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Abstract

The final coder in Burrows-Wheeler compression is usually either
an adaptive Huffman coder (for speed) or a complex of arithmetic
coders for better compression. This article describes the use of conven-
tional pre-defined variable length codes or universal codes and shows
that they too can give excellent compression. The paper also describes
a “sticky Move-to-Front” modification which gives a useful improve-
ment in compression for most files.
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1 Introduction

In less than a decade the Burrows-Wheeler algorithm has become a standard
for fast efficient lossless data compression. While the algorithm has been the
subject of many papers, there has been little more than 7% improvement in
compression since its first publication.

Many of the improvements require complex encoding structures and ex-
tensive analysis of the final stream of encoded values. This paper goes to the
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other extreme, showing that a very simple final coder based on established
variable length codes for the integers can still give excellent compression.

The paper also describes an improvement to the “Move-to-Front” step
within Burrows-Wheeler compression, an improvement which has been infor-
mally communicated and used in production compressors but not otherwise
presented in the open literature.

2 Burrows-Wheeler compression

The compression algorithm described by Burrows and Wheeler[1] differs from
most compression methods in that it processes a file in blocks. While a block
size of a megabyte is quite practical on most computers, it is often convenient
to work with blocks of say 200 kilobytes, so that a 1 megabyte file would be
processed as 5 blocks. Within each block, compression proceeds in three
major phases.

1. An initial permutation step (the “Burrows-Wheeler Transform”) re-
orders the input symbols of each block (or file) according to their ad-
joining contexts. Because most contexts are associated with only a
few symbols, the transformed block contains long sequences with few
symbols and has many runs of repeated symbols.

2. The essence of the sequences of few symbols is captured by a “recency”
recoding in which each symbol is replaced by the number of different
symbols encountered since its last occurrence. The usual implementa-
tion of a recency recoder uses a Move-to-Front list, with each symbol
being recoded as its index in the list. The symbol is then brought to the
head of the list, with all intervening symbols shuffled back one place.
The output of this step is a series of integers, dominated by small val-
ues. Typically about 60% are 0 (from symbol runs) and for many files
a value n has a frequency almost proportional to 1/n2[6].

3. The highly skewed distribution from step 2 is captured by a final sta-
tistical coder, often a form of Huffman or arithmetic coder, to ensure
that the more frequent small values have an appropriately compact
representation.

There are thus three essential steps to the compression. All have been
investigated by various workers, with a view to improving either speed or the
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Author date algorithm bpc
Burrows & Wheeler 1994 16 k Huffman blocks 2.43
Fenwick 1995 order-0 arithmetic 2.52
Fenwick 1996 structured arithmetic 2.34
Balkenhol et al 1998 cascaded arithmetic 2.30
Fenwick 1998 sticky MTF, struct arith 2.30
Balkenhol & Shtarkov * 1999 cascaded arithmetic 2.26
Deorowicz 2000 arith. contexts 2.27
Deorowicz * 2002 weighted frequency count 2.25
Seward (BZIP2) 2000 Huffman blocks 2.37
Wirth 2001 no MTF; PPM contexts 2.35
Arnavut * 2002 inversion ranks 2.30
Fenwick (this paper) 2002 VL codes; 1 k blocks 2.57

Table 1: Burrows-Wheeler compression history

compression performance. Some of the earliest work was done by the author
with a series of reports [2, 3, 4] and two papers [5, 6]. Major surveys of
Burrows-Wheeler compression are given by Balkenhol, Kurtz and Shtarkov[7]
and Deorowicz[8], to which the reader is referred.

Most Burrows-Wheeler compressors use some form of adaptive statis-
tical encoder for the final stage. Burrows and Wheeler, and more recently
Seward[13] with BZIP2, use Huffman codes, recomputed for successive blocks
of a few thousand symbols. Most other workers have used complexes of arith-
metic coders in an attempt to get the best possible compression, albeit with
a considerable increase in complexity. These techniques are described by
Fenwick[5, 6], Balkenholl et al[7] and Deorowicz[8].

The compression performance (in bpc, or “bits per character”) for the
Calgary Corpus is summarised in Table 1. It is obvious that improvements
in compression are difficult, with even the best result improving on the early
1996 results by only 4%.

The last four lines show some other important results, aside from the his-
torical sequence of the preceding lines. The table includes results from Wirth
and Moffat[12] (who avoid the MTF stage completely), Seward’s BZIP2 im-
plementation (released through the Free Software Foundation) and the results
of this paper. Three recent results, marked with a * in the table, indicate
the state of the art at mid-2002.

Arnavut [9] uses “inversion ranks” as an alternative to Move-To-Front re-
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coding. This, the most recent of a series of papers, shows that inversion
ranks are clearly competitive with Move-To-Front.

