
1

Additive Variable Length Codes for the Integers
Peter Fenwick

Abstract— This paper introduces a new family of variable
length codes for the integers, initially based on the Gold-
bach conjecture that every even integer is the sum of two
primes. For an even integer we decompose the value into
its two constituent primes and encode the ordinal numbers
of those primes with an Elias gamma code. The method
is then elaborated to handle odd integers. The paper then
develops a more general method of encoding any integer as
the sum of two integers and developing suitable basis sets
of integers. Although the codes which are generated by
these methods are characterised by widely-varying and un-
predictable lengths, they are over some ranges shorter than
most other variable length codes.

I. Introduction

MANY types of information coding and compression
involve a transformation which produces a sequence

of integers with a highly skewed frequency distribution. For
good compression or a compact representation it is then
necessary to represent these integers in a “variable-length”
form such that each codeword is self-delimiting and small
values are represented much more compactly than larger
values. Many such codes have been developed, as sum-
marised by Fenwick[1] (though this account has major er-
rors in describing the Golomb code). The present paper will
describe a variable length code of novel structure, based
initially on the Goldbach conjecture of number theory.

II. Examples of variable length codes

We start by describing some of the better known
variable-length codes, the “gamma” and “omega” codes
of Elias[2] and then a lesser-known one by Fraenkel and
Klein[3].
• The Elias gamma code has several variants, with differ-
ing permutations of the component bits of the codeword.
In the version used here, to encode an integer N , first write
the natural binary representation of N , from its most sig-
nificant 1 bit (this is the Elias “beta” code). Then precede

Department of Computer Science, The University of Auck-
land, Private Bag 92019, Auckland, New Zealand. Email :
p.fenwick@auckland.ac.nz

TABLE I

Elias gamma and omega, and Fraenkel & Klein C1 codes

Elias codes Fraenkel &
N gamma omega Klein C1
1 1 0 11
2 010 10 0 011
3 011 11 0 0011
4 00100 10 100 0 1011
5 00101 10 101 0 00011
13 0001101 11 1101 0 0000011
20 000010100 10 100 10100 0 0101011

this by as many zero bits as there are bits following that
initial 1. (This string of 0s, with its following 1, is the Elias
“alpha” code.) To decode, count the initial zero bits, write
down the 1 which terminates the zero sequence and then
copy as many following bits as there were leading zeros.
Some representative codewords are shown in Table I. A
range which includes zero must be offset by 1 because the
smallest value representable by a gamma code is 1.
• The Elias omega code also starts with the Elias beta
codeword. But now precede that codeword by its “length”
(here the number of bits after the initial 1), also as a beta
codeword, then the “length of the length”, and so on until
a “length” of 2 or 3 is encoded directly. Finally the whole
codeword is followed by a terminating 0. Thus to encode
the value 51, take its binary representation 110011, precede
that by its length to give 101 110011, and a further length
10 101 110011. As this length is 2, the codeword is now
complete, except for adding a final 0 to give the omega
codeword of 10 101 110011 0. Some omega codewords are
also shown in Table I. Note that (N = 1) is handled as
a special case for the omega code. While the omega code
is asymptotically shorter than the gamma code, its length
has major discontinuities when a new length component is
“phased in”. The first such discontinuities occur between
3 and 4, between 15 and 16 (ω(15) = 1111110 and ω(16) =
10100100000) and between 255 and 256; in general for N =
22k

