Burrows Wheeler - Alternatives to Move to Front
Dr Peter Fenwick
Dr Mark Titchener
Michelle Lorenz

Department of Computer Science, The University of Auckland,
Private Bag 92019, Auckland, New Zealand
p.fenwick@auckland.ac.nz
mark@tcode.tcs.auckland.ac.nz

mlor009Q@ec. auckland.ac.nz

1 Abstract

The Burrows Wheeler Transform, first published in 1994 [2|, is a relatively new approach
to text compression and has already proven to produce excellent results. However, there
has been much research directed towards improving the efficiency of the Move to Front
algorithm|7, 1, 4] with varying degrees of complexity. This paper examines a relatively
simple technique using a cached modeling system and achieves very promising results. In-
formation loss during the Burrows Wheeler Transform is also examined using Deterministic
Information Theory measuring techniques. This provides an interesting insight into what is
actually occurring during the complete Burrows Wheeler Transform and can confirm whether
manipulating the MTF algorithm is the correct approach to refining an already successful

compression scheme

2 Introduction

Unlike conventional statistical compression schemes, the Burrows Wheeler transform itself
does not compress the data input stream but rather converts it into a more amenable format
for another compression method. The permuted output from the BW'T has the property of
grouping characters together. Conventionally this is then passed to a MTF algorithm with

the intention of further reducing the data before encoding it with a variable length coder.

The MTF coder produces a highly skewed symbol distribution, with 0 consistently prominent
and the higher positions/symbols usually not occurring more than twice. Much research has

been focused on refining the MTF, most based on controlling when to move the symbol

to the front of the stack. This paper takes a different approach. Instead of attempting to
improve the MTF algorithm it examines two relatively simple methods, based on models
suggested by Fenwick [4] and Balkenhol [1] for manipulating the permuted data to produce
better probability estimates for the variable length coder. These are discussed in detail in

Section 4.

In order to employ an efficient alternate method a clearer insight of the actual information
content and/or loss after the Burrows Wheeler and MTF algorithms need to be established.
Titchener has developed a highly useful tool using deterministic information theory, first
published in [6], for measuring information over a finite string. Deterministic IT can be
used to calculated the complexity, information and entropy associated with any finite string
and will be referred to as T-complexity, T-information and T-entropy respectively to disallow

any confusion with classical measurements.

The information measure is based on recursively decomposing a finite string into a set of
highly synchronous codewords. The complexity of the string, the T-Augmentation, is then
represented by the number of steps required to recursively construct the string from its

alphabet and is measured in taugs.

The T-augmentation is effectively a string production rule for the longest strings and the

number of applications required to construct these strings.

The T-information of a string is the deterministic information content of a string s referred
to as I4e(s). It is calculated as the inverse logarithmic integral of the string corresponding

to the deterministic complexity Cge(s). That is
Liet(1i™" (Caer(s)) (6]

T-information is measured in symbols/per symbol known as nats.

Furthermore Titchener has also defined a third information measure, T-entropy. T-entropy

is represented as

It is the rate of change of T-information 77 along a string L, and will be used to measure

the average T-entropy over a file.

In order to analyze the string the DIT software tcalc[6] will be used to produce the T-
complexity, T-augmentation, T-entropy on selected files during the various stages of the

complete compression process.

Entropy Measurements during Burrows Wheeler Transform over Calgary Corpus
T T T T T T T T T T T

35F N mn N n

25

T-Entropy (nats/symbol)
~
T

15

| W m‘
0 n L L

I n I n I n I n I n
bib bookl book2 geo news objl obj2 paperlpaper2 progc progl progc trans

Figure 3.1: T-entropy
3 Information over the Burrows Wheeler Transform

Entropy measurements were taken over a standard BW'T compression algorithm.

Figure 3.1 shows the T-entropy after each of the four steps, over selected files from the
Calgary Corpus. For each file, the first (left-hand) bar shows the T-entropy for the input
file, in nats per symbol. As a value of 4.0 implies chaotic data, these values should be doubled
(actually times 7/4 for 7-bit ASCII data) to get the more usual measure of bits/byte, or
bits/character.

The second bar shows the T-entropy after the Burrows Wheeler transform. For most files
the T-entropy for the transformed file is slightly higher than for the unpermuted input.
(The exceptional file, geo from the Calgary corpus, contains binary data with other unusual

characteristics.)

The third bar of each group shows that the T-entropy is usually reduced by the Move To
Front stage.

The fourth bar shows the information of the final compressed output. Given that an ideal
compressor gives completely random output and that completely chaotic data has a T-
entropy of 4 nats/symbol, a T-entropy of 3.6 implies that a possible 10% gain in compression
might be still available from an optimum compressor. The heights of these bars therefore
indicate the quality of the final compression.

While there are only minor variations in T-entropy values in the three files prior to the final
encoding, it would seen that BW'T tends to add extra information and after applying the

MTF this information is then lost again. Under further experimentation these characteristics

were verified using files of consistent size, type and alphabet size, confirming that these

property generally hold true for any files.

