
Compression of Unicode files
Peter Fenwick and Simon Brierley

Department of Computer Science, The University of Auckland,
Private Bag 92019, Auckland, New Zealand.

peter-f@cs.auckland.ac.nz

Abstract
The increasing importance of Unicode for text files, for example with Java and in
some modern operating systems, implies a possible doubling of data storage space
and data transmission time, with a corresponding need for data compression. How-
ever it is not clear that data compressors designed for 8-bit byte data are well mat-
ched to 16-bit Unicode data. This paper investigates the compression of Unicode
files, using a variety of established data compressors on a mix of genuine and artifi-
cial Unicode files. It is found that while Ziv-Lempel and unbounded context com-
pressors work well, finite-context compressors are less satisfactory on Unicode.
Tests with a simple special compressor intended for 16-bit data show that it may be
useful to design compressors specifically for Unicode files.

1. Introduction
An early important example of fixed-length binary coding for text was the well-

known 5-bit Murray Teletype code. Early computers quickly moved to various proprie-
tary 6-bit codes and then, in the early 1960’s, to 7-bit ASCII and 8-bit EBCDIC, these
becoming the standard text representations for the next quarter century.

EBCDIC and ASCII are both designed for representing the 26-letter Roman alpha-
bet, in both upper and lower case but without accent marks, together with a useful se-
lection of punctuation and similar symbols. As such they are satisfactory for English,
barely suitable for most other European languages and quite unsuited to the major lan-
guages of the Middle East, South Asia and East Asia. Ad hoc coding standards have
been developed for many of these languages, often using 16-bit representations but usu-
ally incompatible between languages and therefore unsuited to mixed-language text.

Unicode[9] represents a concerted effort to develop a unified representation for all
known alphabets and ideographic systems. The “canonical” Unicode representation is
the 16-bit UCS-2. The UTF-8 recoding allows ASCII characters to be represented in 8
bits, but expands others to 2 or 3 bytes and is often used as a distribution format. The
conversion between UCS-2 and UTF-8 is illustrated in Appendix 1. Another important
coding, UTF-7, uses 7-bit codes for transmission of Unicode over email and similar
systems but is not discussed here. Unicode has been used in operating systems such as
Plan 9 and much of Windows 95, and in the Java language; it is therefore an important
development. For our purposes it is sufficient to note the following aspects, based on
the UCS-2 encoding –

Unicode compression DCC-98 March 24, 1998 Page 1

1. Unicode is largely based on blocks of 256 codes,

2. The conventional ASCII character set and an extension occupy the first block of
256 symbols, so that the letter ‘A’, represented as 0x41 in ASCII becomes 0x0041
in Unicode (written as U+0041 in Unicode conventions).

3. Other alphabets are allocated to blocks of 256 symbols, but generally avoiding du-
plication of symbols already defined in other blocks. Thus the Cyrillic alphabet is
allocated the U+04xx block, and Thai U+0Exx, as shown in Appendix 3.

4. Ideographic languages such as Chinese and Japanese are allocated suitably large
blocks of codes, about 21,000 codes in all.

2. Big-endian vs little-endian.
An immediate problem is one which arises whenever multi-byte entities are to be

handled on a byte-addressed computer. Is an entity addressed at its most-significant end
(big endian) or at its least significant end (little endian)? If the ASCII text ‘abc’ is writ-
ten to a file, the bytes in big-endian will be 00 61 00 62 00 63, while the little-endian
form will be 61 00 62 00 63 00. More importantly, the bytes 00 01 02 03 04 05 06 07 in
the file may be read as either 0001, 0203, 0405, 0607 or as 0100, 0302, 0504 0706, de-
pending on the computer. To overcome this problem a Byte Order Mark U+FEFF may
be prepended to the Unicode file. A “big-endian” file will start with the two bytes FE
and FF, while a little-endian file will start with FF FE.

To illustrate, the bytes of a file with the letters “code” are, in the two forms –

Byte Order MarkByte Order MarkByte Order Mark c o d e
big-endian FE FF 00 63 00 6F 00 64 00 65

little-endian FF FE 63 00 6F 00 64 00 65 00

Figure 1. Comparison of ASCII data “promoted” to big- and little-endian UCS-2

3. Compressors and Unicode
In principle, a Unicode file is a sequence of bytes and can be compressed by any

standard lossless compressor. In fact a Unicode file has properties which often degrade
the compression from what might be expected. It is easiest to consider some of the
main classes of compressor and how they might behave. We assume ASCII data, ex-
panded to 16-bit UCS-2 symbols.

