
Queue Prediction: an efficient scheduler for fast ATM cell
transmission

Peter Fenwick
Department of Computer Science, The University of Auckland,

Private Bag 92019, Auckland, New Zealand

 peter-f@cs.auckland.ac.nz

Abstract.
A central problem in ATM switches is the selection

of cells to be transmitted on an output line. In general
each line has a number of queues, all of which must be
handled in a timely manner to provide throughput for
each circuit and guarantee its required quality of
service. While the problem of the queuing disciplines
has been addressed, many of the solutions are
computationally complex and appear to be difficult, if
not impossible within the time constraints of fast ATM
transmission (622 Mbps or higher).

This paper presents a solution to this problem. By
scheduling in advance the transmissions from queues
it allows all output queues for a line to be serviced
with minimal overhead and with timings appropriate
to each specific queue.

Desirable queuing strategies follow automatically
as a consequence of the scheduling mechanism. The
mechanism appears to be capable of handling many
queues (hundreds or thousands) for each output line.
A mechanism is proposed for the efficient handling of
Variable Bit Rate, time critical traffic.

K e y w o r d s ATM cell transmission, queue
management, Queue Prediction scheduling

1. Introduction
An ATM switch has the general structure shown in
Figure 1. Cells from the input lines are first rerouted to
reassign the VPI and VCI and determine the correct
output line. The central switching matrix then directs
cells to an appropriate queue at the correct output line,
from which cells will eventually be selected for
transmission.

The problems of the switching matrix are well
known and much researched, as are the disciplines for
managing the output queues to control the cell
transmission delay. What does not seem to have been
discussed nearly as much is the actual scheduling of
cells for transmission, except as a byproduct of queue
management. Ideally each Virtual Connection on each
line has its own queue, with transmission
characteristics matched to the quality of service
requirements of that queue. When a cell is to be
transmitted the scheduler must consider all of its

queues and select a cell from the appropriate queue,
paying due regard to the timing and other
requirements of all of the queues. Practically, the
number of queues must be quite small, with circuits
requiring similar treatment grouped into “service
classes”.

Input
Lines

Switching
Matrix

Output
queues Scheduler

Output
Lines

Routing
Output
circuits
& lines

Figure 1. The structure of an ATM switch

At OC–12 rates (622.08 Mbps) one 53–octet ATM
cell must be handled every 682 ns. A reasonable clock
speed for associated control logic with programmed
gate arrays and fast RAM for cell buffers is 25 ns,
giving only 27 clocks to enqueue and dequeue each
cell. There is no time to examine many queues to
determine a good candidate. In particular, polling of
many queues is impracticable.

This paper presents a new approach to the
scheduling problem, one which minimises the
scheduling overheads and does not require
consideration of all queues as each cell is transmitted.
There is no significant limit to the number of queues
and it is quite realistic for each virtual connection to
have its own queue and individual service parameters.
The problems of queue management become a
byproduct of the transmission scheduling. The name
“Queue Prediction” is suggested because the technique
depends on predicting which queue will be serviced at
each future time.

2. Principles of Queue Prediction.
Most method of scheduling cell transmissions may be
considered to ask, at each cell time, the question

“Queue Prediction” ATM cell scheduling October 16, 1996 Page 1

“Which queue is it now appropriate to service?”
Queue Prediction inverts the problem; whenever a cell
is being sent from a queue the question is “When
should this queue be next serviced?” An examination
of possibly all queues at each cell time is thereby
replaced by a simple calculation involving just one
queue.

Queue Prediction uses a form of event-driven
scheduling; when one cell is transmitted from a queue
the time for the next transmission from that queue is
calculated and an event posted for that time. The basic
principle is shown in Figure 2, with variants to be
described for Constant Bit Rate and Available Bit Rate
traffic.