Despite no variation in file size, there is a consistent decrease in entropy between the BWT
and MTF stages. While the BWT adds small quantities of information, the MTF efficiently
utilizes the structure of the BW'T, producing an output with significantly lower overall in-
formation content, making it ideal for compression. An explanation for these traits is offered
in section 5. Because at the MTF stage the data is completely permuted and contains no
contextual information, this verifies it is feasible for efforts to be directed towards improving

this step.

4 Dual modeling of Move to Front data stream

Applying the MTF algorithm after the BW'T creates a highly skewed symbol distribution
bearing zero similarities to the original file. Effectively MTF ranks the symbols such that
0 will have a very high statistical value as will 1, but this will rapidly decrease. Figure
4.1 compares the MTF symbol distribution against the original alphabet over the file book1
taken from the Calgary corpus. Due to distortion created by the high values of the front
symbols, the logarithmic frequencies were taken. The distribution of the original file displays
an approximate constant inversely proportional relationship between logarithmic frequency
and ranked symbol. However, the MTF can almost be modeled by an inverse exponential

function. It has a few highly frequent symbols, but the majority occur only a few times.

Despite this distributive property, the entire MTF input stream is conventionally repre-
sented in one model and usually encoded with an arithmetic encoder. However, this symbol
distribution could be better utilized by separating the alphabet into two models before the

final encoding.

One method suggested by Fenwick relies on a cache system [4], where the most probable
symbols are stored in a prominent foreground model, and the bulk remaining symbols stored

in a larger background model.

Theoretically this approach will allow for superior compression as better probability esti-
mates can be achieved because the context of the highly probable symbols in the foreground

model will not be distorted by the more skewed background model.

In a dual modeled representation of the MTF data, successful compression is assured by

providing the decoder a means of knowing when to switch between models. Because most

Symbol Frequency Distribution over 'book1’ and Move To Front
14 T T T T

T T
Original Text file —
Move To Front -----

12

Log(Symbol Frequency)

L L L \ L L L
0 10 20 30 40 50 60 70 80

Figure 4.1: Symbol Distribution on original file and after the MTF Transform

symbols should be encountered in the cached foreground model, both the encoder and de-
coder assume its state by default. If a background symbol is encountered the encoder emits
a special ESCAPE symbol from the foreground model, informing the decoder to switch

models before then encoding the symbol in the background model.

Ideally as with PPM [5]the probability of the ESCAPE will be tailored to predict an UN-
KNOWN or background model symbol. For demonstration purposes this symbol has been
represented as an extra addition to the cached alphabet. Its probability is determined by

its frequency.

A similar approach has been suggested by Balkenhol|1] where encoded in the original ASCII
alphabet instead of the conventional MTF. In addition further enhancements are made to
the cache with provisions to ensure a symbol is only moved to the very front and assigned
zero, if the adjacent symbols are the same. This method has the drawback of increased
computational insensitivity, as the original ASCII text of the background model must be

computed and stored additionally in memory throughout the program.

Figure 4.2 shows the typical results when varying the size of the foreground model for both
methods on the file bookl. The x-axis demonstrates the foreground model size while the

y-axis displays the bits per byte performance.

With the exception of geo all other files rendered similar behavioral patterns. It becomes
clear that using a cache system approach yields better compression. However, the optimal
model size varies for each file and method. Preliminary statistics suggest the optimal cache

size is a function of the file’s alphabet size and type.

It appears the straight MTF cache delivers slightly better results than the latter method

Performance comparison of Cache Models over 'book1’

2.6 - T T T T T T T T T
' MTF cache —
'. Ternary Model - - - -
2.55 —
25 F - .
Bits/Byte - .
2.45 —,/’(/,// _
2.4 - T a
235 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100
Size of Cache

Figure 4.2: Bits per byte performance on varying foreground model size

suggesting the information content of the ASCII background model is more skewed than the
MTF data.

A compression performance summary for both methods at their optimal points is displayed
in table 4.2 and compared against the BW'T results achieved by Wirth using PPM. Because
no consistent correlation between optimal cache size and performance was evident, it is
envisioned that the encoder will have to make an initial pass over the file to determine an

ideal cache size to use and transmit this additionally to the decoder.

The results from Table 4.2 allow for two definite conclusions. Firstly, the straight cached
modeling system consistently performs equal or better than the ternary modeling technique.
Considering the complexity involved with the ternary model, it would be logical to focus
further refinement on the bare cached model. Secondly, in comparison with Wirth’s results,
the overall average reveals an approximate equal if not slightly superior outcome. This is very
promising for a relatively simple technique that has much potential for further refinement,
such as efficient coding of the ESCAPE symbol, suggesting improvements are viable and

faster than comparable methods.

File MTF cache | Ternary Cache | Wirth
bib 1.953 1.965 1.998
bookl | 2.376 2.384 2.330
book2 | 2.033 2.044 2.012
geo 4.593 4.578 4.390
news 2.488 2.506 2.487
objl 3.850 3.906 3.811
obj2 2.470 2.487 2.514
paperl | 2.460 2.480 2.492
paper2 | 2.411 2.425 2.424
progc 2.499 2.529 2.518
pic 0.758 0.765 0.743
progl 1.717 1.730 1.763
progp 1.718 1.739 1.792
trans 1.502 1.518 1.622
| Average | 2.345 | 2.361 | 2.350 |

Table 4.2: Compression comparison of cached models against Wirth
5 Analysis of Information

This section focuses on understanding the behavior of the information contents particularly
after the BWT and MTF stage.