1. Finite-context statistical compressors. These compressors, exemplified by tradi-
tional PPM compressors [1, 2, 3], predict a symbol from a context of say the pre-
vious 4 symbols. That means 4 bytes, which is Unicode is only 2 characters. The
compressor is then working at only half the expected order, and may be expected to
achieve rather poorer compression. While it is often possible to increase the order,
that all too easily leads to combinational explosion. While order-4 with 8-bit ASCII
has a total of 4.3×109 possible contexts, order 4 with 16-bit Unicode has 1.8×1019

Unicode compression DCC-98 March 24, 1998 Page 2

possible contexts. While no compressor will actually use all of these possible con-
texts, it must provide data structures to allow them, at least in some dense groups of
contexts. There is no guarantee that a given implementation will permit this.

2. Unbounded-context statistical compressors. These compressors, especially
PPM*[4] and Burrows-Wheeler block sorting[2, 5], resemble their finite-context
brethren, but have data structures or other techniques which allow contexts to grow
indefinitely large. These compressors may be expected to adjust to the longer byte-
wise contexts of Unicode by doubling the context order as needed. The operation
may be slowed, but compression should remain good.

3. LZ-77 Compressors. In these we have a sliding window of recent text (or its equi-
va lent) and emi t poin ters in to the window giv ing {phrase_displacement,
phrase_length} couples. With a byte-oriented compressor, the 16-bit symbols mean
that only half the expected number of symbols are covered by both the displacement
and the length. Both of these effects reduce the compression.

3.1 The Unicode file test Suite
Unicode files have been obtained via the Web from a directory at Duke University1 ,

from a Tamil library at the University of Singapore2, the Unicode Consortium Home
Page3, and a Unicode resource Page maintained by Ado Nishimura4.

File
Source

File Name UTF-8
bytes

UCS-2
chars

fraction
ASCII

Corpus bib 111,261 111,261
Corpus paper1 53,161 53,161
Corpus progc 39,611 39,611

Duke banviet 1,757 1,585 92% Vietnamese poem
Duke calblurb 2,761 1,694 68% description of Unicode browser
Duke jpndoc 19,653 18,118 96% Japanese and English
Duke russmnvr 1,904 1,430 67% Russian and English
Duke sample6 2,506 1,443 63% Korean and English
Duke unilang 2,037 1,678 86% Various languages

Tamil Elangovan 6,676 5,746 79% Poems, Tamil & English
Ado kanji-ga 30,669 19,525 54% Japanese
Ado kokkyou-no 6,643 5,949 65% Windows NT & Japanese

Tamil Purananuru 56,676 25,809 40% Traditional Tamil poems
Unicode1.jap 3,354 1,985 45% Japanese, description of Unicode

Table 1. Files of the test suite.

The selected files mostly satisfy two of the three criteria : a reasonable size, a good
amount of non-ASCII text, and good coverage of the Unicode coding space. Others

1 http://www.lang.duke.edu/unichtm/unichtm.htm
2 http://mirage.irdu.nus.sg/tamilweb/
3 http://www.unicode.org/
4 http://www.ado.sig.or.jp/~ado/unicode/u-link-e.html

Unicode compression DCC-98 March 24, 1998 Page 3

have been simulated by expanding text files from the Calgary Corpus, to provide a con-
trol against known text files.The test files are shown in Table 1, together with their
sizes, the fraction of the text which is ASCII (7-bit) codes, and some commentary.

3.2 Test compressors
These tests used a variety of compressors and compression methods. While not all

are state of the art, all but one are widely available and provide a good coverage of
compression techniques. The chosen compressors are –

• GZIP The Unix compressor released by the Free Software Foundation, as a
good example of an LZ-77 class compressor.

• BZIP Julian Seward’s implementation of the Burrows-Wheeler block sorting
compressor [7], also released by the Free Software Foundation.

• COMP-2 A PPM compressor described by Mark Nelson[6].

