
Some Perils of Performance Prediction : a
case study on Pattern Matching

Peter Fenwick
Department of Computer Science, The University of Auckland,

Private Bag 92019, Auckland, New Zealand
email : p.fenwick@auckland.ac.nz

October 29, 2007

Abstract

Recent experience with string searching or pattern matching algo-
rithms revealed wide discrepancies between predicted and observed
performance. Further observations on a variety of computers re-
vealed even greater variations between those algorithms on different
computers. These observations are collected here as an example of
problems in real-world comparison of algorithms.

Keywords string-searching, pattern matching, timings, performance,
prediction, observation

1 Introduction

A recent paper[1] presented a new string searching or pattern matching
algorithm of high performance and concluded with some experimental
measurements to confirm that performance. Perhaps unfortunately, but
after the paper was submitted, the timing experiments were repeated on
several other computers. These gave rather different ratios between pre-
dicted times and observed speeds. It was clear that comparisons which
were valid on one computer were much less valid on others; in some cases

1

they were significantly different and quite inapplicable to the different en-
vironment.

This paper presents some observations on those results. Although it
does include some plausible analysis of the results, its main intention is
cautionary, to show that algorithm performance can be very difficult to
predict. It is all too easy to make predictions which are quite at variance
with observed performance. It is also easy to assume that relative perfor-
mance on one computer will apply to another computer. Perhaps even
worse it is possible to optimise away the worst case (which seldom if ever
occurs) at the cost of penalising the usual case.

This paper is not meant to compare different string searching or pat-
tern matching algorithms; neither does it pretend to test examples of best
current practice. The important point is that ratios of execution times on
one computer do not necessarily translate to another computer. The actual
times and relative merits of the algorithms are very much a secondary con-
sideration.

2 Summary of the search algorithms.

We now give a summary of the algorithms used for the tests. For more
details of the algorithms, readers should refer to the paper by Fenwick[1],
and the report by Charras and Lecroq[2] or the book by Stephen[3]. In the
descriptions we take a text string of n characters (which may be hundreds
of kilobytes), and search it for occurrences of a pattern of m bytes, perhaps
a dozen bytes or less.

Simple (Sometimes called “Brute Force” or “Naive”.) In this simple and
obvious algorithm, the text is searched for occurrences of the first
character of the pattern. Whenever a match is found, the following
characters are compared against those of the pattern. The standard
analysis is that in the worst case we may get a match on each of the
n text characters and at each position have to initiate a comparison
to the full pattern length of m characters, for a total of about mn
character comparisons.

Knuth-Morris-Pratt A problem with the Simple algorithm is that overlap-
ping matches may force repeated comparisons of portions of the text.

2

This problem is addressed by the Knuth-Morris-Pratt algorithm[4]
which constructs a control array from the pattern. In the event of
a partially matched pattern, it allows comparisons to be resumed
without back tracking.

Boyer-Moore-Horspool The BMH algorithm[5] also constructs a control
table, but one which allows the text to be examined at only every m-
th character. The number of text characters examined is then of the
order of n/m.

Digram The new digram algorithm is rather more complex and readers
should consult the original paper[1] for details. The algorithm pro-
ceeds in several phases –

• The entire text is read in to a buffer.

• Links are constructed to connect occurrences of each digram or
character pair.

• For each search an appropriate digram is selected from the pat-
tern. That list is traversed as an initial estimate of likely search
targets. Areas of text which do not contain the chosen digram
need never be examined for possible matches.

• Strategically selected “guard” characters from the pattern are
compared against corresponding characters in the text.

• Only after a potential match survives both digram and guard
tests is it fully examined for a complete match.

This algorithm was noted as being typically two orders of magni-
tude “better” than the others, as judged by the number of character
comparisons. The extra storage over other algorithms is about 256k
bytes for the digram table and 4 bytes per text character, assuming
4-byte integers.

The traditional figure-of-merit in pattern matching is the number of char-
acter comparisons in searching the text. It is an obvious metric, easily
measured, and independent of the computer. Unfortunately, we will see
that it has little relationship to execution speed.

