
Punctured Elias Codes for variable-length
coding of the integers

Peter Fenwick

Technical Report 137

ISSN 1173-3500

December 5, 1996

Department of Computer Science, The University of Auckland,
Private Bag 92019, Auckland, New Zealand

peter-f@cs.auckland.ac.nz

Abstract

The compact representation of integers is an important problem in areas such as data

compression, especially where there is a nearly monotonic decrease in the likelihood of

larger integers. While many different representations have been described, it is not always

clear in which circumstances a particular code is to be preferred. This report introduces a

variant of the Elias γ code which is shown to be better than other codes for some

distributions.

1. Compact integer representations

The efficient representation of symbols of differing probabilities is one of the classical problems

of information theory and coding theory, with efficient solutions known since the early 1950’s

(Shannon-Fano and Huffman codes[9]). In traditional, non-adaptive, coding we assume a

priori probabilities of the input symbols and construct suitable codes to represent those symbols

efficiently. There is no necessary or simple relation between a symbol and its representation.

Here we are concerned with a different problem, especially as the symbol alphabet (integers of

arbitrary upper bound) may be so large as to preclude the formal construction of an efficient

code. Given an arbitrary integer we wish to represent it as compactly as possibly, preferably by

an algorithm which recognises only the magnitude and bit pattern of the integer (no table look-

up or mapping needed). Equally, a simple algorithm should be able to recover an integer from

an input bit stream, even if that particular integer has never been seen before. The binary

representation of the integer is often visible within the representation and other information is

appended to indicate the length or precision. Many variable-length representations have been

described; here we concentrate on just a few, emphasising those which have a simple relation

between code and value and are instantaneous or nearly so.

Following Elias[3], we first introduce two preliminary representations which are relatively

unimportant per se, but are used in many other codes.

• α(n) is the unary representation, n 0’s followed by a 1 (or 1’s followed by a 0)

• β(n), is the natural binary representation of n, from the most significant 1.

1.1 Levenstein and Elias γγγγ Codes

These codes were first described by Levenstein[11], but the later description by Elias[3] is

generally used in the English language literature. Elias describes a whole series of codes, with

the α and β codes already described. His γ code writes the bits of the β code (the binary

representation) in reverse order, with each preceded by a flag bit. All except the last flag bit are

0, with the last flag bit a 1 and implying the most-significant 1. Thus 13 is represented as

0100011, with the flag bits underlined. The γ' code is permutation of the γ code, with the flag

bits (an α code) preceding the data bits (a β code). With this code, 13 is written as 0001101 (the

terminator of the α code doubles as the first bit of the β code). For most of this document the

term “Elias γ code” will be used interchangeably for the two variants; often it will actually mean

the γ' code.

An integer of N significant bits is represented in 2N+1 bits, or an integer n is represented by

2log n+1 bits1 . (It is convenient to ignore the floor and ceiling operators in future discussions

1 All logarithms will be to base 2, without stating an explicit base.

Tech Rep 137 December 5, 1996 page 1

to simplify the mathematics. Most of the discussion involves only order of magnitude

considerations, or averages over many symbols so that precise values are relatively unimportant.

We therefore say that an Elias code represents an integer n in 2 log n+1 bits.)

n code n code
1 1 11 0001011

2 010 12 0001100

3 011 13 0001101

4 00100 14 0001110

5 00101 15 0001111

6 00110 16 000010000

7 00111 17 000010001

8 0001000 18 000010010

9 0001001 19 000010011

10 0001010 20 000010100

100 0000001100100 250 000000011111010

Table 1. Example of Elias' γ' code.

The γ code can be extended to higher number bases where such granularity is appropriate. For

example, numbers can be held in byte units, with each 8-bit byte containing 1 flag bit (last-

byte/more-to-come) and 7 data bits, to give a base-128 code.

1.2 Elias ωωωω and Even-Rodeh codes
All of the codes described here have a length part and a value part. In the γ code the length is

given in unary; a natural progression is to specify the length itself in a variable-length code.

Elias does this with his δ code, using a γ code for the length, but quickly proceeds to his ω

codes. Some very similar codes were described by Even and Rodeh[4] and it is convenient to

treat the two in parallel. Both of the codes have the value (as a β code) preceded by a series of

length indications and followed by a 0 as a terminating comma.