• Compress The well-known and traditional Unix compressor, implementing the
LZW derivative of an LZ-78 compressor.

• LZU This is a specially developed LZ-77 compressor, designed to operate in
both 8-bit (ASCII or UTF-8) and 16-bit (Unicode, UCS-2) modes and
intended to compare similar compressors for the two modes. Although
really designed only for UCS-2 compression, the 16-bit mode is tried
for all files. The LZU compressor is described in Appendix 2 to this
paper.

3.3 File Handling
The files are handled by a variety of techniques –

• All of the files are derived from UTF-8 (or ASCII) originals, expanded to UCS-2.

• The UCS-2 files (both native and promoted ASCII) are written in both big-endian
and little-endian forms, each with an appropriate Byte Order Mark.

• The UTF-8 original files are compressed as bytes.

• The big-endian and little-endian files are compressed as bytes, with no regard to the
16-bit structure.

• The UCS-2 files are split into two component files, one of the more-significant
bytes of each character and one of the less-significant bytes. The two components
are individually compressed with a byte compressor and the total size of the two
compressed files combined. (For ASCII files one component is identical with the
original and the other is all-zero.)

We are concerned not only with the relative performance of the compressors on each
file – the differences here are well known. We are more interested in how a given com-
pressor behaves on different versions of the same file.

Data compression results are traditionally given in output bits per input byte, or bits

Unicode compression DCC-98 March 24, 1998 Page 4

per byte. A recent tendency has been to give performance in bits per character (bpc).
With Unicode there is no longer the identity between bytes and characters. The proce-
dure in this paper is to present all results in bits per character, related to the 16-bit units
of the UCS-2 files. Thus ASCII files are shown as bits per byte, while Unicode results
are always in bits per Unicode character.

The compression of UTF-8 files, considered as arbitrary files without respect to their
encoded information, is a quite different matter which is left until Section 6.

4. Compression tests
In this section we test the compressors and the chosen files. A point which must re-

membered for all compressors is that many of the files are quite small, with little scope
to develop good context information. The compression for these files is usually poorer
than for larger files with more available context. ASCII and UTF-8 files are regarded as
equivalent.

4.1 Statistical compressors (BZIP unbounded context, PPM finite context)

• The three ASCII files behave as expected from the earlier discussion. BZIP gives
very similar results for each of the four versions of most files, while the PPM com-
pressor (COMP-2) gives markedly poorer performance on most UCS-2 files.

BZIP PPM order 4PPM order 4
8-bit
UTF-8

Big
Endian

Little
Endian

Split 8-bit
UTF-8

Big
Endian

Little
Endian

Split

bib 1.95 1.95 1.95 1.95 2.02 2.72 2.72 2.03
paper1 2.46 2.47 2.47 2.47 2.51 3.04 3.04 2.52
progc 2.50 2.50 2.51 2.51 2.60 3.08 3.08 2.60
banviet 5.10 5.09 5.12 5.43 5.09 5.85 5.91 5.19
calblurb 7.11 7.15 7.27 7.74 7.93 7.86 7.87 7.99
jpndoc 2.88 2.92 2.92 3.00 3.03 3.33 3.34 3.07
russmnvr 4.77 4.92 4.95 5.25 5.40 5.83 5.87 5.33
sample6 6.61 6.63 6.78 7.44 7.46 7.61 7.70 7.76
unilang 5.59 5.63 5.67 5.65 6.16 6.60 6.66 5.84
Elangovan 4.43 4.73 4.94 5.23 4.98 5.44 5.60 5.56
kanji-ga 5.73 6.26 6.68 7.67 5.94 6.84 7.10 8.04
kokkyou-no 4.09 4.35 4.55 4.74 4.33 5.01 5.19 4.92
Purananuru 2.31 2.30 2.29 2.86 2.61 2.46 2.45 3.03
Unicode1.jap 6.75 7.70 8.12 8.64 7.06 8.50 8.72 8.97

Average 4.33 4.36 4.40 4.60 4.69 5.10 5.13 4.70

Table 2. Comparison of Statistical Compressors

• PPM order 4 is always worse on the big-endian and little-endian files because it is
working at about order 2. Table 2 repeats the earlier result for the ASCII files, but
adding the performance for compression at low orders, confirming the expected
change in performance to about order-2 compression.