Balkenhol & Shtarkov [10] demonstrate an improvement over their earlier
results[7].

Deorowicz [11] examines the Move-To-Front operation, replacing it by a
“Weighted Frequency Count” to obtain the best result to date.

2.1 Present Work

This current paper arose from a major survey of variable-length codes for the
integers in which many of the codes were compared as the final coding step
of a Burrows-Wheeler compressor. The results were sufficiently encouraging
to justify reporting in this paper.

Before discussing the compression proper it is appropriate to briefly de-
scribe the two variable-length codes which are used in the coder. We also
describe a simple modification of the Move-to-Front coder which gives a use-
ful improvement in compression.

3 Variable length codes

Variable-length codes (or universal codes) are a special class of integer rep-
resentations which represent values as compactly as possible, while including
some means of terminating each representation or codeword.

The codes used here exemplify two approaches to variable-length codes.

• The Elias γ codes use explicit control bits, either embedded within the
main codeword or as a prefix, to indicate the codeword length.

• The Fraenkel-Klein codes, based on Fibonacci numbers, constrain the
legal bit pattern within the representation and violate this constraint
to terminate the codeword.

3.1 Elias Gamma Codes

These are one of the older variable-length representations, dating from a
1975 paper by Elias[14]. The two versions of the Elias γ code have identical
performance, differing only in the permutation of the bits.
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Value γ γ ′ Fibonacci
1 1 1 11
3 011 011 0011
5 01001 00101 00011
7 01011 00111 01011

11 0101001 0001011 001011
13 0100011 0001101 0000011
17 010000001 000010001 1010011
23 010101001 000010111 01000011

127 0101010101011 0000001111111 10100001011
256 00000000000000001 00000000100000000 0100001000011

Table 2: Examples of Elias γ and Fibonacci codes

1. The γ code proper consists of the bits of the binary representation,
least-significant bit first, and ending with the most-significant 1-bit.
Each numeric bit, except the final 1, is preceded by a 0 “flag” bit.
Thus 7 → 01011 and 22 → 000101001.

To decode, read the flag bits and assume that each ‘0’ flag is followed
by a numeric bit; the final ‘1’ flag implies the most-significant 1 on the
binary representation, as well as marking the end.

2. Alternatively, the γ ′ code writes the numeric bits in order, most-
significant first. These bits are preceded by as many zeros as there
are bits following that most-significant 1. With this code 7 → 00111
and 22 → 000010110.

3.2 Fraenkel-Klein Fibonacci codes

The Fibonacci numbers are a well known number sequence in which each
number is the sum of its two predecessors, the first few being 1, 1, 2, 3, 5, 8,
13, 21, 34, 55.

Fn = Fn−1 + Fn−2, F2 = F1 = 1

Zeckendorf’s theorem [15] states that any integer can be represented as
a unique sum of Fibonacci numbers; we write the representation as a binary
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bit vector with a 1 indicating the presence of that Fibonacci number (least-
significant bit first and omitting F1). Thus 7 = 2 + 5 = F3 + F5 → 0101 and
17 = 1 + 3 + 13 = F2 + F4 + F7 → 0101001.

No Zeckendorf representation has two consecutive ones. By the definition
of Fibonacci numbers, any such a pair could be replaced by a single more-
significant 1. Thus if we present the digits in increasing significance and follow
the most-significant 1 by another 1, this “11” pair is an illegal combination
and can act as a terminator to the codeword. This gives Fraenkel and Klein’s
“C1” code[16], which we will refer to simply as a “Fibonacci” code.

A few examples of the γ and Fibonacci codes are shown in Table 2, mostly
for the first few prime numbers. The γ codewords are shorter for small values,
but the Fibonacci codewords are shorter for larger values. More precisely,
for values of n binary digits, the γ code requires (2n − 1) bits, whereas the
Fibonacci code requires about (1.44n + 0.5) bits.

3.3 Wheeler 1/2 code

It is usual to run-length encode the long sequences of zeros produced by the
MTF recoding. This coding is not absolutely necessary for fully-adaptive
arithmetic encoders, although it does ease their need for fast adjustment,
but is essential for Huffman and similar coders which cannot represent an
input bit by less than one output bit.

For this application Wheeler has used an unusual code which he calls the
“1/2” code and states that while he has used it for a long time he does not
know its origin. (The author has had frequent requests asking how it works!)

The code is designed to represent a value as a sequence of zeros and ones
(values, not bits) within a stream of larger values. Any value other than 0 or
1 terminates the encoded value. In a normal binary representation all zeros
carry a numeric weight of 0, while ones have successive weights of 1, 2, 4, 8,
16, . . . . In the Wheeler 1/2 code successive zeros have the weights 1, 2, 4,
8, 16, . . . , while successive ones have the weights 2, 4, 8, 16, 32, . . . . While
decoding a Wheeler 1/2 representation is quite simple, it is much less obvious
how the code is generated in first place; for example should the value 2 be
represented (least-significant bit first) by 1 or by 01?