Value Elias ω code Even-Rodeh code
0 — 000
1 0 001
2 10 0 010
3 11 0 011
4 10 100 0 100 0
7 10 111 0 111 0
8 11 1000 0 100 1000 0

15 11 1111 0 100 1111 0
16 10 100 10000 0 101 10000 0
32 10 101 100000 0 110 100000 0

100 10 110 1100100 0 111 1100100 0
1000 10 110 1100100 0 110 1100100 0

Table 2. Examples of Elias’ ω and Even-Rodeh codes.

Tech Rep 137 December 5, 1996 page 2

Some representative Elias ω codes are shown in Table 2, with the groups of bits separated by

blanks. Each length is followed by the most-significant 1 of the next length or value; the final

value is followed by a 0.

The codes are most easily described by giving the decoding process. For the Elias code, if a

group is followed by a 0, its value is the value to be delivered. If a group is followed by a 1, its

value is the number of bits to be read and placed after that following 1 to give the value of the

next group. Thus 15 is read as the sequence {3, 15} and 16 as {2, 4, 16}.

The Even-Rodeh code is similar, but with the following differences

1. Each group gives the total number of bits in the following group, not the number of bits

after the most significant 1.

2. A different starting procedure is used, with special considerations for the first 3 codes.

The Elias code is special for only the first value.

Both codes are especially efficient just before a new length element is phased in and inefficient

just after it is introduced, as for 15 and 16 in the Elias ω code. The codes alternate in relative

efficiency as their extra length components phase in at different values.

Values Elias Even-Rodeh

1 1 3

2 – 3 3 3

4 – 7 6 4

8 – 15 7 8

16 – 31 1 1 9

32 – 63 1 2 1 0

64 – 127 1 3 1 1

128 – 255 1 4 1 7

256 – 512 2 1 1 8

Table 3. Lengths of Elias’ ω and Even-Rodeh codes.

Bentley and Yao[2] develop a very similar code as a consequence of an optimal strategy for an

unbounded search, recognising a correspondence between the tests of the search and the coding

of index of the search target, but do not develop the code to the detail of either Elias or Even and

Rodeh

1.3 Golomb and Rice codes

The Golomb codes[8] are designed for the coding of asymmetric binary events, where a

probable event with probability p is interspersed with unlikely events of probability q (q = 1–p

and p>>q). The intention is to represent the sequence of events by encoding the lengths of the

Tech Rep 137 December 5, 1996 page 3

successive runs of the probable event. The Golomb codes have a parameter m, related to p by

pm = 0.5. A run of length n+m is half as likely as a run of length n, indicating that the codeword

for a run of length n+m should be one bit longer than that for a run of length n.

If m is a power of 2, the codeword for n is a simple concatenation of α(n/m) as a prefix with

the binary representation of n mod m to log m bits (ie α(n/m):β(n mod m). For other values of

m, let k be the smallest positive integer such that 2k ≥ 2m. The dictionary contains exactly m

codewords for every word length ≥ k, plus 2k–1–m words of length k–1; let j = 2k–1–m. The

first j codewords are represented in binary to k–1 bits and the next m codewords to k bits.

Larger values of n are represented by a prefix of α((n–p)/m), followed by β((n–j) mod m +

2j) to k bits. (The case power-of-2 code is a special case of the general rule.) The codeword

values increment to preserve continuity across the boundaries between blocks and as the new

block is formed by extending the low-order bits. The calculation of codeword bit patterns is

most easily seen using Iverson’s k-residue function[10], written in APL as bj n (the j-residue

of n modulo b). In C, the function is computed as j+(n–j)%b. With j = 2k–1–m, The

Golomb(m) code for n is given by the concatenation of the two codes α((n–j)/m):β((n–j)/m+2j).

m 1 2 3 4 5

n
0 0 00 00 000 000

1 10 01 010 001 001

2 110 100 011 010 010

3 1110 101 100 011 0110

4 11110 1100 1010 1000 0111

5 111110 1101 1011 1001 1000

6 1111110 11100 1100 1010 1001

7 11111110 11101 11010 1011 1010

8 111111110 111100 11011 11000 10110

9 1111111110 111101 11100 11001 10111

10 11111111110 1111100 111010 11010 11000

11 111111111110 1111101 111011 11011 11001

12 1111111111110 11111100 111100 111000 11010

13 11111111111110 11111101 1111010 111001 110110

14 111111111111110 111111100 1111011 111010 110111

15 1111111111111110 111111101 1111100 111011 111000

16 11111111111111110 1111111100 11111010 1111000 111001

17 111111111111111110 1111111101 11111011 1111001 111010

Table 3. Golomb codes for the first few integers and parameter m.