The heart of Queue Prediction is a “schedule”,
consisting of a sequence of “slots” which may each
contain a queue number, or 0 for an empty slot. A
“NOW” pointer advances along the schedule
according to the basic service type (to be explained). If
a queue is scheduled at that time (slot ! 0) the actions
are —

1. A cell is transmitted from the designated queue
2. the slot in the schedule is reset to 0
3. parameters of the queue are used to predict the

next transmission time and the slot for that time is
set to the queue number

The example shows two queues, n being scheduled
at 6–slot intervals and m at 5–slot intervals. Towards
the right hand end of the schedule is a slot collision
where m is scheduled for a slot already occupied by n
and is here placed in the following slot. Searching to
find an adjacent empty slot may be expensive if the
schedule is reasonably full. It may be the major
bottleneck in the system at high utilisations and will
be considered later.

The schedule is in principle a semi-infinite linear
list, but in practice will usually be a circular buffer
long enough to contain the lowest rate (longest inter-
cell interval).

It is proposed that there be two separate, but
interacting schedules, one for Constant Bit Rate traffic
and one for Available Bit Rate traffic. Their basic
algorithms are very similar, but the minor differences
have major consequences in the detailed behaviour of
queues for the two traffic types.

The inter-cell interval is clearly related to the data
rate for its circuit. An underlying assumption of this
paper is the existence of a rate-based flow control
mechanism to govern the traffic flow for each circuit
and control its allocation to each output line.

Queue Prediction is closely related to the Virtual
Clock algorithm [5], but differs in the way in which
queues are selected for service. Both predict the time
at which a cell should be sent, but Virtual Clock
presents all of the candidate times to the scheduler
which must select the earliest and presumably the
most appropriate time. The need for multiple
comparisons limits the number of queues which
Virtual Clock can service.

Other methods, such as Stop-and-Go [3], allocate
slots within an explicit frame and send bursts of cells
of predetermined size. Queue Prediction allocates each
circuit a predetermined proportion of the capacity over
any large time interval, but without using explicit
frames. Again, Round Robin schedulers scan all
queues and sending one or more cells from each active
queue; with Queue Prediction there is no explicit scan
of the queues although all active queues are examined
at appropriate intervals.

A recent technique which addresses the same
problems is Rotating Combined Queuing [4]. It is
based on Stop-and-Go, with frame-based scheduling,
but uses multiple FIFO queues at each output port.
These queues are allocated dynamically to guarantee
service for time-critical traffic while allowing bursts to
steal unused bandwidth from other connections.

3. Constant Bit Rate (CBR) scheduling
The CBR schedule is the primary schedule, with its
NOW pointer always advancing by one slot in each
cell time and the schedule always interrogated at each
cell time. The scheduling interval is clearly
proportional to the reciprocal of the desired cell rate
and therefore set by the flow control mechanism. If the
slot is 0 (no CBR queue to be serviced), the Available
Bit Rate schedule is interrogated as described later.

In this simplest case the queue has two scheduling
parameters, the send_time and the interval. The queue
is scheduled into the closest free slot to that defined by

“Queue Prediction” ATM cell scheduling October 16, 1996 Page 2

NOW

Schedule, with one slot per cell time
Later times

n 0 m 0 0 0 n m 0 0 0 n' m' 00

n scheduled in 6 slots

m scheduled in 5 slots

n scheduled first,
m collides

Figure 2. Basic scheduling mechanism

the send_time and send_time is always advanced by
the interval, irrespective of precisely which slot
receives the queue identification. With a reasonable
output load there will be contention for at least some
of the output cell times and therefore jitter in the
transmission time of some cells. However, the
nominal sending time is always incremented at a
constant rate and is not subject to timing jitter.

If the cell rate is defined by cells being sent at
integrally-spaced cell times there is little flexibility in
rates. At 622 Mbps, the cell rates in thousand cells per
second are 1467/n, or 1467, 734, 489, 366, etc. To
allow intermediate rates the interval and send_time
must be held with fractional bits, but with only the
integral part used in selecting the schedule slot.