Unicode compression DCC-98 March 24, 1998 Page 5

Order 4
8 bit

Order 1
8 bit

Order 2 8-bit
Big

Endian
Little

Endian
bib 3.46 2.65 2.02 2.72 2.72
paper1 3.81 2.93 2.51 3.04 3.04
progc 3.85 2.94 2.60 3.08 3.08

Table 3. Comparison of PPM compressor

• Splitting the file into components breaks up the context information, making the
split file always inferior to the UTF-8 file, and often worse than the UCS-2 files.
More surprising is the difference between the two UCS-2 files, with the big-endian
version being generally better. This probably arises from changes in the context
structure as successive bytes are swapped between the two versions and from the
non-recognition of the essential 16-bit structure of the files. Even though all three
formats (UTF-8, big-end and little-end) have identical logical structure, the byte-
wise operation of the compressors breaks up the structure in different ways.

In summary the performance with BZIP (unbounded context) is particularly good,
and little different for any of the standard Unicode representations. Finite-context PPM
shows a definite decrease performance for UCS-2 files, and the split files are usually in-
ferior.

4.2 Dictionary compressors (Compress – LZ-78/LZW; GZIP – LZ-77)
For both of these compressors the UCS-2 files give rather poorer compression be-

cause their phrase lengths and dictionary size are effectively halved.Where the text is
dominated by alternating blocks of single alphabets the split files give extremely good
performance, but the split files quickly deteriorate as soon as the characters spread
across the Unicode space. Both compressors are hampered by the splitting of the UCS-
2 codes into bytes during compression.

CompressCompress GZIP
8-bit
UTF-8

Big
Endian

Little
Endian

Split 8-bit
UTF-8

Big
Endian

Little
Endian

Split

bib 3.35 4.12 4.12 3.39 2.52 3.23 3.23 2.53
paper1 3.77 4.70 4.69 3.83 2.80 3.33 3.33 2.81
progc 3.87 4.84 4.83 3.93 2.68 3.20 3.20 2.70
banviet 6.38 7.64 7.64 6.73 5.36 6.38 6.40 5.69
calblurb 9.74 9.83 9.77 9.38 7.97 8.09 8.07 7.96
jpndoc 4.20 4.97 4.95 4.20 3.28 3.69 3.69 3.29
russmnvr 6.91 8.00 7.93 6.98 5.64 6.23 6.19 5.58
sample6 9.42 9.46 9.49 9.21 7.66 7.82 7.81 7.78
unilang 7.39 8.45 8.37 7.13 6.06 6.70 6.72 5.91
Elangovan 7.86 8.90 9.12 9.07 5.21 6.05 6.11 5.75
kanji-ga 6.17 7.72 7.80 6.70 6.32 7.28 7.39 7.90
kokkyou-no 6.00 7.05 7.19 6.52 4.26 5.05 5.12 4.97
Purananuru 4.09 3.93 3.93 3.97 3.54 3.41 3.37 3.63
Unicode1.jap 8.79 10.28 10.49 10.09 7.29 8.44 8.69 8.96

Average 6.11 6.89 6.87 6.09 4.89 5.41 5.40 4.92

Table 4. Comparison of Dictionary Compressors (Ziv Lempel)

Unicode compression DCC-98 March 24, 1998 Page 6

4.3 Simple LZ-77 compressor (LZU-8 8 bit mode; LZU-16 16 bit mode)
This test is included only to compare the performance of two very similar LZ-77

compressors, one operating in conventional 8-bit mode, and the other in a 16-bit mode
more suited to UCS-2 Unicode.