Rice codes[12] have a parameter k. To encode the value n, we first form m=2k and then n div

m and n mod m. The representation is the concatenation of (n div m) as a unary code and (n

mod m) in binary. An integer n is represented by n/2k + k + 1 bits, (in line with the

Tech Rep 137 December 5, 1996 page 4

approximations of the previous paragraph). A Rice(k) code is identical to the Golomb(2k)

code—the simplest case for coding. Representative Rice codes are shown in Table 4.

k 1 2 3 4 5 6

n
0 0 000 0000 00000 000000 0000000
1 10 001 0001 00001 000001 0000001
2 110 010 0010 00010 000010 0000010
3 1110 011 0011 00011 000011 0000011
4 11110 1000 0100 00100 000100 0000100
5 111110 1001 0101 00101 000101 0000101
6 1111110 1010 0110 00110 000110 0000110
7 11111110 1011 0111 00111 000111 0000111
8 111111110 11000 10000 01000 001000 0001000
9 1111111110 11001 10001 01001 001001 0001001
10 11111111110 11010 10010 01010 001010 0001010
11 111111111110 11011 10011 01011 001011 0001011
12 1111111111110 111000 10100 01100 001100 0001100
13 11111111111110 111001 10101 01101 001101 0001101
14 111111111111110 111010 10110 01110 001110 0001110
15 1111111111111110 111011 10111 01111 001111 0001111

Table 4. Rice codes for the first few integers and parameter k.

The Golomb and Rice codes tend to be very efficient for moderate values, but large values are

dominated by the long α code prefix, while small values are represented less efficiently than in

the Elias γ codes.

1.4 Start-Step-Stop Codes

These codes[7] are defined by three parameters {i, j, k}. The representation may be less clearly

related to the value than for Elias γ and Rice codes. The code defines a series of blocks of

codewords (β code) of increasing length, the first block with a numeric part of i bits, the second

with i+j bits, then i+2j bits and so on, up to a length of k bits. The groups of codewords have a

unary prefix giving the group number. Thus a {3, 2, 9} code has codewords with numeric parts

of 3, 5, 7 and 9 bits and prefixes of 0, 10, 110 and 111 (omitting the final 0 from the last

prefix). It looks like

Codeword Range
0xxx 0–7
10xxxxx 8–39
110xxxxxxx 40–167
111xxxxxxxxx 168–679

Table 5. Code values for a {3, 2, 9} start-step-stop code.

The start-step-codes can generate many of the other codes, or codes equivalent to them.

Tech Rep 137 December 5, 1996 page 5

Parameters generated code
k 1 k a simple binary coding of the integers, and
0 1 ∞ the Elias γ' code.
k k ∞ the base 2k Elias γ' code
k 0 ∞ a code equivalent to the Rice(k) code

1.5 Ternary Comma codes

All codes so far have used binary coding. If we consider bit-pairs we can represent the values

{0, 1, 2, comma}[5]. Table 6 shows the ternary comma code representation for the first few

integers and some larger ones, with “c” representing the comma.

value code bits value code bits

0 c 2 11 101c 8
1 0c 4 12 102c 8
2 1c 4 13 110c 8
3 2c 4 14 111c 8
4 10c 6 15 112c 8
5 11c 6 16 120c 8
6 12c 6 17 121c 8
7 20c 6 18 122c 8
8 21c 6 19 200c 8
9 22c 6 20 201c 8

64 2100c 10 1,000 1101000c 16
128 11201c 12 3,000 11010002c 18
256 100110c 14 10,000 111201100c 20
512 200221c 14 65,536 10022220020c 24

Table 6. Ternary codes for the various integers.

It will be seen later that the ternary code is one of the better ones for large values. It is also quite

simple to encode and decode. The comma principle can be extended to larger number bases, but

becomes increasingly inefficient for small values because the comma consumes a large amount

of code space but conveys only 1 bit of information. The higher radix Elias γ codes would seem

preferable.

2. The new “punctured” code

We start with the simplest of a family of new codes, called here P1. It is derived from the Elias

γ codes, but with some major differences. Like those codes, it has two variants. In the γ code

variant the data bits are written in reverse order with each 1 bit followed by a 0 for an “internal”

1 and a 1 for the most significant 1. Zeros are written “as is”, with no following bit. The γ'

variant has the data part written in reverse order (most-significant bit last) preceded by an α code

to indicate the number of 1 bits. It is not possible to merge the last bit of the prefix with the

numeric bit as is possible with the γ' code.