. Because of the sequence of “length”, “log(length)”,
“log(log(length))” and so on, the omega code is sometimes
referred to as a “logarithmic-ramp” code.
• Codes based on Fibonacci numbers were first described
by Apostolico and Fraenkel[4] and later, in a simplified
form, by Fraenkel and Klein[3]. It is the simplest of these
latter codes, their C1 code, which is described here. The
Fibonacci numbers form a sequence in which each value is
the sum of its two predecessors Fi = Fi−1 +Fi−2. The first
members of the sequence, with F1 = F2 = 1 are 1, 1, 2, 3,
5, 8, 13, 21, 34,. . . . Zeckendorf has shown [5] that any in-
teger can be represented as the sum of Fibonacci numbers.
The binary vector whose digits indicate the presence or ab-
sence of the corresponding Fi, is known as the “Zeckendorf
representation” Z(N) of an integer. Omitting the F1 term
and writing with the least-significant bit to the right we
have that 30 = 21+8+1 and Z(30) = 1010001. Similarly
42 = 34+8 and Z(42) = 10010000.
The important feature of the Zeckendorf representation is
that it cannot have two consecutive ones; any such pair can,
by the definition of the Fibonacci numbers, be replaced by
a single more-significant 1 bit. Thus if we take the Zeck-
endorf representation, least-significant bit first, and follow
its most-significant 1 by another 1, the illegal combination
of two consecutive 1 bits acts as a terminating flag. This is
the C1 code of Fraenkel and Klein; they present other codes

2

which differ in detail but not in principles or general per-
formance. Using the earlier examples C1(30) = 10001011
and C1(42) = 000010011. The C1 code is simple and effi-
cient, with C1(N) having a length of about 1+1.44 log2 N
bits.

III. Components of Variable Length Codes

The examples of the previous section illustrate how
variable-length codes combine two essential components.
Value specification Many numeric representations combine
a visible digit vector d and an implicit weight vector w, so
that the represented value N is given by N = d.w, the
scalar product of d and w. In the most familiar represen-
tations, successive digits are related by wi+1 = b.wi, giving
a polynomial in the base b. Obvious examples are b = 10
(decimal) and b = 2 (binary).
A less obvious example is that as successive Fibonacci num-
bers tend to the ratio

lim
n→∞

Fn+1

Fn
=
√

5 + 1
2

= 1.618

the Zeckendorf representation approximates a polynomial
with a base b = 1.618.
Again, the Elias gamma code can be rearranged to generate
bit-pairs for each underlying binary digit, as {0 → 00, 1 →
01, end→ 1x}. This resembles a polynomial with b =

√
2

(but not all bit patterns are legal; it terminates on the first
occurrence of an odd power of the base).
Length specification Some codes, such as the omega, have
a specific digit count but this may require a recursive def-
inition of the length, exactly as in the omega code. (And
embedded within the omega code is an alpha code giving
the “recursion depth” for the length specification.) Other
codes, such as the Fibonacci codes, are terminated by an
illegal bit pattern or reserved terminating “comma”.
The simplest length specification is the Elias “alpha” code
which may be either 0 . . . 01 (stop on the first 1) or 1 . . . 10
(stop on the first 0). (The second form constitutes a poly-
nomial with b = 1.) As originally described the gamma
code is a combination of an alpha code (for the length)
and a beta code (for the value).

IV. Codes based on the Goldbach conjecture

The codes to be described may be regarded as extensions
of an alpha code, but with the termination rule “Stop at
the second 1”. In the simpler forms at least they are “con-
stant weight” codes, with exactly two 1-bits in each code-
word. The constant weight is combined with the Goldbach
conjecture of number theory, that any even integer is the
sum of two primes. The first few prime numbers are shown
in Table II, but with P1 = 1 rather than the more usual
P1 = 2.

A. A simple prime number code (G0)

We introduce the new Goldbach codes by considering a
very simple example, the G0 code. As its natural form
handles only even integers we encode twice the integer,

TABLE II

The first few prime numbers

Value 1 3 5 7 11 13 17 19
Index P1 P2 P3 P4 P5 P6 P7 P8

Value 23 29 31 37 41 43 47 53
Index P9 P10 P11 P12 P13 P14 P15 P16

TABLE III

Simple prime number code (G0)

value encode Sum of codeword
N 2(N + 3) primes
1 8 3+5 11
2 10 3+7 101
3 12 5+7 011
4 14 3+11 1001
5 16 5+11 0101
6 18 5+13 01001
7 20 7+13 00101
8 22 5+17 010001
9 24 11+13 00011
10 26 7+19 0010001
11 28 11+17 000011
12 30 11+19 0001001
13 32 13+19 0000101
14 34 11+23 00010001

weights w = 3, 5, 7, 11, 13, 17, 19, . . .

with an offset. The weight vector is the prime numbers
starting from 3, giving the code shown Table III.