3

3 The test computers

It is important to remember that programs are not just “run on comput-
ers” but are processed by compilers and subject to optimisation. Caches,
pipelining and instruction parallelism provide another form of optimisa-
tion, but one largely uncontrollable by the user. Tests were run on various
computers and at different compiler optimisation levels. In one case the
cache could be disabled, as a way of pessimising the performance . The
differences between computers are not that important, but we can certainly
see the relative effects on different algorithms as optimisation and other
parameters are changed for a single computer.

• Macintosh 540C Powerbook, 60 MHz 68040LC processor. Programs
were compiled with the Metrowerks 1.4 C compiler, with peephole
optimisation. One set of tests was run with the cache disabled, giv-
ing a computer of much lower performance and probably fewer run-
time idiosyncracies.

• Macintosh G4, 400MHz PowerPC processor. The compiler and run-
time system was Metrowerks 4.0, using three levels of optimisation.
The first two were the minimum and maximum levels of machine in-
dependent optimisation, while the third (noted as “Altivec”) added
processor specific optimisations to the full level.

• DEC/Compaq Alpha processors, one with a 275 MHz clock and the
other 533 MHz. Both were used with the GNU gcc compiler, at op-
timisation levels of 0 and 3, using identical code files for the two
computers.

• A Pentium-PRO processor, with the Microsoft C/C++ compiler.

• An SGI ”Indy” system, with 100MHz R4000 processor, 64MB RAM,
and caches 2×8k + 1MByte. Its GNU gcc compiler had optimisation
levels of 0 and 2.

• A 550MHz Pentium III, 512 Mbyte RAM, caches 2×1k + 512k byte,
running Linux with gcc compiler and optimisation levels 0 and 3.

4

Read Link Simple KMP BMH Digram
540C no cache 567 712 159.34 367.84 70.52 0.6665
540C 142 134 19.173 72.429 16.514 0.1519
G4min 11 4 1.087 3.042 0.748 0.0117
G4full 6 4 0.829 2.560 0.664 0.0110
G4altivec 6 3 0.846 2.216 0.630 0.0109
Alpha-275 opt0 416,650 916,630 155,693 346,492 74,836 2,429.6
Alpha-275 opt3 133,328 249,990 49,729 109,189 34,192 1,318.3
Alpha-533 opt0 199,992 399,984 68,008 173,111 31,397 1,405.7
Alpha-533 opt3 66,664 66,664 16,827 41,826 13,180 1,272.7
Pentium-pro 31 47 6.23 8.41 2.96 0.0450
SGI INDY opt0 810,000 1,780,000 289,935 789,871 165,258 5,413
SGI INDY opt2 440,000 820,000 110,935 96,032 60,871 3,179
550 Pent opt0 140,000 110,000 14,161 37,581 12,484 792.69
550 Pent opt3 90,000 90,000 11,008 16,742 8,591 674.29

Table 1: Raw time in clock units, as reported by each system

4 Test procedure

In all cases the “text” is the file “book1” from the Calgary Compression
corpus which is searched for about 30 words selected from early para-
graphs. Times are initially measured in clock ticks for the subject com-
puter. The actual time unit is irrelevant as we take only the ratio of times
for each computer and do not compare times between computers. (Some
computers used a 1/60 second clock tick, and others a 1µs tick.)

The combination of long clock periods and fast computers meant that
many tests completed within just few clock ticks, or even within one clock
tick, making timings and comparisons very difficult. Each search on a
pattern was repeated until at least 10 clock ticks had been accumulated.
The whole suite of searches was repeated 10 times so that the final times
are based on at least 100 ticks for each pattern, or about 3000 ticks for the
whole test. Table 1 shows times for actual computers. Note that there
is no attempt to reduce these times to seconds or other compatible units;
all are left in system-specific units. Apart from the times for the four test
algorithms, two columns show other important times –

Read This is the time required to read the file into memory before starting
the actual searches. It is an unavoidable overhead which must be

5

included in the search time if a file is to be searched for only one
or two patterns. The read time is determined by the input-output
system and software. It is outside the control of the user.

Link The digram algorithm has a phase, following or concurrent with
reading, which constructs the digram links to facilitate fast traversal
of the text. It is only if the initial linking time can be amortised over
perhaps several searches that the digram algorithm really shows to
advantage over Simple.