To explain the code the bit weights can be written as –

bit=0 1 2 4 8 16 32 64 . . .
bit=1 2 4 8 16 32 64 128 . . .

OR bit=1 1+1 2+2 4+4 8+8 16+16 32+32 64+64 . . .
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run length sums code L + 1
L binary

x 0 y 1 1 0 01
x 00 y 2 2 1 11
x 000 y 3 1+2 00 001
x 0000 y 4 2+2 10 101
x 00000 y 5 1+4 01 011
x 000000 y 6 2+4 11 111
x 0000000 y 7 1+2+4 000 0001

Table 3: The Wheeler 1/2 code

Thus bit position i has a constant weight of 2i, to which is added a further
2i if the digit is 1. For a k-digit Wheeler 1/2 value the constant weights add
to 2k − 1; if we encode not L but (L + 1) the 2k − 1 becomes 2k, which is
simply a further bit beyond those of the Wheeler representation. To encode
an integer length L into the Wheeler 1/2 code, just encode (L + 1) in binary
and discard the most-significant 1 bit.

This interpretation is seen immediately in Table 3. Interestingly, the au-
thor finds it simpler to encode from binary, but to decode with the “peculiar”
weights.

The Wheeler 1/2 code never expands the run which it represents, al-
though all values N > 1 must be encoded as N + 1 to accommodate the
two values used for zeros. As most of the variable-length codes represent a
minimum value of 1, we must use the values 1 and 2 rather than 0 and 1 for
the Wheeler 1/2 run-length representation, and encode all values N > 0 as
N + 2.

4 Sticky Move-to-Front

Many authors see a major problem in the asymmetry of the Move-to-Front
transformation; it brings a “new” symbol into consideration very quickly, but
forgets it quite slowly. A less-active symbol is displaced only because it drifts
slowly out of consideration as more-recent symbols come ahead of it in the
MTF list. The initial fast motion towards the front contrasts with the later
slow movement away from the front.

Close observation of the MTF behaviour shows that while most symbols
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remain active for a while after they are introduced, many are used once and
then not again for a long time. But having been brought to the head of the
list, and while they are drifting back to less-active status, they stay ahead of
genuinely-active symbols and increase their coding cost.

The “sticky Move-to-Front” implementation reduces this effect by moving
the most recent symbol away from the list head if it has been used only once,
but keeping it reasonably close to the head just in case it is needed again. It
is left at the head of MTF list if it has been referenced twice in succession,
producing a 0 MTF recoding on the second reference.

Experiments show that moving a symbol back to 40% of its original po-
sition is a good compromise and gives an average improvement of about 1%
on both the Calgary and Canterbury compression corpora1.

5 Compression Measurements

A standard Burrows-Wheeler compressor was modified to emit integers as
variable-length codes instead of the more efficient arithmetic codes. Initially
a single code (say Elias γ or Fibonacci) was used to encode all the values,
producing the “γ” and “Fibonacci” results of Table 4. An immediate obser-
vation is that generally the text files (with an alphabet less than 100 symbols)
compress better with a γ code, while other files are better with a Fibonacci
code.

The next version selected the code (γ or Fibonacci) according to the
data statistics of blocks of values. (These coding blocks are quite different
from the permutation blocks of the Burrows-Wheeler transform itself.) Many
earlier workers have emitted code in blocks, with code parameters selected
for each block. For example, Burrows & Wheeler (the original paper) and
Seward (BZIP2) emit in blocks of a few thousand symbols, generating an
appropriate Huffman code for each block. The combination of blocks and
arithmetic coders is generally less successful because the arithmetic coders
adapt quickly to the statistics of each block and optimising according to
the block statistics affects only the block “start-up” behaviour which is a
relatively small component of the total coding cost.

Here we examine the next say 1000 non-zero symbols and calculate the
costs of encoding that block in each of the candidate codes. The best code is
selected and a control value emitted if necessary to switch to the new code.

