN on x64

– Yes, that’s 20,000,000 megabytes

– Uses it as shadow memory to detect out-of-bounds
accesses, see “AddressSanitizer: A Fast Address Sanity
Checker”, Usenix Annual Technical Conference

– Tested on someone else’s Linux box, it works fine even in a
VM

• Weeks or months of runtime

Conclusion