The raw data of Table 1 are of little importance in their own right. The
more useful information is in Table 2 where all values are scaled rela-
tive to the Simple search for that computer. The linking cost is shown
as a time relative to the Simple search, with times equivalent to 3.5–7.6
searches. This means that the digram algorithm, the only one which needs
the preliminary linking phase, is useful only if more than 5–10 searches
are needed on the same data. Fewer searches are better done with one of
the simpler algorithms. The search algorithms themselves are given as the
speeds relative to Simple.

In the “ideal” case (perhaps more correctly called the “naive” case) the
values in each column would be the same, or at least similar with each
algorithm have a well-defined performance relative to the others. But the
values are far from similar, showing that comparisons on one computer
do not scale to other computers.

Thus we see that the “improved” Knuth-Morris-Pratt algorithm is only
about 25% – 75% the speed of the Simple algorithm which it is supposed
to better. The Boyer-Moore-Horspool algorithm is somewhat faster than
Simple, but certainly not the 4 times improvement that the ratio of 25% as
many character comparisons would imply (see [1] for details). The new,
“digram”, algorithm shows the widest variations. In some cases its im-
provement over Simple is about 240 times, while in others it is only about
13 times better, a variation of 18:1 in improvement.

The last two lines of Table 2 are based on the “obvious” metric of char-
acter comparisons and provide the figure of merit which is often pub-
lished. The penultimate line gives the actual number of comparisons,
while the last line gives the predicted improvement over Simple. The ratio
of comparisons has little relation to the ratio of measured times except to
note that the observed improvement is seldom better than one half of the
improvement predicted by counting character comparisons.

6

Link Simple KMP BMH Digram
(Time) (speeds)

540C no cache 4.47 0.43 2.26 239.09
540C 6.99 0.26 1.16 126.21
G4min 3.68 0.36 1.45 92.85
G4full 4.82 0.32 1.25 75.56
G4altivec 3.55 0.38 1.34 77.73
Alpha-275 opt0 5.89 0.45 2.08 64.08
Alpha-275 opt3 5.03 0.46 1.45 37.72
Alpha-533 opt0 5.88 0.39 2.17 48.38
Alpha-533 opt3 3.96 0.40 1.28 13.22
Pentium-pro 7.55 0.74 2.10 138.37
SGI INDY opt0 6.14 0.37 1.75 53.56
SGI INDY opt2 7.39 0.57 1.82 34.89
550 Pent opt0 7.77 0.38 1.13 17.86
550 Pent opt3 8.18 0.66 1.28 16.33
Character Compares 24,678,938 24,564,952 6,066,659 63,929
Improve over Simple — 1.0046 4.068 386.04

Table 2: Times and speeds, relative to “Simple”

5 Discussion

In this discussion we abstract the essential and costly details of the inner
loops of the algorithms. While purists might claim that the algorithm is
not like that at all, we assert that the code shown is equivalent to what is
relevant.

Simple The main loop is just a reading and comparison of two characters;
one reference is constant and the other steps uniformly through the
text array.

for (textIx = 0; textIx < textLen-pattLen; textIx++)
if (text[textIx] == pattern[0])

..... // full string comparison

Both operations are good candidates for compiler optimisation as is
shown by the times in Table 1. The two DEC Alpha computers are
particularly impressive here, with speeds improving by 3 or 4 times

7

with full optimisation. This improvement of course penalises other
algorithms which are measured with respect to the improved times
under optimisation.

KMP The Knuth-Morris-Pratt algorithm innermost loop has the general
form –

while (pattern[patIx] != text[textIx++])
patIx = next[patIx];

While there is other essential code in the algorithm, it is this loop
or code of similar nature which performs most of the searching. It
requires three array accesses per iteration, with subscript patterns
which are difficult to optimise. This effect is seen in the relatively
poor performance, worse than the Simple algorithm. Knuth-Morris-
Pratt can work much better than Simple in the worst case, but the
worst case seldom occurs with normal text.

