Block Sorting Text Compression

Peter Fenwick

Department of Computer Science, The University of Auckland,
Private Bag 92019, Auckland, New Zealand

peter-f@cs.auckland.ac.nz

Abstract.

A recent development in text compression is a
“block sorting” algorithm which permutes the input
text according to a special sort procedure and then
processes the permuted text with Move-To-Front and
a final statistical compressor. The technique is fast,
with a compression performance ranking it among the
best of the known compressors.

This paper describes work on the block sorting
algorithm, especially establishing its relation to
other compressors and attempting to improve its
compression performance. It is already known to be
a form of statistical compressor with unbounded
contexts; we show that the contexts are so completely
restructured by the sorting that many standard file
compression techniques are no longer appropriate.
Various approaches are investigated in an attempt to
improve the compression, most of which involve a
hierarchy of coding models to allow fast adaptation
to local contexts. The better coding techniques
include one derived from work of Shannon in 1951 in
establishing the entropy of English text, while the
best employs a novel model especially designed for
skewed probability distributions.

The work in this paper confirms block-sorting as a
viable text compression technique, with a
compression approaching that of the currently best
compressors while being much faster than many
other compressors of comparable performance.
Keywords Text compression, statistical
compression, block sorting

1. Introduction.

A very recent development in text compression is a
“Block Sorting” algorithm (or “block reduction”),
reported by Burrows and Wheeler[4]. It considers the
text in blocks, which may be as large as the entire
file, reorders the text according to an apparently bizarre
algorithm and then compresses that text with a Move-
to-Front and Huffman compressor. The compression
performance is comparable with that of the best high-
order statistical compressors. The realisation is quite
different from traditional text compressors and raises
some interesting questions, including its relation to
other compressors, the statistics of the symbols to be

Proceedings of the 19th Australasian Computer
Science Conference, Melbourne, Australia,
January 31 - February 2 1996.

compressed, and the possibility of alternatives to the
MTF and Huffman stages.

Much of the material of this paper has been
presented in two Technical Reports [7, 8], to which
readers are referred for more detailed information, tables
of results, and logs of actual output.

Most good text compressors have been either of
the dictionary type, and especially Ziv-Lempel (either
LZ-77 or LZ-78), or statistical, as exemplified by
PPM and its derivatives. It is well known [1] that
these two apparently different compression techniques
are in fact equivalent. More recently, Cleary et al [6]
have shown that block sorting can be implemented
with the data structures used in their PPM*
compressor and that it too is equivalent to the general
dictionary/statistical compressors. Again, Bunton[2]
has examined the structure of the Dynamic Markov
Coding compressor (DMC). These results have been
coordinated with those of Cleary to demonstrate an
equivalence of all the established text compression
techniques. Block sorting is therefore a member of a
well-established family of text compressors, even if its
precise position and qualities remain uncertain.

2. The block-sorting algorithm

Burrows and Wheeler [4] present their algorithm in
terms of matrix operations, an approach which has a
certain elegance, but is far removed from the usual
conventions of text compression. In this section we
present the algorithm in text compression terms.

In normal statistical compression we consider each
symbol of the file in relation to its preceding symbols
or context. The correlation between symbols in the
file means that it is possible to predict most symbols
with a high degree of confidence. The limited choice
of possible symbols within the context means that
few bits are needed for the encoding and considerable
compression is achieved. By contrast, the block
sorting algorithm considers each symbol in relation to
its following context, rather than the more
conventional preceding context.

2.1 Forward transformation

The symbols of a text block to be compressed (part or
all of the file) are first sorted, using as a sort key for
each symbol the immediately following symbols, to

whatever length is needed to resolve the comparison,
and wrapping from the end of the file back to the
beginning. The output of this stage is a permutation
of all of the symbols of the original file, together with
the position of the last symbol of the file. At this
stage we have done no compression at all, but we have
collected together similar contexts. Because these
contexts restrict the choice of preceding symbols, any
region of the permuted file contains sequences of just
the few symbols which appear before the similar
contexts, the actual symbols of course varying
according to the context. There is strong locality — if
we have recently seen a symbol there is a high
probability that that symbol will recur in the near
future.

In their original paper Burrows and Wheeler capture
this locality with a Move-To-Front compressor, with
Huffman and perhaps run-length encoding of the
output.

2.2 Reverse transformation

Recovery of the data requires first a decompression to
recover the output of the original sorting permutation.
Reversing the permutation of these symbols depends
on the observations that
(a) the recovered (or transmitted) data contains all of
the original symbols, and
(b) sorting these transmitted symbols gives the first
character of each of the sorted contexts.