LZU-8 LZU-16
8-bit
UTF-8

Big
Endian

Little
Endian

Split 8-bit
UTF-8

Big
Endian

Little
Endian

Split

bib 3.25 4.39 4.39 3.25 4.07 3.41 3.61 4.07
paper1 3.30 4.33 4.33 3.30 4.28 3.46 3.70 4.27
progc 3.16 4.18 4.18 3.16 4.27 3.30 3.64 4.25
banviet 6.52 7.77 7.85 6.94 8.70 6.43 8.67 9.14
calblurb 9.52 9.93 9.86 9.66 12.66 8.26 9.98 11.45
jpndoc 3.75 4.54 4.54 3.83 4.99 3.73 4.21 4.96
russmnvr 6.75 7.81 7.82 6.77 8.96 6.16 8.73 9.03
sample6 9.07 9.58 9.59 9.77 11.81 8.26 9.94 11.66
unilang 7.26 8.04 8.10 6.75 8.85 6.25 8.78 8.56

Elangovan 6.02 7.02 7.19 6.75 7.90 6.32 7.36 8.39

kanji-ga 7.42 8.72 9.07 9.37 9.16 8.10 8.86 11.08

kokkyou-no 4.91 5.89 6.02 5.78 6.35 5.07 6.48 7.47

Purananuru 4.34 4.11 4.15 4.34 4.33 3.45 3.60 5.03

Unicode1.jap 8.77 10.32 10.78 11.36 10.85 9.86 11.11 12.69

Average 5.84 6.73 6.74 5.94 7.62 5.47 8.38 7.49

Table 5. LZU compressor, operating in 8-bit and 16-bit modes.

The only sensible comparison here is between LZU-8 compressing the 8-bit/UTF-8
files and LZU-16 compressing the UCS-2 files. As before, the split files are mostly un-
satisfactory, as are the UCS-2 files with LZU-8. One might think that 8-bit LZU-8 and
big-endian LZU-16 should give identical results on ASCII files, which they do for
minimum phrase lengths of 3 symbols. However LZU-16 gives best overall results with
a phrase length of 2 characters, with a slight degradation in ASCII file compression.

The big-endian file with LZU-16 usually gives the best compression, showing the
advantage of compressing UCS-2 files with a compressor which recognises their 16-bit
structure. LZU-16 is really designed to operate in big-endian mode, with 5- and 8-bit
literals for ASCII and other simple alphabets. With little-endian files all literals must be
emitted in 16-bit form and the performance suffers accordingly.

5. Comparisons
The split files were a generally unfortunate and forgettable experiment. Except

where the data consists of large blocks of single alphabets (not ideographs which spread
across many Unicode blocks) their results are mostly inferior to other formats.

 Otherwise the results are generally as expected, with the unbounded context statisti-
cal compressor performing nearly as well on 16-bit UCS-2 as on UTF-8. Other com-
pressors give reduced performance on the UCS-2 files. Tests with PPM* (unbounded
context PPM, and not stated here) paralleled the results with BZIP.

Unicode compression DCC-98 March 24, 1998 Page 7

The most serious reduction in compression occurs with the finite-context statistical
compressor, although it is still better than some of the dictionary compressors. It is sim-
ply not worthwhile using a finite-context compressor on UCS-2; comparable compres-
sion is obtained with a good dictionary compressor, and much faster.

A pleasing result is the performance of LZU-16 on UCS-2 files, compared with the
similar LZU-8 on UTF-8 data. We can combine the previous results for GZIP and LZU
compression

GZIP LZU
8-bit

UTF-8
Big

Endian
Little
Endian

Ratio
avg:UTF8

8-bit
UTF-8

16-bit
big-end

Ratio
16bit:8bit

bib 2.52 3.23 3.23 128% 3.25 3.41 105%
paper1 2.80 3.33 3.33 119% 3.30 3.46 105%
progc 2.68 3.20 3.20 119% 3.16 3.30 105%
banviet 5.36 6.38 6.40 119% 6.52 6.43 99%
calblurb 7.97 8.09 8.07 101% 9.52 8.26 87%
jpndoc 3.28 3.69 3.69 112% 3.75 3.73 100%
russmnvr 5.64 6.23 6.19 110% 6.75 6.16 91%
sample6 7.66 7.82 7.81 102% 9.07 8.26 91%
unilang 6.06 6.70 6.72 111% 7.26 6.25 86%
Elangovan 5.21 6.05 6.11 117% 6.02 6.32 105%
kanji-ga 6.32 7.28 7.39 116% 7.42 8.10 109%
kokkyou-no 4.26 5.05 5.12 119% 4.91 5.07 103%
Purananuru 3.54 3.41 3.37 96% 4.34 3.45 80%
Unicode1.jap 7.29 8.44 8.69 118% 8.77 9.86 113%

Average 4.89 5.41 5.40 113% 5.84 5.47 98%

Table 6. Results for GZIP and LZU Compression

With GZIP, UCS-2 files compress on average to 113% the size of the UTF-8 files.
But UCS-2 files with LZU-16 now compress to 98% the size of the UTF-8 files with
LZU-8.