BMH The Boyer-Moore-Horspool algorithm is based on the loop –

while (text[textIx] != pattern[patIx])
textIx += skip[text[textIx]];

..... // full string comparison

The problem here is that the code skip[text[textIx]] involves
two array references. Except for the repeating reference to pattern[patIx]
none of the array references can be optimised and their irregular na-
ture means that they are unlikely to get much cache assistance. The
decreased number of character comparisons as compared with Sim-
ple is partly at the expense of extra arbitrary array references. As a
skip will often stride right out of a cache line, each comparison may
require a full memory reference and gain no benefit from the cache.
While in this case the performance was always better than Simple,
the improvement is not large and certainly not as large as a count of
character comparisons might indicate.

Digram With its linked lists of digrams, this algorithm has completely
unpredictable memory reference patterns, which will defeat most

8

Simple K M P B M H Digram
G4 1.311 1.188 1.127 1.064
Alpha-275 3.131 3.173 2.189 1.843
Alpha-533 4.042 4.139 2.382 1.104
SGI INDY 2.613 8.225 2.715 1.703
Pentium-550 1.286 2.245 1.453 1.176

Table 3: Speed gains : best optimisation vs least optimisation

caches. There is certainly little spatial locality (at least in the main
loop) and with 3.9Mbyte of data structure for the Book1 file, proba-
bly little scope for temporal locality either. Although the digram al-
gorithm has a very impressive performance from counting character
comparisons, much of the gain is cancelled by its expensive memory
references.

The whole matter of which algorithm is the best one, and by “how
much” it is better, is very complex and difficult to answer. Certainly the
basic Simple search seems to suit most computers and in its simplicity
works very well on most real data. More complex searches require more
memory references, with corresponding reductions in performance espe-
cially if the reference patterns are unpredictable.

Another aspect which we can compare is the improvement of algo-
rithms under optimisation. Again we take each computer in isolation,
comparing its speed with best optimisation against its speed with least
optimisation. (Some other comparisons can be drawn from the data of
Table 1 but are not included.) While we include the Macintosh G4 in this
comparison, the most telling comparisons are for the two DEC Alpha com-
puters, shown in Table 3. Here the “opt0” and “opt3” codefiles were the
same for the two computers. Not only is the improvement different for
two different versions of the same computer, but the improvement tends
to be less with the“better” algorithms. The greater improvement of the
simpler algorithms decreases the apparent advantage of the better ones.

6 Restricted Alphabets

Many of the algorithms are sensitive to the size of the alphabet. Further-
more, most searching or matching algorithms are demonstrated with very

9

small alphabets, the better to illustrate the method; with large alphabets
interesting situations may be too rare for interest. Charras and Lecroq [2]
use examples which seem to be related to DNA sequencing with an alpha-
bet of 4 symbols.

• With a smaller alphabet the Simple algorithm has a greater chance
of matching the initial character and entering the slower compare
phase. It then slows down in comparison with a large alphabet,
which increases the apparent link speed. It likewise increases the ap-
parent speed of Knuth-Morris-Pratt which tends to maintain a con-
stant speed, irrespective of the alphabet size.

• Boyer-Moore-Horspool depends on the probability of finding a par-
ticular character within the pattern and skipping if the character is
not found. With a small alphabet, the probability of a particular
character occurring in a given length of text increases and the BMH
search is less likely to skip. More comparisons are needed and the
operation should slow down.

• The digram algorithm depends on its speed for distributing digram
links over many possible digrams. If the alphabet is small, there
are fewer digrams and therefore fewer lists. Each active list will be
longer, with more elements to traverse and characters to compare.
The relative speed advantage also decreases. With DNA the situa-
tion is even worse because of the nearly equiprobable symbols. The
digram lists (only 16 of them) are of nearly the same length and there
is little advantage in choosing one over another.

This discussion is still based on the number of character comparisons,
which is a most unreliable metric and does not translate well to execution
time.

To test the operation on a smaller alphabet, the test file (“book1”) and
its test patterns had each character converted into its two hexadecimal dig-
its (in ASCII) with line terminators left unchanged. Thus an ASCII ‘A’→
‘4’ and ‘1’ (two ASCII characters), and ’6’ → ‘3’ and ’6’. The alphabet is
thereby reduced from about 60 symbols to 16.