But the transmitted data is ordered according to the
contexts, so the n-th symbol transmitted corresponds
to the n-th ordered context, of which we know the first
symbol. So, given a symbol § in position i of the
transmitted text, we find that position i within the
ordered contexts contains the j-th occurrence of symbol
t; this is the next emitted symbol. We then go to the
J-th occurrence of £ in the transmitted data and obtain
its corresponding context symbol as the next symbol.
The position of the symbol corresponding to the first
context is needed to locate the last symbol of the

output. From there we can traverse the entire

symbol context Index symbol context link
p imississip 1 P i.. 5
s ippimissis 2 s i.. 7
S issippimis 3 s i.. 10
m ississippi 4 m i.. 11

— 1 mississipp 5 i m.. 4
P pimississi 6 P p-- 1
i ppimississ 7 i p... 6
s sippimissi 8 s Se 2
s sissippimi 9 s S... 3
i ssippimiss 10 i S 8
i ssissippim 11 i S... 9

Figure 1. The forward and reverse transformations

transmitted data to recover the original text.

To illustrate the operations of coding and decoding
we consider the text “mississippi” as shown in
Figure 1. The first context is “imississip” for
symbol “p”, the second is “ippimissis” for
symbol “s”, and so on. The permuted text is then
“pssmipissii”, and the initial index is 5 (marked
with “—"), because the fifth context corresponds to
the original text.

To decode we take the string “pssmipissii”,
sort it to build the initial letters of the contexts
(“iiiimppssss”) and then build the links shown in
the last column. The four “i..” contexts link to the
four “i” input symbols, first to first, second to
second, and so on (to 5, 7, 10 and 11). The “m..”
context links to the only “m” symbol, and the two
“p...”s and four “s...”’s link to their partners in order.

To finally recover the text, we start at the indicated
position (5) and immediately link to 4. The sorted
received symbol there yields the desired symbol “m”.
We then link to 11 get the “i”, and so on for the rest
of the data, stopping on a symbol count or return to
the start of the file.

3. Order-0 implementation.

The algorithm was implemented very much as
described by Burrows and Wheeler, but with an order-0
arithmetic coder replacing the Huffman coder of the
original. The three stages are therefore —
e the initial sorting transformation, yielding a
permuted version of the input text,
* a Move-To-Front processing of the permuted text,
e a final statistical compression, using order-0
arithmetic coding.

The immediate results are given in Table 1, testing
on the Calgary Corpus ! and using PPMC [9] as a
reference compressor. (All of the compression values
are given in output bits per input byte.)

The first columns give the file name, its size in
bytes, and then the results for the PPMC compressor
and the new “Block-Sort, order-0” compressor. The
next column gives the average Move-To-Front
distance for those symbols which move, ie are not
already at the head of the list. Then we have the
fraction of the symbols which are already at the head
of the Move-To-Front list and are emitted as zeros.
The number of string comparisons is a useful measure
of the work required by the initial sort. Finally we
have the average number of data comparisons for each
of the compares of the previous column. (This value
could not be obtained from this initial version, but
came from later versions with word comparisons and
run-length encoding of the input. The number of
bytes compared is about 4 times the value shown,

1 The files of the Calgary compression corpus are available
by anonymous FTP from ftp.cpsc.ucalgary.ca:
/pub/projects/text.compression.corpus/
textcompression.corpus.tar.z

File size bytes PPMC bs Order0
(1990)

Bib 111,261 2.11 2.13
Book1 768,771 2.48 2.52
Book2 610,856 2.26 2.20

Geo 102,400 4.78 4.81
News 377,109 2.65 2.68
Obj1 21,504 3.76 4.23
Obj2 246,814 2.69 2.71
Paperi 53,161 2.48 2.61
Paper2 82,199 2.45 2.57

Pic 513,216 1.09 0.92
ProgC 39,611 2.49 2.67
ProgL 71,646 1.90 1.84
ProgP 49,379 1.84 1.82

Trans 93,695 1.77 1.60
AVG 2.48 2.52

MTF dist frac 0 compares Avg. compare

non-0 MTF length (words)
5.50 66.8% 1,704,645 1.65
3.88 49.8% 15,974,996 1.25
4.20 60.8% 12,139,721 1.42
55.63 35.8% 1,435,323 1.07
7.65 57.9% 6,789,971 1.66
46.82 50.6% 231,884 1.51
30.22 68.1% 3,900,488 1.83
6.45 58.4% 734,781 1.31
5.06 55.4% 1,274,109 1.24
3.39 87.4% 47,889,672 1.36
8.32 60.3% 511,849 1.37
4.63 72.9% 1,055,533 2.06
5.54 74.0% 673,846 3.25
5.66 79.2% 1,329,847 3.51

13.78 62.7%

Table 1. Results on Calgary Corpus, with arithmetic order-0 final encoder

plus 2 for those implicit in the bucket sort.)

The most obvious result is that the compressor is
already very good — within about 1.6% of the PPMC
performance on average, and better on many of the
more compressible files. The compression is clearly
related to the proportion of symbols which are emitted
as zeros. Most “text” files have around 60% of their
symbols emitted as zeros the relatively
incompressible GEO has only 36%, while the more
compressible PIC and TRANS have 87% and 79%
respectively. A detailed log of these tests is given in
[71 Appendix II.

With the compressor implemented, there were
many matters to be investigated and understood while
attempting to improve the performance. These
included —

* Were there variations on the sorting permutation
or the MTF operation which would improve
compression?