For values much beyond those shown, the G0 codeword
length “runs away” because the primes are relatively dense.
But for many of the small values shown the G0 code is one
of the best known. Despite its limited range of useful values
the range does include most codeword lengths (for example
use a beta code with a preceding G0 code for its length).

B. More complex encodings

The G0 code is ultimately limited by its long runs of
zeros. For the codes of this section we encode these run-
lengths using for example a gamma code. Each codeword
now consists of two shorter variable-length components,
encoding the ordinal position or index from Table II.

We describe the new “G1” codes by illustrating their
construction.
• By the Goldbach conjecture, any even integer N is the
sum of two primes, say Pi + Pj , where i ≤ j
• Represent N by the couple (i, j − i + 1).
• Encode the two components i and j − i + 1, each with a
gamma code. (The second component has an offset of 1 to
handle the case i = j).

The gamma code is preferred to the Fraenkel & Klein
C1 code for the internal codes because it is shorter for very
small values, especially 1 and 3. Also note that the run
lengths easily exceed the efficient range of G0 codes.

Several values are shown encoded in Table IV, which in-
cludes the gamma code length for comparison. The two

3

TABLE IV

Goldbach G1 encoding of selected even integers

Components Goldbach G1 code Gamma
N values indices pair encoding len. length
2 1 + 1 1, 1 1, 1 1.1 2 3
4 1 + 3 1, 2 1, 2 1.010 4 5
6 3 + 3 2, 2 2, 1 010.1 4 5
8 3 + 5 2, 3 2, 2 010.010 6 7
10 3 + 7 2, 4 2, 3 010.011 6 7
12 5 + 7 3, 4 3, 2 011.010 6 7
14 7 + 7 4, 4 4, 0 00100.1 6 7
16 5 + 11 3, 5 3, 3 011.011 6 9
18 7 + 11 4, 5 4, 2 00100.010 8 9
20 7 + 13 4, 6 4, 3 00100.011 8 9
30 13 + 17 6, 7 6, 2 00110.010 8 9
40 17 + 23 7, 9 7, 3 00111.011 8 11
50 13 + 37 6, 12 6, 7 00110.00111 10 11
60 29 + 31 10, 11 10, 2 0001010.010 10 11
70 29 + 41 10, 13 10, 4 0001010.00100 12 13
80 37 + 43 12, 14 12, 3 0001100.011 10 13
90 43 + 47 14, 15 14, 2 0001110.010 10 13
100 47 + 53 15, 16 15, 2 0001111.010 10 13

40 3 + 37 2, 12 2, 11 010.0001011 10 11
40 11 + 29 5, 10 5, 6 00101.00110 10 11

TABLE V

Goldbach G2 codes, encoding rules

components
1st 2nd explanation comment

110 N = 1 special code
111 N = 2 special code
0. . . 0. . . even integer prime + prime
0. . . 1 prime integer prime + 0

1 0. . . 0. . . odd integer 1 + prime + prime

components are shown separated by a period “.”, which is
not part of the codeword. The most obvious feature is that
the codeword length varies erratically; it is not the step-
wise increasing function that we see in the gamma and C1
codes. But despite this variation, most values have shorter
codewords than the corresponding gamma codewords.

The last two lines of Table IV show two alternative cod-
ings for the value 40. Here using the pair (17, 23) from the
main table gives a codeword of 8 bits, while using the more
widely-separated values (3, 37) or (11, 29) gives a 10-bit
codeword. These illustrate the guideline that the initial
component primes should be as close together as possible
to give one large encoded value and a small displacement
to the next.

