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SHORT COMMUNICATION

PPM compression without escapes

P. M. Fenwick∗,†
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SUMMARY

A significant cost in PPM data compression (and often the major cost) is the provision and efficient
coding of escapes while building contexts. This paper presents some recent, preliminary, work on a new
technique for eliminating escapes in PPM compression, using bit-wise compression with binary contexts.
It shows that PPM without escapes can achieve averages of 2.5 bits per character on the Calgary Corpus
and 2.2 bpc on the Canterbury Corpus, both values comparing well with accepted good compressors.
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1. INTRODUCTION

Computer algorithmsmay be characterized by the algorithm (simple or complex), the data structures
(simple or complex) and again data structures (large or small). The work described in this paper
grew out of considering how data compression might be achieved by combining a simple algorithm
and a simple but possibly large data structure.

A long-time standard in text compression is the PPM family (‘Prediction by Partial Matching’),
initially proposed by Cleary and Witten [1]. Significant improvements were given by Bloom
[2], Cleary et al. [3] and later in the PAQ family of compressors [4, 5]. Another important
prior-art compressor using bit encoding is Context Tree Weighting (CTW [6, 7]). What is
shared by all these ‘improvements’ is the increasing complexity of the algorithms, with ever-
more complex models for statistical prediction and even machine-learning techniques such as
neural nets.

This paper in contrast examines some compressors with simple, even trivial, algorithms and
no statistical or other optimization. The paper originated from noting that a major part of the
cost in PPM compression seemed to be associated with the handling of escapes. It follows that
a PPM-style compressor with no escapes might achieve a useful improvement in compression
compared with conventional methods. While not actually giving an improvement, the current work
introduces techniques that give reasonable compression with no explicit escapes. It could well
form the basis for further study.
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2. PPM COMPRESSION

To summarize its operation, a PPM compressor builds a table of ‘contexts’. Each context is defined
by n consecutive symbols from the data stream (giving an ‘order-n’ context) and is accompanied
by symbols that have been seen to follow occurrences of the context. As a new symbol may occur
at any time, some means must exist to allow augmentation of the context symbols, and signalling
the arrival to the decoder. Usually this means that every context must include an escape symbol
whose use signals that the coder/decoder must move to a lower order context, which is usually
more populous. Many cases require a sequence of escapes to drop down even to order 1 or order 0.

The probability of the escape relative to the other symbols is crucial, but can only be estimated;
it is known in the literature as the zero frequency problem—what probability should be assigned to
a symbol which has not yet been seen? If the escape is given a low probability it will be expensive
to emit; a high probability penalizes the emission of the existing, known, symbols.

Some investigations by the author [8], combining Burrows–Wheeler and PPM compression,
showed that a large part of the output stream was concerned with establishing contexts (in effect
handling escapes) rather than actually coding symbols—about 50% for order 4 contexts and perhaps
90% for order 12. The author has therefore looked at the possibility of reducing the number of
escapes or even omitting them entirely.

This current paper presents one aspect of this investigation. In contrast to most other develop-
ments, it emphasizes very simple modelling and algorithms, even at the cost of relatively high
memory usage.

3. COMPRESSORS AND RESULTS

This section will present a sequence of three compressors to illustrate the development of the final
technique. The results are summarized, for the Calgary and Canterbury Corpora, in Table I, but
first including three other compressors for comparison and later one other test file.

3.1. GZIP

Standard GZIP with default parameters, given here as a widely available production compressor.

3.2. CTW

The Context-Tree Weighting algorithm (v0.1) included as an example of a high-performance bit
encoding algorithm, run with default parameters.