* Would final stages other than MTF with Huffman
or arithmetic coding provide better compression?

e What is really happening to the data as it moves
through the stages of sorting, MTF and final
coding?

e Compressors rely on the underlying structure of
their input data. What is the structure of the MTF
codes to the final, compression, stage ?

* What coding methods are appropriate to that
structure? It was apparent from very early work
that the techniques of conventional compression
we unsuitable; it was equally unclear just what
methods were more suitable.

e Some files, and PIC in particular, needed
extremely long times to sort. Why was this, and

how could their speed be improved?

These topics are discussed in the remainder of the
paper. The next few sections are devoted to detailed
examinations of some of these areas, and a “new”
compression technique is then given before actual
compression improvements are discussed in section 8.

In all of this discussion it is important to
remember that the initial implementation of block
sorting already gives excellent compression and that
any improvements are relatively small. The best
methods of this paper improve the compression by
only about 7%; another 3% improvement would rank
it with the best compressors published to date.

4. Initial Results

Compression depends on both the frequencies of the
symbols being compared and on the contexts or other

80%

70%
GEO

PAPER1
[procr

60%

50%

40%

30%

20%

10%

T T

LR REREEERE RS SN]

0%

o1 2 3 4 5 6 7 8 9
Symbol rank

Figure 2.
Order-0 probabilities of MTF symbols

interrelations between those symbols. For now we
look at only the symbol frequencies. The distribution
of the Move-To-Front frequencies is shown in Figure
2 for three of the files — GEO (less compressible),
PAPERI1 (representative text), and PROGP (quite
compressible).

We have already noted the preponderance of rank-0
symbols in the output; this figure shows that the
other symbols have relative frequencies almost always
less than 10% and usually less than 5%.

1.0000
0.1000
0.0100
0.0010
we
\ A”
0.0001 L

prob = rank —2 ‘

1 2 4 8 16 32 64

Figure 3.
Probabilities of the first 128 MTF codes for three files

128

Figure 3 shows the MTF code probabilities, with
logarithmic scales and for the first 128 codes (which
includes all symbols of ASCII text files). The rank
scale is 1-origin to allow the first value to be
represented. The probabilities for PAPER1 and
PROGP are approximately proportional to rank-2,
and GEO is similar for low ranks. This may be
compared with Zipf’s law for natural language, which
has a rank-! dependency, indicating the effect of the
sorting and MTF operations. There is little difference
between PAPER1 and the more-compressible PROGP
on this scale, but PROGP has a higher frequency for
the rank=1 and generally lower probabilities for higher
ranks. With GEO the less frequent symbols have
probabilities of about 0.001 — 0.005, much as would
be expected for an approximately uniformly distributed
population of 256 symbols.

Other measurements, presented in [7], show that
MTF_code=0 is generally emitted at about 0.5
bit/symbol, rising to about 3 bits for MTF_code=1,
with a gradual increase thereafter. For the more
compressible files, about 15% of the bits are emitted
for MTF_codes of 0 and 1, with about half of the bits
being emitted for codes less than 5 or 6.

Much of the improvement in compression must
come from decreasing the cost at the low ranks,
simply because high-rank symbols are relatively rare.
Halving the cost of coding ranks 0 or 1 would, in each
case, improve compression by about 7-8 %. Some
improvement in coding high ranks comes from the
“structured model” in section 9.

One of the motivations for this work was the
realisation that the original algorithm achieved
excellent compression with a Move-To-Front and
Huffman compressor, which is generally regarded as
having only moderate performance. It was thought
interesting to test the algorithm with compressors
which approach the state of the art. Applying the
output of the MTF stage to various good text
compressors showed that the “better” the compressor
the worse the final compression! The reason is that
all good compressors (whether dictionary or statistical)
rely on symbol contexts for their operation and that
the sorting phase destroys the context structure on
which those compressors rely. This aspect will be
discussed later.

Another possibility (mentioned by Burrows and
Wheeler) is that the MTF operation might be tuned,
perhaps by moving symbols to near the head of the
MTF list rather than the very head. This was found to
be unsuccessful. The least-compressible files improve
by about 0.1% and other files give poorer
compression.

5. Improving the sort performance

A crucial step in the compression algorithm is the
sort phase to reorder the input text. While Burrows
and Wheeler devote a great deal of their report [4] to
sort optimisation, the present experience is that
adequate results can be achieved with the standard C
gsort routine and a 65,536-way radix sort based on the
first two bytes of each comparand. (The present work
has concentrated on understanding the technique, rather
than achieving high speed.)

The file PIC is not handled well by this scheme —
it has long runs of Os and over 80% of it is placed in a
single radix-sort bucket! Another major problem is
that the long runs of Os may require comparisons of
thousands of bytes to resolve, leading to very long
execution times (9 minutes for PIC). These problems
are solved by first run-encoding the input text,
following each run of 4 identical symbols with an in-
line count of the remaining symbols in the run (the
count may be 0). The very compressible runs are
thereby turned into an almost incompressible
combination of random codes and most files have their
compression reduced by about 0.1%. About 75% of
PIC is absorbed in the runs and its compression
improves by about 10%. More importantly, its sort
time is reduced from about 9 minutes to 12 seconds.
Similar problems of slow sorting arise from files with
strings of very long repetitious sequences such as
“...aaaabaaaabaaaabaaaab...”. It is shown in [8] how
sorting speed can be handled by an LZ-77 type of
preprocessor, but at a considerable cost in
compression for most files.