But the situation is really more complex than this and
a complete search is needed to find the best combination.
For example, 50 can be coded as (19+31), with indices [8,
11] and the coded pair {8,4}, for 12 bit cost. 50 can also
be encoded as (13+37), indices[6,12] and pair{6,7}, for a
cost of 10 bits. The difference is that decreasing the first
component from 19 to 13 changes its index from 8 to 6
and the coding cost from 7 to 5 bits. Increasing the second
value (difference) from 4 to 7 leaves its cost at 5 bits. The
key point is not the values per se, but the cost of coding
their indices.

V. Developing the general Goldbach Codes

The G1 code is limited to even values. We now extend
the coding to include odd integers as well, using two differ-
ent methods.
• The first method doubles the encoded value N as for
the G0 code but then encodes the run lengths as a gamma
code. This is an obvious method, but it involves larger
values in the run-lengths because each index is increased
by about 60% and often requires a longer gamma code
representation.
• The second method (the G2 code) handles values in sev-
eral different ways. While there are three basic situations
to consider, we also provide special codes for the smallest
values. (Special handling of small values is quite usual in
variable-length codes; we saw it earlier in the omega code
for 0.) The different cases are summarised in Table V
Special cases. Encode the value 1 as 110 and 2 as 111.
(None of the other codes can start with 11)
Even integer. Encode as above, as the sum of two primes.
In the earlier codes the difference of the two indices was in-
cremented before coding. Here we increment the first index
as well before coding, so that an index of 1 is represented
by 010 and allows an initial 1 to signal a non-numeric in-
terpretation.
Prime integer. Emit the index of the number itself (again
incremented by 1), followed by a single 1. (The final 1 im-
plies “no component”. Alternatively, we can define P0 as 0;
the 1 decodes as a 1 from a gamma code, which decrements
down to 0 as the correct index of the “prime number” P0.)
Odd integer (non-prime). Emit an initial 1 bit, decrement
the value by 1 and then encode as an even number as for
case 1 above.
Several of the resulting codes are shown in Table VI, includ-
ing the codeword lengths and the corresponding gamma
and omega lengths for comparison. For most values the
new codes are no longer than the older ones, and are usu-
ally shorter.

VI. Prediction of the Codeword Length

For this analysis it is simplest to consider the G1 code,
encoding the even integer 2N , with two additive compo-
nents both of O(N). While the prediction is not intended
to be precise (this is very difficult because of the unpre-
dictable codeword length), it gives a reasonable picture of
the overall codeword behaviour.

The prime number theorem states that π(N), the num-
ber of primes less than N , is proportional to N

log N . For val-
ues up to 1,000, a good approximation is π(N) = 1.15 N

log N .
The gamma codeword of an integer k requires approxi-
mately 2 blog2 kc + 1 bits. The Goldbach codeword rep-
resents both of its components as a gamma codeword; if
both are approximately π(N), each encoded length will be
about

2
⌊
log2

1.15N

log N

⌋
+ 1 bits

But the second index is encoded as a difference and if we
assume the difference to be about half the magnitude of

4

TABLE VI

Goldbach G2 codes, with gamma and omega lengths

N Goldbach G2 Code Gamma Omega
codeword Length Length Length

1 110 3 1 1
2 111 3 3 3
3 0101 4 3 3
4 010010 6 5 6
5 0111 4 5 6
6 011010 6 5 6
7 001001 6 5 6
8 011011 6 7 7
9 1011011 7 7 7
10 01100100 8 7 7
11 001011 6 7 7
12 00101010 8 7 7
13 001101 6 7 7
14 00110010 8 7 7
15 100110010 9 7 7
16 0010100100 10 9 11
17 001111 6 9 11
18 00111010 8 9 11
19 00010001 8 9 11
20 00111011 8 9 11
30 0001010010 10 9 11
40 0001100011 10 11 12
50 0001111011 10 11 12
60 000010001010 12 11 12
70 000010011011 12 13 13
80 000010110010 12 13 13
90 000011000010 12 13 13
100 000011001011 12 13 13

the first index, its gamma codeword is 2 bits shorter than
the first. The predicted Goldbach codeword length is then
(in bits)

(2L + 1) + (2L− 1) = 4L, where L =
⌊
log2

1.15N
log N

⌋
The Goldbach length may be compared with the gamma
codeword length of 2 blog2(2N)c+1 bits and the C1 length
of 1.44 log2(2N) + 1 bits.