1By such increments is compression improvement measured!
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File Fibo- Elias simple Vrbl Len blocks BZIP2
bytes name nacci γ sticky n-stick

111 261 bib 2.202 2.178 2.178 2.150 2.168 1.975
768 771 book1 2.939 2.857 2.857 2.806 2.843 2.420
610 856 book2 2.425 2.344 2.344 2.309 2.332 2.062
102 400 geo 5.267 6.090 5.267 5.267 5.380 4.447
377 109 news 2.770 2.779 2.779 2.712 2.744 2.516
21 504 obj1 4.047 4.528 4.047 4.047 4.124 4.013

246 814 obj2 2.587 2.741 2.587 2.573 2.593 2.478
53 161 paper1 2.751 2.719 2.719 2.675 2.687 2.492
82 199 paper2 2.786 2.739 2.739 2.697 2.722 2.437

513 216 pic 0.832 0.867 0.832 0.826 0.850 0.776
39 611 progc 2.733 2.716 2.716 2.679 2.692 2.533
71 646 progl 1.932 1.846 1.846 1.835 1.847 1.740
49 379 progp 1.903 1.835 1.835 1.829 1.823 1.735
93 695 trans 1.644 1.581 1.581 1.578 1.579 1.528

Average 2.630 2.701 2.595 2.570 2.599 2.368

Table 4: Compression results, Calgary Corpus

This calculation must be done precisely, including the cost of specifying the
new code and especially the cost of the encoded runs of zeros. Several variable
length codes were considered during these comparisons, but only the Elias
γ and Fibonacci were ever selected. A block size of 1000–2000 gives good
performance. The results in Table 4 use a block of whatever size contains
1000 non-zero values.

• Most text files use Fibonacci codes at the start. The early parts of
the permuted text files are associated with punctuation and “special
character” contexts which are very poor in defining associated char-
acters. The MTF coded values tend to be larger and more variable,
so preferring the Fibonacci code which has shorter codewords for large
values.

• The later parts of most text files generally use γ codes because their
alphabetic contexts are much better at predicting symbols and produce
a predominance of small values. The γ codes are better in this situation.

• The binary files, with a weaker structure of contexts and a much wider
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File Fibo- Elias simple Vrbl Len blocks BZIP2
bytes name nacci γ sticky n-stick

11 150 csrc 2.281 2.244 2.244 2.241 2.228 2.180
1 029 744 excl 1.996 2.246 1.996 1.919 2.060 1.074

513 216 fax 0.832 0.867 0.832 0.826 0.850 0.781
24 603 html 2.619 2.676 2.619 2.618 2.643 2.479
3 721 lisp 2.723 2.754 2.723 2.723 2.714 2.758
4 227 man 3.326 3.380 3.326 3.326 3.334 3.335

125 179 play 2.986 2.947 2.947 2.889 2.920 2.529
481 861 poem 2.938 2.881 2.881 2.824 2.858 2.416
38 240 sprc 2.771 2.896 2.771 2.764 2.795 2.717

426 754 tech 2.389 2.303 2.303 2.265 2.290 2.018
152 089 text 2.671 2.589 2.589 2.560 2.584 2.275

Average 2.503 2.526 2.476 2.450 2.480 2.233

Table 5: Compression results, Canterbury Corpus

range of values, are handled almost entirely by Fibonacci codes and
show little improvement over the simpler scheme of selecting the Fi-
bonacci code for non-text files.

The column “n-stick” shows the performance with sticky-MTF disabled.
Most files show an improvement with sticky-MTF of 0.02–0.03 bpc, with
an overall improvement of just over 1%, although a few show slightly worse
compression.

Table 5 gives corresponding results for the newer Canterbury Corpus. The
compression is 9.7% poorer than with BZIP2 (compare 8.4% for the Calgary
corpus). Sticky-MTF improves compression by 1.2% (Calgary 1.1%).

But the EXCL file is quite anomalous. With most files the new compres-
sors are within 10% of the BZIP2 results, but EXCL gives about half the
compression of BZIP2 (2 bpc cf 1 bpc). Figure 1 shows the distribution of
encoded values (after run-length encoding the zeros) for three files. While
the files POEM and GEO show the typical, nearly monotonic, decrease in
symbol frequency, the EXCL file is completely different. Its frequency dis-
tribution in no way approximates that assumed by the use of non-adaptive
variable-length codes, but has significant peaks and is actually increasing for
the largest values! Many of the more-frequent large values must be encoded
with relatively costly variable-length representations, whereas an adaptive
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Huffman or arithmetic coder could compensate for these unexpected fre-
quencies. The compression is correspondingly poorer for the non-adaptive
variable-length codes.

In results not shown, enabling sticky MTF with a good final compressor
degrades the compression of EXCL by 22%! This phenomenon has not been
investigated, but probably arises from the unexpected frequency distribution.

6 Conclusions

We have shown that simple variable-length codes are a viable alternative
to the more usual arithmetic or block-adaptive Huffman coders usually em-
ployed in a Burrows-Wheeler compressor, giving compression within 10% of
the production BZIP2 compressor and 14% of the best reported results. We
have also described a version of the Move-to-Front recoder which gives a 1%
improvement on each of the two standard corpora.
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