3.3. PPMref

This is a simple PPM compressor, written by the author as a testbed. It uses full exclusions as
a simple form of blending, but has no optimizations. The zero-frequency problem is basically
ignored; an escape is just another symbol, always included in each context, its reference count
combining with those of other symbols to control data coding. Its one unusual feature is that it
is an order-5 compressor, with order-4 omitted; order-5 escapes go directly to order-3. (See the
discussion toward the end of Section 3.6.) Its compression is very similar to that of PPM*[3], and
within about 7% of the far more complex Context-Tree Weighting [6, 7]. Although non-standard,
it is included here as an example of what is possible with simple unoptimized PPM.

3.4. BWC (BitWise compressor)

The simplest arithmetic coding model is for a binary alphabet, with two counts. If the counts will
each fit into a single byte, we need only two bytes per model and a data structure of millions of
models is quite feasible.
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The BWC uses a set of 1 million (220) binary models each with two 1-byte counters and held
as a simple linear array occupying in all 2MB. This array is indexed by the previous 20 bits of the
data stream, with no regard for byte boundaries, giving a binary PPM compressor of order 20.

The result is a surprisingly good compressor, generally within 10–15% of GZIP. There is little
benefit in increasing the order; in fact geo is best with lower orders. Increasing the counts to 2
bytes gives only modest improvement (say 1%), while doubling the storage cost.

3.5. BWCV (BitWise compressor variable order)

A PPM encoder issues an escape when it must process a symbol which is not present within the
context for the current order. This requirement does not apply to a binary order, which always
contains both valid symbols. But we can also escape if the context itself is absent or invalid. With
a binary context this is easily achieved by initializing both counts to zero. An invalid (zero) context
can then force an automatic escape to a lower order, with no explicit escape code emission.

This is done in the BWCV compressor. All models are initialized to {0,0}, except for the
zero-order context, set to {1,1}. The coder tracks down from the highest order (still 20 and binary)
until a valid (non-zero) context is found, from which the bit can be emitted. The coder then traces
back through the bypassed orders, validating each by first setting its counts to {1,1} and then
incrementing the appropriate count (by 4). The decoder of course mirrors these actions, following
the coder, governed by just by the validity of the contexts and with no explicit signalling. The
result is a small improvement over the BWC compressor for most files.

The result for pic is especially good, but perhaps not surprisingly as this is essentially the
bit-stream data which is forced into a byte representation.

3.6. PPMbit (PPM BitWise)

The two previous compressors (with binary order=20) are equivalent to byte-wise PPM of order
only 2.5. While this can be extended by increasing the binary order, even as far as 28 with current
RAM sizes, some other aspects become important

1. The models array becomes increasingly sparse and inefficient in space utilization.
2. The array becomes quite time-consuming to initialize, especially for sizes of 100MB (say

binary orders of 26–27). The initialization can easily overwhelm the compression proper.
3. Performance suffers if the models do not fit into a cache or, for very large models, into real

memory.
4. There is anyway little gain with these relatively modest increases in coding order.

These problems all follow from the essentially simple, even crude, implementation with all
contexts held in a simple linear array. Typically only 15–20% of the 220 entries are actually used.
We could increase the storage efficiency by storing the models in a hash table or a similar structure.
Instead we combine the byte-oriented context management of the PPMref compressor with the bit-
wise coding within each byte from Section 3.5, with results shown in the PPMbit column of Table I.
The byte contexts are determined as usual for PPM. Each context contains an array of 256 binary
models, all except for the zero-order byte context initialized to 0 (invalid). Each bit is processed
as with the BWCV compressor, dropping down the byte order as needed to find a valid context for
that bit. It is quite usual to find one byte being handled by bit models at several different byte-order
contexts, just as consecutive bytes may be handled by different orders with normal PPM.