Two related problems arise with the timing of the
transmission. The first is that interval is quantised and
probably not a precise match to the incoming cell rate.
The second is that cell transmission is timed from the
local (switch) clock and this will be plesiochronous
with respect to the data source. If the interval is too
great (or the switch clock slow) queues will grow
within the switch, while if the interval is too short
there will sometimes be no cells to send and null cells
will have to be inserted. Neither is a satisfactory
situation. Time quantisation and plesiochronicity are
both solved by mechanisms which will be described in
Section 6.

If the queue is emptied by transmitting the current
cell, the next transmission is still scheduled to allow
transmission if the next cell arrives in time. If there is
still no cell then, the slot must be treated as empty and
an ABR cell transmitted. The send_time may be set to
zero to indicate that no transmission is scheduled for
that queue.

If an incoming cell is placed in an empty queue
(send_time = 0), it is appropriate to use the current
time to schedule transmission in a future slot (NOW +
interval), just as though a cell had just been sent.

The size of the CBR schedule sets a minimum
CBR traffic rate. For example, an uncompressed 64
kbps voice circuit requires 1 cell each 6 ms and at 622
Mbps must be scheduled 8,800 slots ahead. A
schedule of 65,536 slots can handle traffic down to
about 8,600 bps on a single CBR circuit.

4. Available Bit Rate (ABR) scheduling
The ABR schedule is very similar to the CBR
schedule but is interrogated only when the CBR slot is
empty. As far as possible its NOW pointer advances
while CBR is busy to always point to the next
enqueued ABR slot. What was the interval in CBR
now becomes a priority with ABR. Circuits with a
lower expected traffic rate have a larger priority value
and are scheduled far into the future. Circuits with

higher expected rates use a lower priority value and
are scheduled sooner. Again we must resolve
collisions with already-occupied slots.

Except for the way in which the ABR NOW
pointer advances, ABR traffic is handled in much the
same way as CBR traffic, especially with the handling
of near-empty queues.

It is assumed that ABR traffic is managed
efficiently by the rate specifications (RM cells)
accompanying the data traffic so that the output line is
fully loaded. If however there is little ABR traffic and
it all has low priority (long intervals) the ABR
schedule can be quite sparse. This leads to long search
times as the ABR scheduler looks for the next ABR
event. The solution is to scale the ABR intervals
according to the total ABR load. Either a control
processor can deliberately increase intervals as the
load increases, or an “ABR loading” factor can be
used to scale the intervals as they update the ABR
send_time values (perhaps by a simple shift of priority
according to current load). Adjusting the overall
priority scaling allows control of the density of filled
ABR slots and will be considered later.

Remember that ABR traffic is scheduled only in
the absence of CBR traffic in the current cell time. An
interesting consequence of the ABR scheduling is that
low-rate traffic has priority for future slots and will
maintain its (admittedly low) rate in competition with
higher-rate traffic.

A given ABR service with scheduling interval
intervali has an ABR rate ri = 1/intervali and receives
a proportion of the ABR capacity at least ri/"ri. (Idle
circuits are ignored by the scheduling and their
allocated capacity is automatically allocated among
active circuits.) As the total ABR capacity is, for
constant CBR rates, a fixed proportion of the line
capacity, each ABR service should receive at least a
guaranteed fraction of the total line capacity.

Traffic bursts in excess of the expected rate will
compete with other traffic according to the allotted
rates of the active circuits. A burst which cannot be
cleared quickly will reveal itself as a growing queue
and should signal possible overload and adjustment to
the scheduling priority.

5. Variable Bit Rate (VBR) scheduling
Variable Bit Rate traffic typically arises from
compressed voice or video and is characterised by its
time critical nature and poorly defined data quantities.
Although VBR has always been a fundamental part of
ATM, standards for VBR traffic have been very slow
in arriving1. Here we recognise that we have developed
a mechanism which ensures timely transmission of

1 The techniques of this section have no relationship to any
VBR traffic proposals from the ATM Forum

“Queue Prediction” ATM cell scheduling October 16, 1996 Page 3

CBR traffic and adapt that to VBR traffic.
When considering compressed video, it is sensible

to consider only MPEG compression. It represents
current technology and produces ATM traffic patterns
which should be typical of other video compression
schemes. Apart from the obviously different
compressibility of different scenes, MPEG
compression processes frames in several different
ways. Occasional frames with full detail are
interspersed with other lower-detail frames. This
however illustrates a fundamental feature of video
VBR traffic. If we consider each frame as producing a
burst of data, the variable bit rate arises from a
combination of fixed burst rate and variable burst
length. Present ATM standards recommend some form
of rate-based flow control, achieved by the regular
transmission of special Resource Management (RM)
cells to notify switches of the requirements of each
circuit.