The tests were repeated using these converted files for two computers,
both at minimum optimisation, with the results shown in Table 41.

1Tests with small alphabets could not be run on all of the computers.

10

Link KMP BMH digram
(Time) (speeds)

G4 min 3.68 0.36 1.45 92.91
G4 hex 2.71 0.45 2.39 15.15
G4 DNA 2.72 0.50 1.47 5.71
Alpha-533 Opt0 5.88 0.39 2.17 48.38
Alpha-533 Hex 4.41 0.51 4.90 23.90
Alpha-533 DNA 7.00 0.34 1.00 4.96

Table 4: Alphabetical, hexadecimal and DNA data

While the Knuth-Morris-Pratt search shows a small change, the Boyer-
Moore-Horspool search again shows a useful performance improvement.
The new digram algorithm however shows a significant deterioration (6
times on G4 and 2 times on Alpha) when moving to the small-alphabet
file. This is largely because there are only 256 digram chains instead of the
earlier 4,096, with corresponding increases in the number of comparisons
for each pattern.

For an even smaller alphabet we use a file of DNA data, about 200
kBytes from the Genbank human genome data base. The file is searched
for about 30 patterns, of length 6 – 12 symbols, with the results also shown
in Table 4. It is interesting to observe that the frequency of pattern matches
is almost what one would expect from random data. Knuth-Morris-Pratt is
still much slower than Simple. Boyer-Moore-Horspool is about 50% faster
than Simple on the G4 computer, but the same speed on the Alpha, in
complete contrast to its behaviour on the other two data sets. The digram
algorithm is only about 5 or 6 times faster than Simple. With only 4 di-
gram lists we would expect the search length to be 25% that of naive and
still probably 1.375 character comparisons for each candidate. The prob-
able speed-up is then 5.5 times, much in line with the results. (For good
speed-up, the algorithm should probably use groups of 5 or 6 characters
in forming lists, to give 1,024 or 4,096 lists.)

In none of these tests is Knuth-Morris-Pratt faster than Simple. Boyer-
Moore-Horspool has rather unpredictable behaviour with rather more im-
provement on the hexadecimal file and little or none on DNA. While the
digram algorithm is penalised by the absence of the short lists of digrams
from which it really gains benefit, its performance is still in line with an

11

approximate prediction.

7 Conclusions

This paper has been presented as an case study in performance prediction.
Its main lessons are –

• Simple prediction measures based on the appearance of the algorithm
may be of little real value.

• The relative “qualities” of two algorithms may vary widely between
computers and even between compilers or optimisation levels on a
single computer. In one case a speed ratio of 240:1 on one computer
became only 13:1 on another.

• Very simple algorithms are often in a form which is easily optimised
by compilers or accelerated by run-time mechanisms such as caches.

• Complex algorithms tend to use more memory references, and to
use them in unpredictable ways. They often get less benefit from
optimisation (either software or hardware) and appear to slow down
relative to the better-optimised simple algorithms.

• Algorithms may have strong data dependencies. Ones which show
great benefit on some data may be much less useful on other data. Is
the test data appropriate to the intended use?

In general, be very very careful when attempting to compare algorithms
on the basis of convenient measures such as character comparisons, mem-
ory references, and so on. The pattern and interaction of references may
be at least as important as their mere existence.

8 Acknowledgements

This work was started at the University of Auckland, and completed at the
University of Vermont while the author was on Study Leave. The author
thanks both institutions for their support.

12

References

[1] Fenwick, P.M., “Fast string matching for multiple searches”, Software
– Practice and Experience submitted Feb 2000.

[2] Charras, C. and Lecroq, T., “Exact String Matching Algorithms”, Lab-
oratoire d’Informatique de Rouen, Université de Rouen.

[3] Stephen, G.A., String Searching Algorithms, World Scientific, Singa-
pore, 1994.

[4] Knuth, D.E., Morris, J.H. Jr, and Pratt V.R., “Fast Pattern Matching in
Strings”, SIAM Journ. Computing, Vol 6, No 2, pp 323–350 , June 1977

[5] Horspool, R.N., “Practical fast searching in strings”, Software – Prac-
tice and Experience, Vol. 10, No. 6, pp 501–506, 1980.

13