In essence the array of models for each byte is indexed by initially 0, then the left-most bit, then
the left-most two bits and so on until the right-most bit uses a model selected by the preceding
7 bits. This gives a small bit-wise PPM structure within each byte. A naive implementation might
just use initial bits as indices, but this makes all leading zeros map to the same model. We,
therefore, add a prefix 1 bit to the byte code to separate out the leading zeros. For example,
processing the letter ‘J’ (01001010) uses the sequence of indices into the array of models (decimal
values in parentheses)—1(1), 10(2), 101(5), 1010(10), 10100(20), 101001(41), 1010010(82) and
10100101(165).
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With this scheme the first binary model (1, to process bit 7) is used for every bit, whereas the
usage frequency decreases for later bits as the coding tree branches out. The leftmost bit (bit 7)
is, therefore, given a ‘small’ increment of 5 and the rightmost (bit 0) a larger increment of 7, with
linear interpolation for intermediate bits.

We find that often 60–80% of the highest order contexts are deterministic, with only a single
byte. As, storage-wise, it is most inefficient to handle these with the full set of 256 models, we
use a different technique for deterministic contexts.

1. New contexts are handled by normal bit encoding, but all bits are coded at some lower
level because the highest order contexts do not yet exist. (The new contexts are created by
back-tracking up the orders, as in the variable-order compressor above—Section 3.5.) The
bits are assembled into a single symbol held within the context and the context marked as
‘deterministic’.

2. Contexts with two or more symbols are processed as normal, processing each bit in sequence.
3. Deterministic contexts, with only a single symbol, are handled specially. In coding, if the

current symbol matches that already held, we emit a ‘copy’ flag and nothing more. The
decoder, also knowing that the context contains a unique symbol, reads this flag and copies
one symbol to the output.

4. If the symbol to be coded does not match that in the deterministic context, the copy flag
signals that full 8-bit coding is needed. The previously deterministic context then becomes
(at both coder and decoder) a normal, multiple, context, as in (2) above.

This handling of deterministic contexts gives a useful saving of memory and also a slight (1–2%)
improvement in compression. Typically 80–90% of the highest order context symbols are copied
rather than coded.

Much as with the PPMref compressor, the best results here use orders 0, 1, 2 and 4, omitting
order 3. Most of the ‘filtering’ or elimination of symbols from the context occurs between orders 1
and 2 (at least for text files). It seems to be more effective to improve the count statistics at the
lower order (2), rather than emit bits from the higher order (3) which, being used less frequently,
accumulates poorer statistics.

This compressor is nearly as good as PPMref on most files, and compares well with GZIP. The
final column in Table I shows the memory requirements for each of the test files, using the final
PPMbit compressor.

Finally, most of the PPMbit results are within 10–15% of CTW values (some to 21%, but better
for excl). The PPMbit compressor, with no optimization at all, thus compares well against other
compressors with extensive optimization.

But why is this compressor, with no escapes, generally inferior to the otherwise comparable
PPMref, with conventional escapes? Two reasons are suggested.

• In PPMref the entire byte has a definite probability and is coded accordingly. In PPMbit the
probability gradually develops as bits are processed; it is only the last, rightmost, bit that is
truly emitted at an appropriate probability. Earlier bits are effectively blurred among several
byte values. In text files about 10% of the emitted bits are coded from data bit 0, increasing
to about 20% for bit 4, demonstrating the variation in efficiency. (The three high-order bits
identify letters, digits, etc. and behave quite differently.) A similar, but smaller, trend appears
in the binary files.

• And also, the author’s experience suggests that there is always some inefficiency in each stage
of arithmetic coding, despite its asymptotic ideal. If this is so, coding a byte as 8 individual
bits rather than a single entity will again degrade the compression.

Table I includes comparative results for the (small!) 100MB file often used with the PAQ
compressor family. In ‘their’ terms, the output file from PPMbit is about 26.2MB, compared with
17–20MB for the best of the far more complex PAQ compressors. But the compression compares
very well with the GZIP compressor and even CTW. This section includes compression times for
enwik8 on a 2.2GHz X86 processor.
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Table I. Calgary and Canterbury Corpus Results.