The predictions are shown in Figure 1, compared with
predicted lengths for the Elias Gamma and Fraenkel &
Klein C1 codes. The figure shows that the Goldbach code
should be competitive with the other codes over a range
of values, being better than the gamma codes for values to
100 and the C1 code for values less than about 40.

VII. Additive codes, beyond the Goldbach codes

While the codes based on the Goldbach conjecture have
been shown to work, there should be other codes of a sim-
ilar nature. In particular, with the Goldbach codes based
on a rather special set of numbers we can ask the question
“Are there other sets of numbers which, added in pairs, can
form all integers within a range?”. Given a suitable set of
“basis integers” we can then encode values using the very
first technique described for primes (the one which han-
dled only even values). The remainder of the paper deals
with forming such number sets and codes based upon them,
leading to a new class of “Additive Codes”.

We restrict ourselves to number pairs largely because
allowing an arbitrary number of components requires that

20

18

16

14

12

10

8

6

4

2

0

Goldbach G1

Fraenkel & Klein C1

Elias’ Gamma

Codeword length
(bits)

4 8 16 32 64 128 256 512
Coded value = 2N

Fig. 1. Theoretical codeword lengths

the number representation be extended to specify the num-
ber of components. (There is also the intellectual challenge
of what can be done with only two components.) To il-
lustrate, this work grew out of attempts to improve the
Fibonacci codes by run-length encoding the zeros which
predominate in those codes. The attempts were largely
unsuccessful, partly because all variable-length codes ex-
pand the very short runs, and partly because of the need
to encode a count of the runs or of the ones. The realisation
that a constant two components sufficed was a considerable
simplification.

The numbers are generated from first principles, using
a sieve technique, loosely modelled on the Sieve of Eratos-
thenes. At any stage of the algorithm we have a set of basis
integers {0, B1, B2, B3, . . . , Bk} and have noted all possible
sums Bi + Bj of pairs of those integers. As a consequence
of the algorithm we know that all integers N < Bk can be
so generated. Having generated Bk we then insert into the
sieve all sums Bi+Bk where i ≤ k. We then search through
the successive integers starting from Bk for the next value
not in the sieve; this becomes Bk+1.

To illustrate, the basis set {0, 1, 2} will add the integers
{3 and 4}. The first absent integer is 5, which becomes B3

and allows us to add {6, 7 and 10} to the sieve. The next
generated value, B4 = 8, adds {9, 13 and 16}, with the
next gap at B5 = 11.

There is clearly something special about the value 2 in
the basis set, because it is generated by (1+1) and is ap-
parently superfluous. A naive application of the algorithm
starting with the basis set {0, 1} will just generate all odd
integers because the pairwise sums deliver only the even
integers and no odd ones. It is therefore necessary to in-
troduce a few suitably chosen even “seed” values such as
the 2 above to force some odd values and fill in gaps. The
seeds may be regarded as parameters of the code and the

5

choice of values determines the quality and nature of the
resultant code.

To illustrate, all values up to 250 can be generated as
sums of the pairs of the 37 values shown in Table VII (which
includes 0). This code uses 3 seed values. By comparison
the Goldbach code for the same range needs 53 primes
and rather more complex encoding. Other tables to cover
ranges to 100, 500 and 1000 are shown in an Appendix.
Examples of the coding are shown in Table VIII, with a
format based on Table VI but adapted for the new codes.