As LZU-8 and LZU-16 differ only in the recognition of 16-bit codings, it seems that
having a good dictionary compressor recognise UCS-2 files and emit 16-bit codes may
improve its Unicode performance by perhaps 13%. Alternatively, a compressor such as
GZIP should recognise UCS-2 files and convert them to UTF-8 for compression.

6. UTF-8 Compression
As it is often necessary to compress information which is already in UTF-8 format,

we investigate the compressibility of UTF-8 files for the three standard compressors,
BZIP, GZIP and Compress. The results are now shown in bits per byte. (Remember that
there is no simple relation between bytes and characters in UTF-8.)

Most of the files are reasonably compressible, though not to the extent usually ex-
pected of text files. The final file size is about 50% greater than would be expected for
an ASCII text file (4.0 bpb vs 2.7 bpb for GZIP, or 3.6 vs 2.3 for BZIP). The
“Purananuru” file illustrates another feature of Unicode. About 60% of the file is text

Unicode compression DCC-98 March 24, 1998 Page 8

from the U+B0xx block, occupying 3 bytes per symbol. If all symbols, 1-byte and 3-
byte, compress to 3 bits per symbol (or 1 bit/byte for the 3-byte codings), the resultant
compression is 3.0×40%+1.0×60%=1.8 bpc, in line with what is observed. Thus files
with only a few simple alphabets may be expected to compress very well.

File Name UTF-8
bytes

BZIP
bytes

GZIP
bytes

Compress
bytes

BZIP
bit/byte

GZIP
bit/byte

Compress
bit/byte

bib 111,261 27,097 35,063 46,529 1.95 2.52 3.35
paper1 53,161 16,360 18,577 25,081 2.46 2.80 3.77
progc 39,611 12,379 13,275 19,144 2.50 2.68 3.87
banviet 1,757 967 1,017 1,263 4.40 4.63 5.75
calblurb 2,761 1,506 1,688 2,062 4.36 4.89 5.98
jpndoc 19,653 6,525 7,438 9,510 2.66 3.03 3.87
russmnvr 1,904 853 1,008 1,235 3.58 4.24 5.19
sample6 2,506 1,192 1,382 1,699 3.81 4.41 5.42
unilang 2,037 1,173 1,272 1,549 4.61 5.00 6.08
Elangovan 6,676 3,184 3,741 4,312 3.82 4.48 5.17
kanji-ga 30,669 13,984 15,431 19,174 3.65 4.03 5.00
kkkyou-no 6,643 3,043 3,171 4,586 3.66 3.82 5.52
Purananuru 56,676 7,453 11,418 13,194 1.05 1.61 1.86
Unicode1.jap 3,354 1,676 1,808 2,181 4.00 4.31 5.20

Table 7. Compression of UTF-8 Files

7. Conclusions
The results of this paper confirm that Unicode files have different compression char-

acteristics from files of more traditional character representations. Accepted “good”
compressors such as finite-context PPM do not necessarily work well, although un-
bounded context statistical compressors are quite satisfactory. Good dictionary or LZ
compressors also maintain their performance. Tests with a special test compressor indi-
cate that better results may be obtained from compressors which work in the 16-bit
units of canonical Unicode.

Several possibilities arise for changing compressors to work more efficiently with
Unicode files.

i. If a byte compressor detects that it is compressing a UCS-2 file, it could preprocess
it into UTF-8 format and compress that UTF-8 data.

ii. Compressors could work with 16-bit symbols, much as LZU-16 has demonstrated.
GZIP should certainly be a good candidate for extension, retaining its efficient out-
put coding. The Burrows-Wheeler compressor (BZIP) may be amenable to 16-bit
conversion, but at the cost of a slower and more difficult sort phase. The compres-
sors may have to recognise the “endian” nature of files, to suit their coding details
or internal data structures. A 16-bit compressor might well convert a UTF-8 (or
ASCII) file to UCS-2 for compression.