Some further improvements are still possible.
The radix sort buckets have very uneven loading —

for example a text file with an alphabet of 100
symbols will use only 10,000 of the available 65,536
buckets, leaving 85% of the buckets empty. With
about 3% of all digraphs going into the single “e ”
bucket, that bucket is considerably overloaded. A
second level of radix sorting could be useful,
especially using the techniques of Chen and Rief [5] to
expedite the sorting of low-entropy files.

The number of comparison operations is reduced
by collecting 4 8-bit bytes into 32-bit words, striping
bytes across successive words and striding across 4
words between comparisons. Each raw comparison
operation therefore compares 4 bytes, usually taking
no longer than a simple 1-byte character compare.

Burrows and Wheeler go to considerable trouble in
their reports [4, 13] to provide a fast sort and it is
interesting to note that Burrows [3] reports that he has
abandoned techniques as described here in favour of
improvements to those techniques. Nevertheless, the
combination of gsort and radix sorting seems generally
adequate and has been retained here.

Wheeler’s latest implementation [13] (“bred”, see
section 10) uses some other interesting sorting
techniques. He uses a 256-way radix sort and initially
stripes bytes across 32-bit words, much as described
above. The sort buckets (or “groups”) are then sorted
in order of size, smaller groups first. As each group is
completed the low-order 24 bits of each newly-sorted
word are replaced by its index in the sort group. This
ensures that each sorted symbol is uniquely tagged and
comparison strings which include it are resolved
immediately. With a sort routine specifically designed
for the application, rather than calling on a compare
procedure for each comparison, the result of these
improvements is a very fast sort indeed.

6. The arithmetic coding routines

This work was started with the traditional “CACM”
arithmetic coding routines[1,14]. More recently,
improved versions of arithmetic coding routines have
been described[10], which will be referred as the
“DCC95” routines. These routines are faster and
much better for large alphabets and also include
optimisations for binary alphabets, which is useful in
some of the coders to be described later.

Unfortunately, when the DCC95 routines were
included and tested on the Order-O coding described
above, they gave markedly worse compression than did
the older CACM routines! The reason lies in the
handling of the symbol frequencies and in the nature of
contexts in different compression algorithms.

In both types of arithmetic coding we keep integer
frequency counts for each symbol — when the total
count exceeds some maximum value all of the counts
are halved to keep the total within range. In the older
CACM routines the increment remains constant
(usually 1) and older counts are effectively decayed and

lose significance at each halving. As the maximum
count is small compared with the size of many files,
there is frequent rescaling and a measure of adaptation
to the more recent part of the data.

In the DCC95 routines, the maximum counts are
much larger (typically 200 million rather than
16,000). The increment is also much larger (initially
comparable to the maximum count) and is halved
when the data counts are halved. Older and newer
counts are thus treated uniformly, with no bias in
favour of more recent symbols. This behaviour is
appropriate for PPM-style compressors where
statistics are reasonably assumed constant over the
whole file, and we may be developing many models in
parallel, one for each context. Equal treatment of all
symbols is quite inappropriate for handling block-
sorted text where considerable local adaptation is
essential. Changing the DCC95 routines to allow
increments to be handled as for the older CACM
routines restored the expected performance.

The arithmetic compressor was tuned by adjusting
the frequency increment and limit to give a relatively
fast response to changes; the final values are
increment=16 and limit= 8192.

7. Shannon’s coding model

In one of the first papers relating to text compression,
Shannon in 1951 [11] used a coding model in which a
test subject guessed at the next symbols, given a
block of preceding text. While this paper gave the
well-known limit of 0.6 — 1.3 bits/letter as the
entropy of English text, we are more interested in his
coder.

The coder, shown in Figure 4, contains a
“predictor” which somehow estimates the next symbol
and is then told whether to revise its estimate; the
revision instructions constitute the coder output. The
decoder contains an identical predictor which, revising

text to be encoded ; |
older move to next

NN I NN N I

symbol

|
current symbol

emit 1

historical
knowledge

|

refine

prediction
predlcted symbol

symbol
predictor

Figure 4. Shannon’s symbol encoder

according to the transmitted instructions, is able to
track the coder predictor and eventually arrive at the
correct symbol. The prediction is an ordered list of
symbols, from most probable to least probable. The
number of wrong estimates is just the position of the
symbol in the ordered list — in effect a measure of the
error in the estimate. To recognise its historical
importance we propose the term “Shannon model” for
the technique. (The technique has obvious parallels to
the well-known predictive coding or delta coding
methods of analogue data encoding.)

Prediction of symbol ranking is essentially what
the block sorting algorithm does, although with a
permutation of the input text to increase locality
effects. The MTF list approximates an ordering in
symbol frequency, and the emitted index is simply an
error indication.