Tech Rep 137 December 5, 1996 page 6

The name “punctured code” is chosen by analogy with error correcting codes. A systematic

ECC codeword resembles an Elias γ' code in having a clearly identifiable natural representation

of its data, with added check bits to provide the error correction facility. A punctured ECC has

some of the check bits deleted to provide a shorter codeword, much as some of the unary length

bits of the Elias code are removed do provide the new code. The code described (especially that

corresponding to the γ' code) will be described as the P1 code.

For all cases except for a value of 0, the P1 codes start and stop with a 1 bit. If the represented

value is biased by 1, encoding not n but (n+1), and the doubled bit replaced by a single bit, we

obtain a variant of the punctured code, the “P2 code”.

Table 7 shows the representations for the first few integers, together with the Elias code for the

same value. The digit which marks the end of the prefix is shown in boldface; for the Elias code

it is also the most significant 1. As the Elias code has no representation for 0, it must often use a

“biased” version as shown in the table. Finally, the last column shows the advantage in bits in

using the new P2 code as compared with the biased Elias code.

Value P1 P2 Elias biased advantage (bits)P2
 Representation Rep Elias P1 P2

0 0 01 — 1 0 -1
1 101 001 1 010 0 0
2 1001 1011 010 011 -1 -1
3 11011 0001 011 00100 0 1
4 10001 10101 00100 00101 0 0
5 110101 10011 00101 00110 -1 0
6 110011 110111 00110 00111 -1 -1
7 1110111 00001 00111 0001000 0 2
8 100001 101001 0001000 0001001 1 1
9 1101001 100101 0001001 0001010 0 1

10 1100101 1101101 0001010 0001011 0 0
11 11101101 100011 0001011 0001100 -1 1
12 1100011 1101011 0001100 0001101 0 0
13 11101011 1100111 0001101 0001110 -1 0
14 11100111 11101111 0001110 0001111 -1 –1
15 111101111 000001 0001111 000010000 0 3
16 1000001 1010001 000010000 000010001 2 2
…
31 11111011111 0000001 000011111 00000100000 0 4
32 10000001 10100001 00000100000 00000100001 3 3
33 110100001 10010001 00000100001 00000100010 2 3

Table 7 Comparison of Punctured and Elias codes

For small values the punctured codes are often 1 bit longer than the biased Elias, but for large

integers they average about 1.5 log N bits, in comparison with the 2 log N bits of the Elias

codes.

Tech Rep 137 December 5, 1996 page 7

3. Comparison of representations

There is no “best” variable-length coding of the integers, the choice depending on the probability

distribution of the integers to be represented. A fundamental result of coding theory is that a

symbol with probability P should be represented by log(1/P) bits. Equivalently a symbol

represented by j bits should occur with a probability of 2–j. The two simplest functions which

produce a low value for large arguments n are a power function (n–x) and an exponential

function (x–n). In both cases normalising factors are needed to provide true probabilities, but

these do not affect the basic argument.

An Elias code represents a value n with about 2 log n+1 bits. The probability Pn of an integer n

should therefore be Pn ≈ n–2, showing that an Elias code is well-suited to power law

distributions and especially where the exponent is about –2.

A Rice code represents a value n with about (n/2k + k + 1) bits, so that log Pn ≈ n/2k + k + 1.

For a given k, we have that Pn ∝ 2–n, showing that the Rice code is suited to symbols following

an exponential distribution.

A punctured code is similar to an Elias code but with a somewhat unpredictable length. If all the

values with n significant bits are equiprobable, it represents those values with about 1.5 log n

bits on the average. A skewed distribution will emphasise smaller values which tend to have

fewer one bits and should reduce the average code length below that indicated.