Either of these conversions should yield compressors which are well tuned to the
special requirements of Unicode data.

Unicode compression DCC-98 March 24, 1998 Page 9

References
1. Bell, T.C., Cleary, J. G., and Witten,I. H., “Text Compression”, Prentice Hall, New Jersey, 1990

2. Burrows M. , Wheeler, D.J. (1994) “A Block-sorting Lossless Data Compression Algorithm”, SRC
Research Report 124, Digital Systems Research Center, Palo Alto.
gatekeeper.dec.com/pub/DEC/SRC/research-reports/SRC-124.ps.Z

3. Cleary, J.G. , Teahan, W.T., Witten, I.H, “Unbounded length contexts for PPM”, Data Compression
Conference, DCC-95, pp 52–61

4. Cleary, J.G. Witten, I.H. (1984) “Data compression using adaptive coding and partial string
matching”, IEEE Trans Communications, COM-32, vol 4, pp 396–402.

5. Fenwick, P.M. “The Burrows–Wheeler Transform for Block Sorting Text Compression — Princi-
ples and Improvements”, The Computer Journal, Vol 39 No 9 (1996), pp 731–740.

6. M. Nelson. “Arithmetic coding and statistical modelling”, Dr Dobbs Journal, Feb 1991. Anon-
ymous FTP from wuarchive.wustl.edu/systems/msdos/msdos/ddjmag/ddj9102.zip

7. Seward, J. “The BZIP compressor” posted to comp.compression.research newsgroup, (1996).

8. Witten, I., Neal, R., and Cleary, J., “Arithmetic coding for data compression”, Communications of
the ACM, Vol 30 (1987), pp 520-540.

9. —, The Unicode Standard , Version 2.0, The Unicode Consortium, Addison-Wesley

Appendix 1. UTF-8 Coding
UTF-8 coding gives a way of representing UCS-2 characters (16-bit) and UCS-4

characters (32 bit) within an 8-bit code stream. ASCII characters are represented un-
changed, while others are packed into groups of bytes.

data
bits Input bit pattern coding into successive bytescoding into successive bytescoding into successive bytes

7 0…0 abc defg 0abc defg

11 0…0 abc defg hijk 110a bcde 10fg hijk

16 0…0 abcd efgh ijkl mnop 1110 abcd 10ef ghij 10kl mnop

Figure A1. UCS-2 and UTF-8 coding.

A standard ASCII character is emitted “as is” in UTF-8 with a high-order 0 bit. Lar-
ger values are broken into 6-bit groups, from the least significant bit. Each group except
the most significant is prefixed by the bits “10” and emitted as a byte. The first byte
starts with as many 1’s as there are bytes in the code, followed by a 0 (a unary code).
Only 2-byte and 3-byte codes are used for UCS-2 characters. (UTF-8 can also handle
32-bit UCS-4 codes and some extended alphabets.)

Unicode compression DCC-98 March 24, 1998 Page 10

Appendix 2. The LZU compressor

The compressor was designed as one which could operate in both 8-bit and 16-bit
modes, to gain some idea of possible benefit from a compressor specifically designed
for Unicode. It has a conventional sliding window buffer holding the previous 8,192
characters. The window is scanned by a fast string matcher, with a hash table leading to
lists linking starts of similar phrases. In 8-bit mode single bytes are read into the low-
order byte of the 16-bit characters in the buffer, while in 16-bit mode two bytes are read
for each character, in big-endian order. All string searching is done on the 16-bit quan-
tities (C unsigned short). There is no claim that LZU is an especially good LZ-77
compressor; its sole purpose is operate in both 8- and 16-bit modes.

Output coding consists of control flags followed by either phrase codes or various
literal codes —

• 0 d dddd dddd dddd L…L A phrase, with a 0 flag, a 13 bit displacement and then
the length using an Elias γ code (or Levenstein code).

• 10 x xxxx A “5-bit literal” code. This code is used where the
more-significant bits are the same as for the previous
character. It is especially useful when handling mono-
case ASCII letters or equivalent.

• 110 xxxx xxxx An “8-bit literal” code, similar to the 5-bit code. This
is the “last resort” coding for the 8-bit mode; in the 16-
bit mode it is used when the character belongs to the
previous Unicode block of 256 characters.