Thus the block-sorting compressor with MTF
processing is very close to the proposed “Shannon”
compression mechanism.

65
60
55
50
45
40
35
30
25
20
15
10

- > c 00

MTF Rank

Figure 5. MTF counts in successive samples

8. Compression improvements

The “order-0” statistical model of the MTF output is at
best only an approximation or averaging-out of the
local contexts, probably with considerable local
deviation from that model. Figure 5 shows the
frequencies of the first few MTF ranks for four
successive samples of 100 symbols after MTF coding
the file PAPER1. There are significant differences
between adjacent samples; even in these few samples,
the counts vary from 30 to 65 for 0, 3 to 7 for 2 and 1
to 9 for 4, showing the large local variations from the
overall “average distribution”. There is little
correlation between the frequencies of differing ranks.
It is never greater than 65% and usually less than 20%.
The differences are a natural consequence of having

quite unrelated contexts following one another in quick
succession, each with its own “signature” or
combination of MTF probabilities.

Improving compression over that achieved by the
order-0 model requires models which can adapt quickly
to local changes in frequency, especially for the first
half dozen or so MTF codes. With adaptive arithmetic
coding this requires a model containing only a few
symbols and with a small count limit, so that
statistics are sensitive to just a few added symbols and
there is frequent rescaling to provide locality.

One approach is to use a small “cache” model
which holds only the first few, or most probable,
MTF codes, escaping to a complete, background,
model for other values. These results are reported in
[8]; the coders achieved 2.42 bits/byte, which is very
little better than the 2.43 of the original block-sorting
[4] or the 2.52 of the simple order-0 model.

With much of the MTF output being simply runs
of zeros, it seems reasonable to try run length coding
of the zero values. Unless the coding is done very
carefully indeed, experience is that there may be little
advantage over a simple arithmetic coding of the run
itself. In very general terms for a run of length N,
coding the length requires about log,N bits, plus any

overhead for signalling the run. With a fully-adapted
arithmetic coder, coding the symbols of the run
requires Nlogz (N+1)/N bits, while the run

termination requires about log,N bits. Both cases are
dominated by the logoN term and the two approaches

have a similar cost. Neither is clearly superior and
this is borne out in practice. Wheeler [13] describes
an interesting method of run-length encoding which
does seem to be beneficial and will be described later.

A possible disadvantage of the MTF coding is that
symbols lose their identity; it was felt that there
might be some advantage in directly coding the sorted
output. The best of these coders had the normal
alphabet extended by one symbol to denote a repetition
of the previous symbol. It achieved 2.51 bits/byte, or
essentially the same as the simple order-O coding of
the MTF output. (It may be regarded as an
implementation of a variant of the Shannon coder,
described in Shannon’s paper, where the response to
the suggestion is either “yes” or the correct symbol.)

Good compression was achieved with coders based
on the Shannon coding scheme described earlier. The
complete development is given in [8]; here we describe
only the best of the compressors. It consists of a
series of interacting arithmetic coding models, most of
which handle the MTF output regarded as a simple
unary code.

1. If the last MTF code was a 0, a binary (2 symbol)
model emits either a 0 (ie as part of a run of Os)
or the first 1 of the next unary code.

2. The first few 1s of the unary code, and the
terminating O if it is a small value, are emitted by

MTF zero '"one" models full emitted
code model 1 2 3 4 model code

0 0 0

4 1 11 4 1111<4>

2 1 1 0 110

19 T 1 1 1 19 1111<19>

3 11 1 0 1110

1 1 0 10

1 1 0 10

0 0 0

6 1 1 1 1 6 1111<6>

4 11 1 1 4 1111<4>

2 1 1 0 110

3 11 1 0 1110

1 1 0 10

0 0 0

0 0 0

0 0 0

Figure 6.

Sample codes emitted by the Shannon encoder

a series of binary models, one for the first digit,
another for the second digit, and so on.

3. For larger values (4 or greater), the actual coded
value is emitted from a full-alphabet model. A
value in this range will be coded as 1111xxxxX...

Figure 6 shows the sequence of codes emitted for
each of a set of MTF codes, and the models from
which those codes are emitted. Each of the binary
models (the “zero” and “one” models) has a small limit
and relatively large increment to force rapid adjustment
to the local environment. This coder compresses the
Calgary corpus to an average of 2.36 bits/byte.

9. A structured coding model

One problem with the simple arithmetic coding model
is that it must represent a range of symbol
probabilities covering 4 or 5 orders of magnitude.
Simpler arithmetic coders cannot cope at all with such
a range, while others may take several file life-times to
adjust properly to the statistics.

A second point is that the MTF code distribution is
quite different from that expected by conventional
compressors. Most coders are expected to handle
probability distributions which resemble a line
spectrum, having a few arbitrarily-placed “spikes” of
the more probable symbols rising above a general
background “noise”. The MTF distribution is
generally much more regular, with the zero value
being most probable and a usually monotonic decrease
in probabilities going to larger values.