Value Binary Elias Elias GGolombb Rice Ternary Punctuured

γ ω 2 3 4 2 3 4 std P1 P2
1 1 1 1 2 3 3 3 4 5 4 1 2

2 2 3 3 2 3 3 3 4 5 4 3 3

3 2 3 3 3 3 3 3 4 5 6 4 4

4 3 5 6 4 4 4 4 4 5 6 5 4

5 3 5 6 4 4 4 4 4 5 6 5 5

10 4 7 7 7 6 5 5 5 5 8 7 6

20 5 9 11 12 9 8 8 6 6 8 8 7

50 6 11 12 27 19 15 15 10 8 10 10 9

100 7 13 13 52 36 28 28 16 11 12 12 11

200 8 15 14 102 69 53 53 29 17 12 13 12

500 9 17 16 252 169 128 128 66 36 14 17 16

1,000 10 19 17 253 253 129 67 16 18 17

2,000 11 21 18 503 254 130 16 20 19

5,000 13 25 19 629 317 18 20 19

10,000 14 27 20 630 20 22 21

20,000 15 29 22 22 23 22

50,000 16 31 27 22 25 24

100,000 17 33 28 24 26 25

200,000 18 35 29 26 28 27

Table 8. Comparison of various representations – codeword lengths.

Tech Rep 137 December 5, 1996 page 8

Of particular importance to efficient coding is the codeword length for the most probable

symbols. A power-law distribution is dominated by just a few symbols and particularly by the

first. It is very skew and is best represented by a code such as the Elias code which is initially

very short. An exponential distribution however has its smaller values nearly equiprobable and

is best handled by a Rice code.

Table 8 compares codeword lengths for most of the codes for a range of values. Most of the

results are exact, with Golomb and Rice lengths omitted for extreme cases. Results for the new

punctured codes have been derived differently to allow for the irregular variation in length over

quite small ranges of values. The P1 and P2 have exact lengths for values of 10 or less. All of

the larger values are multiples of powers of 2, with fewer 1 bits and shorter codewords than

most values in their neighbourhood. The exact length is therefore augmented by about half the

number of least-significant zeros to approximate the average behaviour around the test value.

Important points from this table are

1. It is relatively easy to obtain good results for large values. The Elias ω, ternary and

punctured codes show little difference.

2. It is much harder to obtain a code which is good for small values. In many situations the

small values dominate and inefficiencies in their coding can dominate the performance.

For example, the ternary code, which is very good at large values, is quite poor for

small values.

3. It is difficult to have good performance at both large and small values. Of the traditional

codes, the γ and ω codes are good at small values, and the ternary and ω at large values.

The ω code though tends to be less efficient at intermediate values where new prefix

elements are introduced.

4. The present requirement

The need for variable length codes arose from work with the “block sorting” text compressor of

Burrows and Wheeler[1]. In that compressor the input file is first permuted and the permuted

text then processed by a Move-To-Front transformation or recoding. The symbols from the

MTF operation are then processed by a final statistical compressor. Burrows and Wheeler used

a Huffman coder, while other work has used arithmetic coders or a complex of arithmetic coders

for slightly better compression[6]. The question arises as to whether Elias or Rice codes might

be suitable in the final encoding stage.The symbol frequencies (from the MTF output) are

observed to follow an inverse power law, with the exponent usually about –2, indicating that an

Elias code is probably preferable to a Rice code.

Tech Rep 137 December 5, 1996 page 9

Most of the studies have been done apart from any actual compressor. A block sorting (or

Burrows Wheeler Transform) compressor was modified to accumulate statistics of the values

produced by the MTF operation for the files of the Calgary compression corpus, giving 256

code frequencies for each of the 14 files. These are then combined with the known

representation length for the values with each code to predict the effect of encoding each file

with each of the test coders. (The files have been preprocessed by a stage of run-encoding,

which has minor effects on most files but reduces PIC to about 20% of its original size, with a

corresponding increase in its stated entropy.) The results are shown in Table 9.

Entropy Elias γ Rice-2 Rice-3 Rice-4 Punct Punct-V2 SSS1.2.9
bib 2.30 2.44 2.50 2.53 2.72 2.50 3.01 3.00
book1 2.76 2.86 2.94 3.15 3.54 2.98 3.28 3.28
book2 2.40 2.49 2.60 2.72 3.00 2.58 3.03 3.01
geo 5.40 6.40 11.84 7.91 6.29 6.08 5.95 6.04
news 2.86 2.96 3.14 3.07 3.27 3.02 3.38 3.40
obj1 4.76 5.40 9.41 6.51 5.37 5.20 5.21 5.25
obj2 2.78 3.06 4.46 3.47 3.16 3.00 3.48 3.50
paper1 2.70 2.78 2.92 2.94 3.17 2.86 3.25 3.25
paper2 2.70 2.79 2.88 2.98 3.29 2.89 3.24 3.25
pic 3.58 3.79 4.11 3.72 3.80 3.81 3.99 4.05
progc 2.70 2.81 3.04 2.94 3.10 2.85 3.27 3.27
progl 1.98 2.17 2.28 2.29 2.45 2.22 2.82 2.81
progp 1.97 2.18 2.35 2.30 2.42 2.21 2.83 2.82
trans 1.68 1.98 2.10 2.05 2.14 2.00 2.69 2.68
Averages - 2 . 9 0 3 . 1 5 4 . 0 4 3 . 4 7 3 . 4 1 3 . 1 6 3 . 5 3 3 . 5 4