• 111 xxxx xxxx xxxx xxxx A “16-bit literal” code, used for general Unicode char-
acters.

As noted earlier, the 16-bit compression suffers if the the sliding window buffer uses
big-endian byte alignment but the compressor is used on little-endian files. Compres-
sion would also improve in 16-bit mode if the flags coding was reallocated, with a
shorter code for 16-bit literals.

In retrospect, the compressor should have been designed to default to little-endian
files, instead of the big-endian files which it now prefers. A production design should
of course read the byte order mark and adjust automatically to the file characteristics.

Unicode compression DCC-98 March 24, 1998 Page 11

Appendix 3 — Unicode Standard 2.0 Code Blocks
The Unicode Standard 2.0 code blocks are presented here. Detailed information on

the standard is in Reference 9.

Code Range Name Code Range Name
U+0000-U+007F C0 Controls and Basic Latin U+2190-U+21FF Arrows

U+0080-U+00FF C1 Controls & Latin-1 Supplement U+2200-U+22FF Mathematical Operators

U+0100-U+017F Latin Extended-A U+2300-U+23FF Miscellaneous Technical

U+0180-U+024F Latin Extended-B U+2400-U+243F Control Pictures

U+0250-U+02AF IPA Extensions U+2440-U+245F Optical Character Recognition

U+02B0-U+02FF Spacing Modifier Letters U+2460-U+24FF Enclosed Alphanumerics

U+0300-U+036F Combining Diacritical Marks U+2500-U+257F Box Drawing

U+0370-U+03FF Greek U+2580-U+259F Block Elements

U+0400-U+04FF Cyrillic U+25A0-U+25FF Geometric Shapes

U+0530-U+058F Armenian U+2600-U+26FF Miscellaneous Symbols

U+0590-U+05FF Hebrew U+2700-U+27BF Dingbats

U+0600-U+06FF Arabic U+3000-U+303F CJK Symbols and Punctuation

U+0900-U+097F Devanagari U+3040-U+309F Hiragana

U+0980-U+09FF Bengali U+30A0-U+30FF Katakana

U+0A00-U+0A7F Gurmukhi U+3100-U+312F Bopomofo

U+0A80-U+0AFF Gujarati U+3130-U+318F Hangul Compatibility Jamo

U+0B00-U+OB7F Oriya U+3190-U+319F Kanbun

U+0B80-U+0BFF Tamil U+3200-U+32FF Enclosed CJK Letters and Months

U+0C00-U+0C7F Telugu U+3300-U+33FF CJK Compatibility

U+0C80-U+0CFF Kannada U+4E00-U+9FA5 CJK Ideographs

U+0D00-U+0D7F Malayalam U+AC00-U+D7A3 Hangul Syllables

U+0E00-U+0E7F Thai U+D800-U+DB7F High Surrogates

U+0E80-U+0EFF Lao U+DB80-U+DBFF High Private Use Surrogates

U+0F00-U+0FBF Tibetan U+DC00-U+DFFF Low Surrogates

U+10A0-U+10FF Georgian U+E000-U+F8FF Private Use Area

U+1100-U+11FF Hangul Jamo U+F900-U+FAFF CJK Compatibility Ideographs

U+1E00-U+1EFF Latin Extended Additional U+FB00-U+FB4F Alphabetic Presentation Forms

U+1F00-U+1FFF Greek Extended U+FB50-U+FDFF Arabic Presentation Forms-A

U+2000-U+206F General Punctuation U+FE20-U+FE2F Combining Half Marks

U+2070-U+209F Superscripts and Subscripts U+FE30-U+FE4F CJK Compatibility Forms

U+20A0-U+20CF Currency Symbols U+FE50-U+FE6F Small Form Variants

U+20D0-U+20FF Combining Diacritical Marks U+FE70-U+FEFF Arabic Presentation Forms-B

U+2100-U+214F Letterlike Symbols U+FF00-U+FFEF Halfwidth and Fullwidth Forms

U+2150-U+218F Number Forms U+FFF0-U+FFFF Specials

Figure A2. Unicode Symbol Allocation

Unicode compression DCC-98 March 24, 1998 Page 12