It is reasonable to assume that the video
compressor is aware of the data bursts and of the size
of each burst. The proposal is that each video frame
should be accompanied by a Resource Management
(RM) cell containing the size of the data burst and the
time duration of the burst. If the switches can adjust
themselves to this rate and the source send at the same
rate, VBR traffic can be considered a special case of
CBR traffic, with the “constant” rate adjusted at
frequent intervals. If CBR traffic is handled in a timely
manner, then so is VBR traffic.

As an implementation detail, when the switch
calculates its VBR rate it should add to the burst size
any cells which are still enqueued and awaiting
transmission. The output transmission rate then
becomes that needed to clear any outstanding traffic
plus the expected incoming traffic by the end of the
following burst. The calculation of the VBR interval
need not be done “on the fly” but can be left to a
control processor.

Variable bit rate voice raises a different problem
under this approach because the burst size is now very
small, if indeed we have bursts at all. Intelligible
speech requires very precise control of the timing; we
assume a time reference at 100 ms intervals (“burst”
length = 100 ms). But voice is easily compressed by a
factor of 8–10 from an original 64 kbps, to say 6–8
kbps. In 100 ms we then have 600–800 bits, giving a
burst size of only 2 cells! Allowing poorer
compression and less frequent time references does
not affect the situation that much—even
uncompressed voice requires only 167 cells per
second.

If we can aggregate voice channels into a single
multiplexed service, the VBR mechanism described
here will still work. Alternatively, it may be possible
to combine constant-rate compression with CBR

traffic.

6. Plesiochronicity
Two timing problems, both mentioned already, will be
treated in this section

1. The cell rate is limited, with the simpler
implementations, to integral fractions of the
highest cell rate allowed by the output line. Even
with fractional cell intervals, timing errors will
still accumulate.

2. The clocks within the data source and the switch
will differ. Discrepancies of only a few parts per
million can lead to significant queuing within a
switch, especially as queues may accumulate over
the entire up-time of a switch, which may be
weeks or months.
The two problems can be treated as one, as both

mean that the cell scheduling rate (in the switch) may
be poorly matched to the cell issuing rate (from the
source).

The problems of plesiochronous clocks can be
solved by monitoring the queue size and increasing the
rate (decreasing the interval) as the queue fills up. The
adjustment may be gradual, increasing the rate by say
1% for each enqueued cell, or more drastic with the
rate increasing significantly above some “high water”
mark. In both cases the nominal rate is set slightly
slow.

7. Jitter
To a first approximation, Queue Prediction transmits
CBR cells at precisely the correct times to give zero
jitter. More precisely, cells may be delayed by up to
one cell duration just from the need to align all cells
on a cell boundary. This jitter is quite unavoidable.

Another form of unavoidable jitter arises from
mutual interference among the transmitted cells. If
there are N independent and asynchronous cell streams
it is quite possible that a cell is scheduled at the first
slot of a sequence of (N–1) occupied slots and must be
delayed by N–1 slots or cell times to find the next
empty slot. This contention jitter is a direct result of
packing uncorrelated cells into an output stream and
cannot be avoided. At best a transmission scheduler
will not introduce additional jitter. While contention
jitter can be minimised on average by running at low
CBR utilisations, the maximum jitter can be controlled
only by minimising the number of data streams which
compete for the schedule.

Both of these forms of jitter though are
comparable to the inter-cell spacing and therefore
probably of little real importance. It seems unlikely
that Queue Prediction will permit jitter large enough to
have major impact on packet reassembly.