Table 9. Coding the Calgary Corpus files

There are several points to note

1. The Rice codes are definitely not optimal for this application

2. The Elias (gamma) code is generally well matched to the symbol distribution, with

overall compression to within 10% of the entropy.

3. The newer, punctured, codes are best for the binary files (geo, obj1, obj2)

To see the reason, consider the two files Paper1 (text) and geo (binary), whose symbol

distributions are shown in Figure 1.

Paper1

100000

10000

1000

100

10

1 128643216842
1

Code value

Code
frequency

100000

10000

1000

100

10
2561286432168421

Code value

Code
frequency

geo

Figure 1 Code frequencies for PAPER1 and GEO

Tech Rep 137 December 5, 1996 page 10

PAPER1 has a generally smooth variation in code frequency against code value, closely

following freq≈val–2, while GEO tends to much higher frequencies for larger values. More to

the point, we can show for these files the number of bits to represent the codes according to

their frequencies and compare that with the corresponding codeword lengths for each of the

codes. These comparisons are shown in Figure 2. In this Figure the code lengths are all

smoothed. Their true values are discontinuous and the multiplicity of stepped functions makes

the graph hard to understand. The graphs are obtained by joining the length for value=1, the

midpoints of the step “risers” for small values, and selected midpoints at large values (especially

for the Rice code)

16

8

4

2

1

2561286432168421
value

geo

bits

paper1

16

8

4

2

1

bits

Paper1
and
Gamma

P2 code

P2,
Rice(4)
and Geo

 Elias Gamma

Rice(4) code

Figure 2. Comparison of Elias, Rice and Punctured codes for encoding Corpus files

Important points from Figure 2 are –

1. The Elias gamma code is a good match to the PAPER1 codes (both approximate an

inverse square function)

2. The P2 code (modified punctured) is a good fit to the GEO data

3. The Rice(4) code is the best of all the codes for mid-range values (5 < value< 120), but

is longer for both small values and for large values. The greater length for small values

is especially important because of their very high frequency; inefficiencies in coding

these values dominate the file encoding.

Tech Rep 137 December 5, 1996 page 11

5. Conclusions

The Elias γ code is confirmed as a good overall code for compressing the data from the block

sorting compressor. However better compression is achieved with P1 or P2 codes for binary

files. The two can be combined by encoding all files with a γ code initially, but switching to a

punctured code as soon as a symbol is found greater than 127. With this change the average

compression should improve from 3.15 to about 3.10 bit/byte. In files where binary and text

occur in alternating blocks there may be an advantage in switching back to the γ code if no non-

text value has been seen for perhaps 8 symbols.

References
1. M. Burrows and D.J. Wheeler, “A Block-sorting Lossless Data Compression Algorithm”, SRC Research

Report 124, Digital Systems Research Center, Palo Alto, May 1994
gatekeeper.dec.com/pub/DEC/SRC/research-reports/SRC-124.ps.Z

2. J.L. Bentley, A.C. Yao, “An almost optimal solution for unbounded searching”, Info. Proc. Letters, Vol 5,
No 3, pp 82–87 Aug 1976

3. P. Elias, “Universal Codeword Sets and Representations of the Integers”, IEEE Trans. Info. Theory , Vol IT
21, No 2, pp 194–203, Mar 1975

4. S. Even, M. Rodeh, “Economical Encoding of Commas Between Strings”, Comm ACM , Vol 21, No 4, pp
315–317, April 1978.

5. P.M. Fenwick, “Ziv-Lempel encoding with multi-bit flags”, Proc. Data Compression Conference, DCC-93,
Snowbird, Utah, pp 138–147, Mar 1993

6. P.M. Fenwick, “Block sorting text compression”, Australasian Computer Science Conference, ACSC’96 ,
Melbourne, Australia, Feb 1996.
 ftp.cs.auckland.ac.nz /out/peter-f/ACSC96.ps