To recognise these aspects, we use a hierarchical
model where the first level entries cover approximately
octave ranges of symbol rank, as shown in Figure 7.
At the low-rank end it tends to act as a cache with
unique values or few values in each entry of the first-
level model. At the high-rank end it is sensitive to the

first-level model

(9 entries)
0 — P\ handled at
1 > first level
o3 —>((2 entries) |
4-7 .
8-15 second-level
16-31 : models
32-63 .
64-127 .
128-255 —>| (128 entries)

Figure 7. Structured coding model

large-scale features of the symbol frequency
distribution, such as the higher frequencies of GEO
(Figure 3) or the absence of symbols above 127 for
most text files.

The foreground level of the two-level hierarchy
divides the 256 MTF codes into 9 ranges, of about
equal probabilities if Zipf’s Law applied. Most entries
act as escapes into “background” models to resolve the
symbols in each group. When used directly on the
MTF output this coding model compresses the corpus
at 2.37 bit/byte, which is nearly as good as the best of
the more complex coding models. When the runs of
zeros are encoded with Wheeler’s run-length code
(described later) the performance improves to 2.34
bit/byte, the best of all of the compressors tested so
far. Detailed results for the entire corpus are included
in Table 2.

The encoded symbols do not obey Zipf’s Law,
falling off much more rapidly at higher ranks than the
law would predict. Adjusting the range boundaries to
give a more uniform distribution gives less than 0.1%
improvement and is judged to be unnecessary.

10. Other work

When this work was almost completed, some more
results were released by Wheeler[13], including
implementations of routines very similar to the
original BW94, and also a short report on some
improved compressors. The implementation (“bred”
for compression and “bexp” for expansion) includes
some improved sorting techniques and, with a fast
Huffman coding stage, runs at very impressive speeds.
The sorting techniques of bred have been discussed
earlier in section 5.

His other coders (not bred) use a version of the
hierarchical coding models described above, with run-
length encoding for runs of zeros. The first-level of
the hierarchy has 4 codes; 0 and 1 code the digits of
the run length, 2 is used for MTF codes of 1, and 3 is

order-0 Shannon Structured

MTF model
Bib 213 1.98 1.95
Book1 2.52 2.40 2.39
Book2 2.20 2.06 2.04
Geo 4.81 4.55 4.50
News 2.68 2.53 2.50
Obj1 4.20 3.93 3.87
Obj2 2.71 2.49 2.46
Paperi 2.61 2.48 2.46
Paper2 2.57 2.44 2.41
Pic 0.83 0.77 0.77
ProgC 2.68 2.52 2.49
ProgL 1.85 1.73 1.72
ProgP 1.84 1.72 1.70
Trans 1.61 1.50 1.50
AVG 2.52 2.36 2.34

PPMC BW94 PPM* PPMD+ BW95 6/2

(1990) arith
2.11 2.07 1.91 1.86 2.02
2.48 2.49 2.40 2.30 2.48
2.26 2.13 2.02 1.96 2.10
4.78 4.45 4.83 4.73 4.73
2.65 2.59 2.42 2.35 2.56
3.76 3.98 4.00 3.73 3.88
2.69 2.64 2.43 2.38 2.53
2.48 2.55 2.37 2.33 2.52
2.45 2.51 2.36 2.32 2.50
1.09 0.83 0.85 0.80 0.79
2.49 2.58 2.40 2.36 2.54
1.90 1.80 1.67 1.68 1.75
1.84 1.79 1.62 1.70 1.74
1.77 1.57 1.45 1.47 1.52
2.48 2.43 2.34 2.28 2.40

Table 2. Summary of results

an escape to the full, second-level, model. This result
is then encoded using Huffman or arithmetic codes and
a form of trigraph context encoding, to give results
which are quite competitive with other compressors.
His best results are shown in Table 2 as “BW95 6/2
arith”. (There is some doubt as to whether his use of
context models is really useful — see section 12.)

His run-length coding is interesting, and
apparently unpublished. The alphabet is expanded by
one symbol, using 0 and 1 for runs and with all other
values increased by 1. The run is encoded as a binary
number, but with the digits 0 and 1 having weights of
1 and 2, instead of the more usual O and 1. A value of
0 cannot be represented, but most values require one
less bit than a simple binary coding would imply. He
uses a variant of this coding to handle runs in the
original input to improve the sorting speed.

11. Final results

Table 2 presents the detailed results for three

compressors developed here, together with several

other representative compressors. These compressors

are —

order-0 MTF block sorting, with order-0
arithmetic compression of the MTF
output (the first version in this paper)

Shannon The best compressor using the Shannon

coding model

Structured Model The compressor with a
structured coding model

PPMC the established standard for quality
compression. (A referee has pointed out
that the compression of PPMC has now
been improved to 2.34 bit/byte, which

is similar to the best result with block

best compressor of each type

sorting and PPM*. The older “1990”
values have been retained in this paper.)