The techniques of Section 6 which handle the

“Queue Prediction” ATM cell scheduling October 16, 1996 Page 4

problems of plesiochronicity may be compared with
those of Ferrari [2]. In Ferrari’s method, each packet
carries its expected (or canonical) arrival time; that
time is compared with its actual arrival time and the
difference used to calculate the time for which the cell
should be delayed to eliminate the jitter. He describes
methods for clocks with either perfect or loose
synchronisation.

With Queue Prediction, each circuit has its own
clock which is coordinated with that of its upstream
neighbour through the plesiochronicity mechanism.
(The synchronisation corresponds to Ferrari’s “loose”
synchronisation.) The cell does not carry an explicit
arrival time, but the expected CBR transmission time
can be calculated from the cell rate and the cell
position in the data stream and it is this time which is
used to schedule transmission.

8. Scheduling management
Before examining the scheduling delays it is necessary
to realise that the CBR and ABR schedules have quite
different behaviours, despite their similar basic
operation. The CBR schedule is non-work-conserving,
because it may idle even with cells in queues and
waiting to be sent. This feature is a consequence of the
schedule being time-sensitive. It tries to send all cells
at the most appropriate time and never sends them
early. The ABR schedule by contrast is work-
conserving, making a best effort to keep the
transmitter active at all times and recognising that its
cells have no preferred transmission time or rate.

With both schedules a significant bottleneck is the
time spent in searching the schedule. If the output
utilisation is #, then so too is the probability of finding
a slot full. Insertion of an event into the schedule may
be modelled as a queuing system with utilisation #.

Initially we assume that the schedule is a simple
linear array, in which each array element holds a
single scheduling slot and with a serial search. Each
interrogation of the schedule can be satisfied by only
that one slot and we can model the system as an
M/M/1 queue2. The insertion delay is then 1/(1–#); in
line with standard queuing results it is inadvisable to
use # > 0.7 or so.

Several comments may be made on the problem of
2 This is not really accurate. As far as the scheduler is
concerned the service time is constant, not exponentially
distributed, giving an M/D/1 queuing system. This however
assumes Poisson cell arrival statistics and it is now well
known that Poisson statistics do not apply to data
communications traffic. Another problem is that a full
analysis must consider multiple servers and the behaviour of
M/D/k systems, and especially G/D/k systems, is not as well
known. It seems better to retain the simpler M/M/k models,
realising that they are at best an approximation, but
mathematically tractable.

contention for scheduling slots :–
1. While scheduling delays (putting a request into

the schedule) apply to both CBR and ABR traffic,
only the ABR schedule has to search for a full slot
when transmitting.

2. Clumping or clustering in the schedules will
invalidate the assumption of randomly distributed
slots. Clustering assists the search for full slots
(when transmitting) but hinders the search for
empty slots (when scheduling.)

3. The CBR schedule is completely controlled by the
requested data rates and system loading. If the
total load does not approach 100% (ie leaving
significant capacity for ABR traffic) we can
expect the average search length to remain
reasonable.

4. The ABR schedule is much more flexible than the
CBR schedule. If the ABR schedule utilisation is
too high, it will be difficult to find vacant slots
and scheduling will be difficult. A low utilisation
will force lengthy searches for a non-empty slot.
We have already mentioned the possibility of
scaling the ABR priorities to minimise the search
distance; sensible scaling also assists in finding
vacant slots. (Remember that it is only the ratio of
queue priorities which is important in ABR
scheduling.)

Assuming random data, the average delay when
inserting into the schedule is 1/(1–#), while the
delay to find an occupied slot when preparing to
send is 1/#. The total average delay is 1/(1–#)+1/#
which has a broad minimum around # = 50%.

5. The scheduling problems can be alleviated by
testing several slots in parallel. If any one of the
slots can receive the request we have a multiple
server system (M/M/k), with its corresponding
improvement in waiting time (here the search
distance). Alternatively, the probability of a single
slot being full is # and the probability of its being
empty is (1–#). With k slots, the probability of one
being available is (1–#)k. At 98% slot loading,
k=16 allows 72% of requests to be honoured at the
first attempt.