7. E.R. Fiala, D.H. Greene, “Data Compression with Finite Windows”, Comm ACM, Vol 32, No 4, pp
490–505 , April 1989

8. S.W. Golomb, “Run-Length Encodings”, IEEE Trans Info. Theory, Vol 12 pp 399–401 1966.

9. D.A. Huffman, “A method for the construction of minimum-redundancy codes”, Proc IRE , Vol 40, pp
1098–1101, 1952

10. K.E. Iverson, “A Programming Language” Wiley, 1962

11. V.E. Levenstein, “On the redundancy and delay of separable codes for the natural numbers”, Problems of
Cybernetics, Vol 20, pp 173–179, 1968.

12. R.F. Rice, “Some Practical Universal Noiseless Coding Techniques”, Jet Propulsion Laboratory, JPL
Publication 79-22, Pasadena California Mar 1979

Tech Rep 137 December 5, 1996 page 12

Appendix. Some new codes

Some new codes were discovered during the work for this report. They were really extra to the

proposed intent of the report and it has been decided to leave their full investigation for a student

project; for now they are just presented.

A.1 Modified Ternary Code

The ternary code suffers at small values from the added two comma bits. A modification allows

it to handle these values more efficiently, at the cost of lower efficiency for large values. The

first two bits are used to encode values and control the interpretation as

bits Meaning
00 value 0
01 value 1
10 value 2, 3, 4, 5 in next digit 0, 1, 2, 3
11 use comma-delimited string

The modified and simple ternary codes are shown in Table A.1. The modified code is often

better than the standard ternary code for values up to and including 14 (and is never worse), but

is always 2 bits longer for larger values.

value Ternary modified value Ternary modified
code bits code bits code bits code bits

0 c 2 0 2 11 101c 8 312c 8
1 0c 4 1 2 12 102c 8 320c 8
2 1c 4 20 4 13 110c 8 321c 8
3 2c 4 21 4 14 111c 8 322c 8
4 10c 6 22 4 15 112c 8 3100c 10
5 11c 6 23 4 16 120c 8 3101c 10
6 12c 6 30c 6 17 121c 8 3102c 10
7 20c 6 31c 6 18 122c 8 3110c 10
8 21c 6 32c 6 19 200c 8 3111c 10
9 22c 6 310c 8 20 201c 8 3112c 10

64 2100c 10 32011c 12 1,000 1101000c 16 31100211c 18
128 11201c 12 311112c 14 3,000 11010002c 18 311002220c 20
256 100110c 14 3100021c 16 10,000 111201100c 20 3111201011c 22

512 200221c 14 3200202c 16 65,536 10022220020c 24 310022220001c

Table A.1. Ternary codes, simple and modified, for various integers.

A.2 Variable radix γγγγ codes

The Elias γ codes are excellent for representing small values, but larger values have

representations which are dominated by the leading α code. The Elias ω, Even-Rodeh and P1

codes all attempt to reduce the effect of the prefix. This section introduces another approach. It

was mentioned in Sections 1.1 and 1.4 that the γ code could be extended to higher radices. In

Tech Rep 137 December 5, 1996 page 13

general these high radix γ codes are very efficient indeed at representing large values, but are

quite inefficient for small values. The suggestion is that the radix should vary across the

number, starting at 2 (the standard γ code) and increasing as more digits are known.

To illustrate a possible code, we consider the value 123410 = 100 1101 00102 or, bit-reversed,

0100 1011 001. The bits are collected in groups of successively 1, 2, 3, … bits and each

preceded by a leading more/last flag, giving the representation 00 010 0010 01100 110000.

(The last group of bits must be padded out to the appropriate length.) An alternative grouping

might be 00 01 000 0101 0100 1100, using groups of 1, 1, 2, 2, 3, 3, …. The decoding

process starts reading very few bits at a time, but progressively more and more as the value

grows.

The variable radix γ code can be described by a generalisation of the start-step-stop codes,

where the step is a function of the internal block size, block number or bits read. For full

generality we can replace the original code {i, j, k} specification with { i, F(λ), k : λ}, where λ

is in the nature of a var parameter which returns the bits read. The number of codes is limited

only by ingenuity in devising the function F(λ). A particularly simple function F(λ) = λ/d 

looks useful.

Tech Rep 137 December 5, 1996 page 14