Section 3 already established the move-to-front algorithm undergoes information loss despite
size remaining unchanged. This is expected as the algorithm generally will reduce the

alphabet size and produce a very skewed symbol probability distribution.

Curiously the BWT consistently tends to gain slight quantities of information, despite being
approximately the same size. To attempt to understand this somewhat counter-intuitive
trait, the actual structure of the file needs to be considered as well as how the information
content varies throughout. A 50Kb text block was taken from book! and analyzed more
closely. Figure 5.1 models the continuous T-entropy along the BWT output. In comparison
the T-entropy across the original file is also included as well as the output from the MTF.
T-entropy is shown in the y-axis, while the x-axis shows the file position. Immediately the
behavioral difference between the BWT and original file is evident. The original file has a
relatively consistent T-Entropy, while the T-entropy from the BWT fluctuates continually
[3], a trait reflected by the MTF. This property can be explained when considering the
actual structure of BWT. Because BW'T clumps characters together a typical string might

Typical T-Entropy across a 50Kb text block
T T T

24

T-Entropy

0.4

1 1 1 1 1
0 10000 20000 30000 40000 50000 60000
File (bytes)

Figure 5.1: View of information rate along a singular transformation. Due to the permuta-
tions there is no relationship/pattern between the original and transformed files

contain:

efef feefeeeeeeeeceeeeeeeeeeeeceeeeaeaeanaaaaaaaaaad

T

Imagine the entropy at the point detonated by the arrow. The encoder has already seen
numerous e’s and with each successive e the entropy drops, then suddenly an unexpected
symbol, a, is encountered causing the T-entropy to increase dramatically due to the addition
of the previously unseen symbol. Then with each successive a the entropy steadily drops until
the next (new) symbol is encountered. Another property that becomes evident is the MTF
file approximately mirrors the BW'T, but at a lower information level. This is consistent
with the aforementioned theory. Consider the following typical two sample output streams
from a BWT and MTF respectively:

aaaaaaaabababbbbbbbbbbbb, b, b, , ., ..., ,,,,22222222222222%
T T T
0000000011111000000000002111100000000000300000000000000
T T T

It is observed that the MTF algorithm will introduce a new symbol to its alphabet at
approximately the same point as the BWT. The lower information value is accounted for

by a generally smaller alphabet and a skewed distribution, i.e. a higher value of 0’s and 1’s

than other symbols.

5.1 Summary

Using the information measurement techniques proposed by Titchener [6] a clearer under-
standing of informational changes during BWT compression has been obtained, specifically
information loss during the BWT and MTF stages. While the BWT adds small quantities
of information, the MTF efficiently utilizes the structure of the BWT. The behavioral con-
tent along both streams produces a similar pattern with the MTF producing a significantly
lower overall information content, making it very suitable for compression. The mirrored
behavior of T-entropy along both streams implies similarities in structure and indicate both,

especially the MTF contain little contextual information.

6 Conclusions

By utilizing the information measurements tools developed by Titchener [6] a clearer un-
derstanding of informational changes over BWT has been established. Most importantly
MTF loses information making it amenable for compression, however it also contains little
contextual structure. Therefore, efforts have been focused on developing a better represen-
tation of the MTF stream. Two methods were considered. The best method, proposed by
Fenwick, employed a simple cache system where the prominent symbols were encoded in
the foreground model and the remaining symbols encoded in a separate background model,
allowing for better probability estimates. The cached system fractionally out-performed

results achieved by Wirth and holds promise for further improvements.

References

[1] Bernhard Balkenhol and Yuri M. Shtarkov. One attempt of a compression algorithm
using the bwt. Technical report, Bielefeld University, Postfach 100 131, 44501 Bielefeld,

Germany.

[2] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm. Src
research report 124, Digital Systems Research Center, 130 Lytton Avenue, Palo Alto,
California 94301, May 1994.

[3] Sebastian Deorowicz. Second step algorithms in the burrows-wheeler compression algo-
rithm. Software-Practice and Fxperience: 2002; 32:99-111, 2001.

[4] Dr Peter Fenwick. Block sorting text compression - final report. Technical Report 130
ISSN 1173-3500, University of Auckland, Department of Computer Science, Auckland,
1996.

[5] Timothy C. Bell ITan Witten, Alistair Moffat. Managing Gigabytes. Morgan Kaufmann
Publishers, 1999.

[6] Dr Mark R Titchener. Deterministic computation of string complexity, information and
entropy. Third International Conference on Information Theoretic Approaches to Logic,

Language and Computation, June 16-19 1998. Histou, Taiwan.

[7] Anthony Ian Wirth. Symbol-driven compression of burrows wheeler transformed text.
Master’s thesis, The University of Melbourne, 2000.

10