Parallel interrogation of slots can be handled by
reading several slots simultaneously as a long
word, or by maintaining a “slot validity” bit vector
to allow interrogation of perhaps 32 slots.
Extending the validity vector concept, it may be
feasible to implement a bit vector (even to 64 K
bits) completely within an ASIC and request the
“next full” or the “next empty” slot number.
While such an ASIC would not work within the
envisaged cycle time (Section 9) it should
certainly function within the cell time.

6. In reality, the scheduling difficulties are eased by
the time which is actually available to schedule

“Queue Prediction” ATM cell scheduling October 16, 1996 Page 5

each cell. A practical implementation (see below)
has a completely autonomous unit to handle the
scheduling. The schedule memory is quite lightly
loaded and if it uses the same technology as the
other memories, 20 or more cycles or slot
examinations are available to schedule each cell.
At reasonable schedule utilisations the average
insertion delay should be quite small and
manageable with simple versions of the above
methods.

7. There will always be some cells which cannot be
scheduled in the time available (unless the ASIC
bit vector is used). Although the proportion should
be small, the actual number may be significant at
ATM speeds. (At 125×109 cells per day, the
improbable may occur rather often.) To handle
these overflows cells which cannot be scheduled
“quickly” should be diverted through a small
FIFO which can continue searching even after
later-arriving cells have been scheduled.
The real lesson though is that 100% schedule

loading should be avoided. If the CBR schedule is
fully loaded there is no space at all for any VBR
traffic, which is surely an undesirable operating mode.
CBR loadings below 60–70% should give good CBR
scheduling performance and allow reasonable ABR
traffic volumes. High CBR loading also leads to
unavoidable jitter from slot contention, as explained in
the next section. A high ABR schedule utilisation
means only that the ABR “intervals” are too small;
scaling all intervals to a higher value (perhaps
doubling them) permits easier insertion of ABR cells
without affecting the actual transmission of ABR cells.

Very high schedule utilisations or scheduling
delays are, along with increasing buffer usage, really a
sign of switch congestion and should trigger action to
reduce incoming traffic.

9. Implementation
In this section we give an outline of a Queue
Prediction scheduler. To a large extent this section
follows from work done at the University of
Wisconsin–Madison on the design of a switch/router
to interwork many traffic and media types at gigabit
rates. Much of that work involved proving the
viability of the design at the necessary speeds; many
of those considerations are relevant here.

The design assumes a large data buffer, shared
among all of the circuits to the output line. Using a
completely shared buffer requires a full list structure
to handle the cell queues. While this is more complex
than a system with individual buffers for each service
class, it is well known that a fixed division into
individual buffers can lead to buffer allocation
problems and starvation of some circuits. Again,

individual buffers based on FIFOs could give a
simpler control structure and possibly higher
performance. However, it is shown that the proposed
scheme, with separate control and data memories, is
capable of handling cells at a 622 Mbps rate using
current technology.

The basic parameters are —
1. The output line is 622 Mbps (OC–12 speed), for a

cell time of 682 ns. The average cell rate may be
about 4% less than this after allowing for the
overheads of the SDH frame, but cells must be
still scheduled at the full rate for most of a frame.

2. The basic clock of the selection logic is 25 ns.
This speed is representative of modern static
RAM and FPGAs such as might be used in the
implementation. (Although it has not been
investigated in detail, modern fast CPUs (~200
MHz clock) may be able to handle the scheduling
by program. In that case the 25 ns RAM would be
the second-level cache of the CPU.)

3. The cells are assumed to be held in a singly-linked
list structure to ensure the maximum flexibility in
buffer allocation. Although the most expensive
timewise of the buffer management methods, it is
usable in this environment.

4. The “free list” of available cell space is held in an
otherwise standard queue. Space for a cell is
obtained by delinking a cell from the “free” queue
and then adding it to the queue appropriate to the
connection.