These codes were generated by a computer search, find-
ing seed values to minimise the size of the basis set cov-
ering a specified range of values. Other optimisations are
clearly possible, such as minimising either the average cost
of the resultant code, or an appropriately weighted code-
word length.

VIII. Evaluation of the Goldbach code

Figure 1 shows the codeword lengths of the Goldbach
codes for arguments from 1 to 500. Under the general
variation of about ±2.5 bits about an average value is
a fairly consistent behaviour with steps at about N =
7, 20, 50, 135 and 320, each adding about 2 bits of length.
These steps correspond to the introduction of primes P2k

where the index of the prime suddenly requires a longer
gamma codeword. (We note that P4 = 7, P8 = 19,
P16 = 53, P32 = 131 and P64 = 311.) The trend is approx-
imated by the codeword length of 2 + 13

8 log2N , showing
that the final codeword length is about 1.625 times that of
the original binary value. This may be contrasted with the
gamma code whose expansion is 2.0 and the Fraenkel C1
code with an expansion of 1.44.

A better presentation is shown in Figure 3, which shows
the lengths averaged over ranges 2k ≤ N < 2k+1 of coded
values. This division is certainly appropriate for the Elias
gamma and omega codes because they have natural discon-
tinuities at the octave boundaries. It is less appropriate for
the Fraenkel and Klein, Goldbach and additive codes but
is still a reasonable way of smoothing out their variations.

We see that over most of the range the new additive code
is better than the Elias gamma and omega codes, while
for values from about 4 to 30 it is the best of the codes
shown. These results are in reasonable agreement with the
theoretical predictions, given the uncertainties surounding
those predictions. Certainly the additive code (but not the
Goldbach code itself) is a competitive code for values from
about 4 to 40.

TABLE VII

Basis values to generate integers to 250

0 1 2 5 8 11 14 16
20 23 26 29 33 46 50 63
67 80 84 97 101 114 118 131
135 148 152 165 169 182 186 199
203 216 220 233 237
36 values (53 primes) Seeds = 2, 16, 46

TABLE VIII

Additive encoding of some integers

Components Additive code Gamma
N values indices pair encoding len. len.
10 3 + 7 3, 5 3, 3 011:011 6 7
11 0 + 11 1, 7 1, 7 1:00111 6 7
12 1 + 11 2, 7 2, 6 010:00110 8 7
13 1 + 12 2, 8 2, 7 010:00111 8 7
14 7 + 7 5, 5 5, 1 00101:1 6 7
15 3 + 12 3, 8 3, 6 011:00110 8 7
16 7 + 9 5, 6 5, 2 00101:010 8 9
17 5 + 12 4, 8 4, 5 00100:00101 10 9
18 7 + 11 5, 7 5, 3 00101:011 8 9
20 9 + 11 6, 7 6, 2 00110:010 8 9
30 5 + 25 4, 9 4, 6 00100:00110 10 9
40 11 + 29 7, 11 7, 5 00111:00101 10 11
50 25 + 25 9, 9 9, 1 0001001:1 8 11
60 29 + 31 11, 12 11, 2 0001011:010 10 11
70 35 + 35 14, 14 14, 1 0001110:1 8 13
80 0 + 80 1, 20 1, 20 1:000010100 10 13
90 29 + 61 11, 17 11, 7 0001011:00111 14 13
100 3 + 97 3, 23 3, 21 011:000010101 14 13

20
18
16
14
12
10
8
6
4
2
0

5122561286432168421
Argument N

Goldbach codeword
length (bits)

Fig. 2. Goldbach codeword lengths

20

18

16

14

12

10

8

6

4

2

0

Gamma

Omega

Fraenkel C1

Goldbach

Additive

Codeword lengths (bits)

1 2 4 8 16 32 64 128 256
Fig. 3. Comparison of codeword lengths

6

TABLE IX

Average codeword lengths for limits of 500 and 128

1 2–3 4–7 8–15 16–31 32–63 64–127
C1 code 2 3.5 4.75 6.38 7.69 9.22 10.61

Add. 500 2 4 5 5.75 7.63 9.83 12.63
Add. 128 2 4 5 6.25 7.88 9.06 11.34

Further experiments (results not shown) indicate that
there is considerable scope for tuning to a particular situ-
ation by adjusting the seed values.