BW94 the original block-sorting compressor,
as published by Burrows and Wheeler

PPM* a recently published unbounded context
version of PPM [6],

PPMD+ a further-improved version of PPM [12]

BWIS 6/2 arith the best of the compressors
in Wheeler’s latest report [13]

Thus the Shannon model compressor and
especially the “structured model” compressor represent
a considerable improvement on PPMC which has for
some years been regarded as the benchmark quality
compressor. Their performance is very close to that of
PPM#* (and the most recent version of PPMC) and
within 4% of PPMD+, the best published to date.

In the present implementation the block-sorting
compressors require about 9 bytes of overhead for each
data byte, plus a constant 700 kByte. Most files of
the Calgary Corpus can be compressed in 2 MByte of
storage and all can be processed in 8 MByte.
(Burrows’ latest sorting techniques require only about
5 bytes per input byte, but do rely on packing
information into words [3].)

The complete corpus (3.15 MByte) compresses in
460 seconds on a Macintosh Powerbook 540C (66
MHz 68040LC), or 135 seconds on a HP 755
workstation (99 MHz PA-RISC). These times and
memory requirements compare well with those for
other compressors of comparable performance. For
example PPMD+[12] on a 50 MHz SPARC server
requires about 1,200 seconds to compress the Corpus
(965 seconds without PIC), with storage of 12 — 20
data bytes per input byte on most files.

Wheeler [13] quotes “bred” (corresponding to

BWO94) as requiring 27 seconds to compress the entire
Calgary Corpus on a DEC5000/133; his routine is
optimised for speed with the fast sorting routines
mentioned earlier and Huffman coding which is faster
than the arithmetic used here. Compiled with
maximum optimisation on a HP-755 workstation,
bred compresses the entire corpus in about 12
seconds, corresponding to a speed of 250 kByte/s. (On
the Powerbook 540C, bred compresses the corpus in
93 seconds.)

12. The context structure

The techniques described so far have used only the
simple order-0 frequencies and runs of zeros, ignoring
most of the higher-order Markov structure on which
most compressors depend. It is clear that the original
sorting phase uses this Markov structure in grouping
symbols according to their contexts, but that the MTF
output structure is quite different. A fundamental
question is just what is this structure.

The poor behaviour with high-order PPM
compressors has been noted already. The detailed
structure is the subject of ongoing study, but some
preliminary observations are appropriate.

* Changing between two coding models as a function
of the distance from the last occurrence of a
particular MTF value gives negligible change in
compression.

* The distribution of distances between occurrences
of a particular MTF code approximates a negative
exponential.

* Choosing coding models according to the last few
codes emitted (a constant-order Markov or PPM
coding model) has negligible effect on the
compression.

The tentative conclusion is that a particular MTF
code value occurs as a set of independent random
events, distributed across the file according to the
expected probability. In other words there may be no
structure at all, apart from the skew symbol
distribution, preponderance of zero values and rapid
local changes in frequencies, all of which have been
exploited already. If this conclusion is correct, it
means that there is little chance of any significant
improvement in the compression of block sorting.

13. What block-sorting actually does

Block-sort compression is a sequence of processes, the
first two of which transform data without compression
and only the last performs compression.

The three stages are —

1. The initial, sorting, stage permutes the input text
so that similar symbol contexts are grouped
together. The permutation has created strong
locality because the grouping of the (invisible)
contexts has collected together the few symbols
likely to occur in each context.

2. The Move-to-Front phase then converts the
various locally valid contexts into a single
globally valid context. The most likely symbol
in each neighbourhood converts to a 0, the next
most likely to a 1, and so on. Whereas the local
contexts are fairly dynamic and fast-changing, the
global one is much more stable with relatively
constant statistics, even though it is at best an
approximation to the true local contexts.

3. The final compression stage exploits the highly
skewed frequency distribution from the second
stage to produce efficiently-compressed output.

The first two stages are both transformations, the
first a permutation and the second a recoding, which
effect no compression in themselves. Between them
they completely restructure the original text and that is
why the “good” compressors do not work well. All
efficient text compressors (whether dictionary,
statistical, etc — all are equivalent) exploit the high-
order historical context structure of the input text.
That structure has been destroyed by the sorting and
transformed into the much simpler local and then
global order-0 contexts. Any structure which remains
is quite different from that on which normal
compressors depend, as was discussed in section 12.

The rearrangement of the contexts also explains a
significant weakness in block-sorting as compared
with PPM compression, even though both rely on the
high-order context structure of the input data. In PPM
compression the multiple contexts develop in parallel
as compression proceeds; we have exact knowledge of
all possible contexts and can use them in the coding
and decoding.

In block-sorting compression similar contexts are
collected together in a region of the reordered input.
As we proceed with coding we develop one context
and, when it is completely processed, move on to
another context, possibly similar, but possibly quite
different. Thus whereas PPM develops its contexts in
parallel, block sorting develops the same contexts
sequentially, but we see only the emitted symbols and
not the associated context. Changes in the emitted
symbol are a very poor indicator of changes in context
and we simply cannot infer context changes from the
pattern of emitted symbols. All that the coder and
decoder can do is respond to local changes in what are
seen as the likely symbols. The knowledge of
contexts is much less precise and the compression
(which ultimately depends on details of the contexts) is
that much poorer.