5. Separate memories are used for
• cell data buffer. With a 622 Mbps output line, the

cell data buffer must be able to accept and
deliver data at this rate, for a total of 1.244 Gbps.
A 32-bit data memory with a 25 ns cycle can
transfer at 1.280 Gbps, which is just adequate.
With a slower clock, or for a greater time margin,
we need either a 64-bit word length or an
interleaved 32-bit memory with separate read and
write buses. (The cell buffer must transfer the
entire cell, including the header with VCI, VPI
and PTI, but excluding the HEC octet.)

• list links and queue headers. This is effectively a
control memory and has sufficient traffic to
warrant its being separate from the main data
buffer. (In any case the data memory is fully used
in just transferring data.)

• the schedule. While it may be possible to
combine this with the control memory, its quite
different structure makes it sensible to use a
separate memory. As well, insertion of the
schedule is a quite separate operation which may
be left to a separate “scheduling engine”,
operating as an autonomous unit. Separating the
schedule from the control memory also allows
more time for searching the schedule either when

“Queue Prediction” ATM cell scheduling October 16, 1996 Page 6

inserting requests or when finding the next ABR
request.

Remember that, with a 25 ns clock, there are only
27 clocks available to perform all of the queue
manipulation for a cell, including the enqueuing of a
cell as it is received from the switching fabric and the
dequeuing as the cell is finally transmitted.

Figure 3. The complete output structure

Data Buffer
32- or 64-bit

Data from
switch fabric

 < 622 Mbps

Data to ATM
output line

 < 622 Mbps

Control Memory
list links, queue heads

Queue
control

Schedule
control

Schedule memory

Enqueue
requests

from switch
fabric

With these assumptions the outline of the system is
shown in Figure 3. It is important to remember that its
several sections, (data memory, control memory and
scheduler) are largely autonomous units and operate in
parallel, each at close to the maximum rate permitted
by the logic. Delivery of cells to the output line
proceeds in parallel with reception of cells from the
switching fabric.

Head First element in queue
Tail Last element in queue
time next cell time
interval inter-cell interval
fast_interval fast transmission interval
slow_interval slow transmission interval
cell_count cells sent on this circuit
Qsize current size of queue

Table 1. Elements of a queue structure

Table 1 shows the variables associated with each
queue. The head and tail pointers are obvious from the
queue structure. The send_time and interval are the
scheduling parameters as introduced in this paper. The
fast and slow intervals are possibilities only,
introduced for speed control. Finally, the cell_count is

required for accounting and traffic measurement.
Table 2 shows the general actions involved in

obtaining space from the free list, linking it into an
output queue and then removing that cell from its
queue, scheduling its transmission. The variables (A,
B, F, N, T, Incr, slot) are assumed to be hard registers
with negligible access time. With traffic counting and
queue size recording included there is just time to
perform essential queue management within one cell
transmission time.

Clock
Cycle

Action Reason

get sppace and enqueue new cell
1 A=Free[Head] first area in free list
2 B=cellQ[tail] tail of receive queue
3 F=A[next] next area in free list
4 Free[Head]=F save new free-list head
5 B[next]=A link space into Queue
6 A[next]=NULL mark end of list
7 cellQ[tail]=A end of cell Queue

8 T=cellQ[Qsize] read queue size

9 cellQ[Qsize]=T+1 increment queue size
unlinkk cell and return space

10 A=cellQ[Head] first cell in Queue
11 B=Free[tail] end of free list
12 N=A[next] next cell in Queue
13 cellQ[Head]=N new head of cell Queue
14 B[next]=A link space into Queue
15 A[next]=NULL mark end of list
16 Free[tail]=A end of cell Queue
17 T=cellQ[Qsize] read queue size
18 cellQ[Qsize]=T–1 decrement queue size

scheddule transmission
19 Incr = cellQ[interval] read the interval
20 Slot=cellQ[time] schedule transmission
21 cellQ[time] = Slot+Incr next cell time
22 T=cellQ[count] read traffic counter
23 cellQ[count]=T+1 incr traffic count

Table 2. Actions in obtaining space and
enqueuing a cell

The queue-handling overheads may be reduced by
holding one newly released cell in a temporary store (a
register holding the cell address) rather than returning
it to the free list. It is only if this storage is empty that
a cell must be obtained from the free list and only if it
is full that a released cell must be restored to the free
list.