For example, changing the range to 128 (more in line
with binary values) produced 24 basis values and seeds of
8, 20 and 24, compared with 21 values and seeds of 8, 10
and 16 for a range to 100. The codeword lengths over the
octaves to 127 are shown in Table IX, comparing the two
additive codes with the lengths of the Fraenkel C1 code
over the same range. It is clear that the additive code can
be tuned by adjusting the seeds and the detailed rules for
generating the basis numbers.

IX. Conclusions

This paper has introduced a new family of variable length
codes, based on representing a value as the sum of two
components of a set of integers and encoding the indices of
the components in that set. The codes have been shown
as competitive with established variable-length codes. For
values up to 500 they are generally better than the Elias
gamma and omega codes and competitive with the Fraenkel
and Klein’s C1 Fibonacci code. The “basis tables” for
the new additive codes contain some special “seed” val-
ues which can be used as parameters when tuning the code
to a particular application.

X. Acknowledgements

The author thanks Dr Mark Titchener, who originally
offered the vague suggestion that the Goldbach conjecture
might be useful for constructing variable length codes, but
with neither of us having any idea as to how it might be
done.

The author also thanks the referees for many perceptive
and useful comments.

References

[1] P.M. Fenwick, “Punctured Elias Codes for variable-length coding
of the integers”, Technical Report 137, Department of Computer
Science, The University of Auckland, 1996.
Available :
www.cs.auckland.ac.nz/~peter-f/ftplink/TechRep137.ps

[2] P. Elias, “Universal Codeword Sets and Representations of the
Integers”, IEEE Trans. Inform. Theory, Vol IT 21, No 2, pp
194–203, Mar 1975

[3] A.S. Fraenkel and S.T. Klein, “Robust universal complete codes
for transmission and compression”, Discrete Applied Mathemat-
ics Vol 64 (1996) pp 31–55.

[4] A. Apostolico, A.S. Fraenkel, “Robust transmission of un-
bounded strings using Fibonacci representations”, IEEE Trans.
Inform. Theory, Vol IT–33 (1987), pp 238–245.

[5] E. Zeckendorf, “Représentation des nombres naturels par une
somme de nombres de Fibonacci ou de nombres de Lucas”, Bull.
Soc. Roy. Sci. Liège, Vol 41 (1972), pp 179–182

TABLE X

Basis integers for numbers to 100, 500 and 1000

0 1 3 5 7 8 10 16
22 28 34 40 46 52 58 64
70 76 82 88 94
Maximum Value = 100; Seeds = 8, 10, 16
21 values (25 primes)

0 1 2 5 8 11 14 17
20 23 26 29 32 34 38 41
44 47 50 53 56 59 62 65
69 82 104 117 139 152 174 187
209 222 244 257 279 292 314 327
349 362 384 397 419 432 454 467
489
Maximum Value = 500; Seeds = 2, 34, 82
49 values (95 primes)

0 1 2 5 8 11 14 17
20 23 26 29 32 35 38 41
44 47 50 52 56 59 62 65
68 71 74 77 80 83 86 89
92 95 98 101 105 154 158 207
211 260 264 313 317 366 370 419
423 472 476 525 529 578 582 631
635 684 688 737 741 790 794 843
847 896 900 949 953
Maximum Value = 1000; Seeds = 2, 52, 154
69 values (168 primes)

XI. Appendix

Table X shows tables of basis integers for generating
numbers to 100, 500 and 1000. We emphasise that they
are not unique. Note that larger ranges are covered in
fewer numbers than there are primes in the same range.