Data compression is traditionally considered a
combination of two activities, modelling and coding,
but traditional compressors always treat data in its
natural form. Block sorting introduces an extra
preliminary step and we must now consider the three
steps of transformation, modelling and coding. In this
regard it resembles image compression techniques
which include an initial step such as a discrete cosine

or wavelet transform. It raises the question as to
whether other transformations on the input might
achieve even better results. (Traditional MTF
compression also fits into this model of
{transformation, modelling, coding}.)

The discussion so far has tacitly assumed that sorting
is the fundamental operation, with an output which is
especially suited to MTF compression. It may be more
accurate to regard the sorting step as a preprocessor
which improves the operation of the MTF compression.

14. Conclusions

It is clear that block sorting compression (or “block
reduction” to use the term in Wheeler’s latest report) is a
very competitive compressor. It can be very fast indeed
and, with suitable final coding, can give performance
comparable with the very best compressors.

In comparison with PPM it has the advantage that
there is no need to code escapes to move between orders,
with the possibility that a bad estimate of the escape
probability will impair compression. In comparison
with PPM it has the disadvantage that there is no
knowledge of the actual contexts; the coder can respond
to changes in the output statistics but cannot anticipate
them as easily from prior knowledge. Perhaps more
importantly, it does not know when to forget a
previously active context. For these reasons block
sorting is likely to remain inferior to the very best PPM
compressors, although it is certainly competitive with
most.

The statistics of the data to the final coder are quite
different from those of conventional statistical
compression and considerable effort has gone into
developing models which can exploit those statistics.
Overall though there seems to be relatively little
structure in the data, and possibly little further
improvement possible in compression.

15. Acknowledgements

This work was supported by research grant
A18/XXXXX/62090/F3414032 from the University of
Auckland and performed while the author was on Study
Leave at the University of California—Santa Cruz, the
University of Wisconsin—-Madison and the University of
Western Australia. The author acknowledges the
contributions of all of these institutions.

The assistance and ideas of Prof David Wheeler are
especially acknowledged. He developed the original
algorithm and provided many useful comments on this
work. His own work, especially that of his second
report, acted as a considerable impetus to what is
described here. Other important contributions came from
Profs Richard Brent and Clarke Thomborson, and from
Alistair Moffat (who provided the new arithmetic coding
routines), Bill Teahan (the PPM+ results), Mike
Burrows and Charles Bloom.

References

[1] T.C.Bell, J. G. Cleary, and 1. H. Witten, “Text
Compression”, Prentice Hall, New Jersey, 1990

[2] S. Bunton, “The Structure of DMC”, Data
Compression Conference, DCC-95, Snowbird
Utah, March 1995

[3] M. Burrows, private communication

[4] M. Burrows and D.J. Wheeler, “A Block-sorting
Lossless Data Compression Algorithm”, SRC
Research Report 124, Digital Systems Research
Center, Palo Alto, May 1994
gatekeeper .dec.com/pub/DEC/SRC/
research-reports/SRC-124.ps.Z

[5] Shenfeng Chen, John H. Rief, “Using Difficulty of
Prediction to Decrease Computation: Fast Sort,
Priority Queue and Convex Hull on Entropy
Bounded Limits”, 34th Symposium on the
Foundations of Computer Science, pp 104-112,
1993

[6] J. G. Cleary, W.J. Teahan, I. H. Witten,
“Unbounded Length Contexts for PPM”, Data
Compression Conference, DCC-95, Snowbird
Utah, March 1995

[71 P.M. Fenwick, “Experiments with a Block-Sorting
Text Compression Algorithm”, The University of
Auckland, Department of Computer Science,
Technical Report 111, March 1995.
ftp.cs.auckland.ac.nz
/out/peter-f/reportlll.ps

[8] P.M. Fenwick, “Improvements to the Block-
Sorting Text Compression Algorithm”, The
University of Auckland, Department of Computer
Science, Technical Report 120, July 1995.
ftp.cs.auckland.ac.nz
/out/peter-f/reportl120.ps

[9] A. Moffat, “Implementing the PPM Data
Compression Scheme”, IEEE Trans. Comm., Vol
38, No 11, p1917-1921, Nov 1990

[10] A. Moffat, R. Neal, I.H. Witten, “Arithmetic
Coding Revisited”, Data Compression
Conference, DCC-95, Snowbird Utah, March
1995

[11] C.E. Shannon, “Prediction and Entropy of Printed
English”, Bell System Technical Journal, Vol 30,
pp 50-64, Jan 1951

[12] W.J. Teahan, private communication

[13] D.J. Wheeler, private communication. (Oct ’95)
[This result was also posted to the
comp . compression.research newsgroup. The
files are available by anonymous FTP from
ftp.cl.cam.ac.uk /users/djw3]

[14] 1. Witten, R. Neal, and J. Cleary, “Arithmetic
coding for data compression”, Communications of
the ACM, Vol 30 (1987), pp 520-540.