The schedulers run in parallel with the data and

“Queue Prediction” ATM cell scheduling October 16, 1996 Page 7

control memories and use similar memories. They
should have little trouble in achieving the necessary
speed even with the need to search for vacant slots
(when accepting incoming cells) and for occupied
cells (when delivering cells to the output).

As far as the transmission scheduler is concerned,
there is no advantage in combining circuits into
service classes or similar aggregates, unless it is
possible to have completely separate hardware, such
as FIFOs, for each queue or class. If there is any sort
of list structure, each cell must be inserted into a
queue and then removed from that queue with an
overhead independent of the number of queues.

10. Operation at higher speeds.
The next higher ATM line speed above 622 Mbps is
2.488 Gbps (OC–48 or STM–16), four times that
which has been evaluated here. There is now only 170
ns to handle each cell. It is by no means clear that this
speed can be achieved with present or reasonable
future technology, at least using a Queue Prediction
scheduler.

A factor of 2 is available by increasing the
memory data width to 64 bits (8 octets), this width
requiring a word to be delivered every 25.7 ns. As
words must be also received into the buffer at this rate,
the buffer cycle time must be only 12.8 ns. Even
though memories are available with nominal speeds
greater than this, that is no guarantee that a production
unit can be built to operate at this speed. To the raw
memory speed (worst-case, which is usually much
slower than the published nominal speed!) must be
added delays from the accompanying logic and
registers, clock skew, inter-chip delays and the extra
logic needed for a maintainable system.

11. Conclusions.
A preliminary description and analysis has been
presented of Queue Prediction, a new method for
scheduling the transmission of ATM cells. Variants of
the one basic method provide appropriate control for
both CBR and ABR traffic, scheduling CBR cells in a
timely manner with minimal jitter and filling in the
residual transmission capacity with ABR traffic
according to the relative loadings of the ABR circuits.

A unique feature of Queue Prediction is that it
allows queuing and scheduling by individual circuits,
with no need to aggregate circuits into service classes.
There is no obvious limit to the number of queues
which can be handled.

A paper design is presented which shows that
Queue Prediction can operate at 622 Mbps output line
speed even with control of individual circuits.

Work is proceeding on simulation measurements

to verify the predicted performance, especially
measurements of jitter and delay and the costs of
schedule management.

Acknowledgements
This work was started while the author was on Study
Leave at the University of Wisconsin–Madison and at
the University of Western Australia and continued at
the University of Auckland. It was supported by the
University of Auckland Research Grant
A18/XXXXX/62090/F3414032. The support of all of
these institutions is gratefully acknowledged.

References
[1] A. Demers, S. Keshav, S,. Shenker. “Analysis and

simulation of a fair queuing algorithm.” Proc ACM
SIGCOMM, 1989, pp 3–12

[2] Domenico Ferrari, “Distributed Delay Jitter Control in
Packet-switching Networks”, Internetworking: Research
and Experience, Vol 4, pp 1–20, (1993)

[3] S. J. Golestani, “Congestion-free communication in high
speed packet networks”, IEEE Trans on
Communications, Vol 39, No 12, pp 1802–1812, Dec
1991.

[4] Jae H. Kim, Andrew A, Chien. “Rotating Combined
Queuing (RCQ): Bandwidth and Latency Guarantees in
Low-Cost, High Performance Networks”, 23rd Annual
International Symposium on Computer Architecture,
May 1996, pp 226–236

[5] L. Zhang. “Virtual Clock: A new traffic control
algorithm for packet switching networks”. Proceedings
of ACM SIGCOMM, 1990, pp 19–29

“Queue Prediction” ATM cell scheduling October 16, 1996 Page 8