PPMref BWC BWCV
PPMbit

GZIP CTW ord 1235 order 20 var order bpc MB

Calgary Corpus
bib 2.521 1.832 1.964 2.820 2.769 2.078 3.9
book1 3.261 2.180 2.307 2.890 2.873 2.461 14.2
book2 2.707 1.891 2.019 2.849 2.841 2.150 12.6
geo 5.351 4.531 4.796 5.939 5.719 5.039 15.4
news 3.073 2.350 2.440 3.400 3.383 2.625 14.4
obj1 3.840 3.716 3.888 4.594 4.995 4.026 3.7
obj2 2.646 2.398 2.533 3.529 3.618 2.638 14.2
paper1 2.796 2.289 2.403 3.195 3.135 2.603 3
paper2 2.896 2.228 2.351 3.000 2.950 2.573 3.7
pic 0.880 0.796 0.847 0.819 0.808 0.877 6.4
progc 2.681 2.335 2.470 3.248 3.187 2.622 2.6
progl 1.817 1.646 1.798 2.489 2.448 1.883 2.4
progp 1.822 1.677 1.799 2.488 2.435 1.872 2
trans 1.621 1.442 1.602 2.532 2.520 1.633 2.9
Average 2.708 2.237 2.373 3.128 3.120 2.506

Canterbury Corpus
bible 2.354 1.506 1.611 2.321 2.325 1.696 12.5
csrc 2.253 1.982 2.162 2.874 2.808 2.195 0.8
ecoli 2.313 1.940 1.948 2.010 2.008 2.005 0.2
excl 1.600 1.008 1.248 1.608 1.604 0.953 8.1
fax 0.880 0.796 0.847 0.819 0.808 0.877 6.4
html 2.600 2.303 2.412 3.238 3.144 2.515 1.7
lisp 2.664 2.357 2.624 3.413 3.291 2.628 0.4
man 3.318 2.939 3.085 4.230 4.073 3.286 0.6
play 3.128 2.322 2.475 2.911 2.858 2.713 5.3
poem 3.241 2.185 2.328 2.789 2.772 2.463 9
sprc 2.703 2.567 2.710 3.545 3.472 2.766 3.5
tech 2.715 1.832 1.968 2.747 2.731 2.099 8.2
text 2.863 2.075 2.210 2.768 2.727 2.394 5
world192 2.344 1.432 1.555 2.803 2.798 1.743 28.4
Average 2.498 1.946 2.085 2.720 2.673 2.167

enwik8 2.801 2.036 1.934 2.965 2.978 2.099 78.2
PC time (s) 12 1770 220 49 61 100

4. CONCLUSIONS

This paper has shown that an escape-free PPM compressor using simple algorithms and bit-wise
coding rather than byte-wise coding can achieve compression well within the range of accepted
‘good’ compressors, even with no statistical analysis or other optimization of the text.

It is presented as a preliminary work, illustrating the feasibility of escape-free PPM. But perhaps
it also demonstrates the diminishing returns of improving the escape mechanism; indeed escape
handling might not be a limiting factor.

In retrospect, there seems to be a ‘swings and roundabout’ situation with respect to escapes;
if escapes are eliminated, their cost is very often transferred to some other part of the coding.
For example, Burrows–Wheeler compression eliminates escapes, but only at the cost of also
eliminating most knowledge of the contexts. The contexts can be recovered to some extent, but
only with considerable difficulty. (Refer [8] for discussion.) In the present situation, coding uses
the preceding bytes as a context, but largely ignores the immediate context of the current byte,
giving a less-efficient coding of the earlier bits of each byte.

Again, the present compressor follows traditional PPM in using only a first-order context of
the preceding symbols. In contrast the very best compressors use extensive and complex statistical
analyses to obtain more efficient prediction and coding of the bytes (or perhaps bits), an approach
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deliberately avoided in the current work. It is hoped some later author might consider combining
the present techniques of escape elimination with improved estimation of the symbols themselves.
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