
Symbol ranking text compressors: review and 
implementation

Peter Fenwick,
Department of Computer Science, The University of Auckland, 

Private Bag 92019, Auckland, New Zealand.

peter-f@cs.auckland.ac.nz

Postal address Department of Computer Science, 
The University of Auckland, 
Private Bag 92019, 
Auckland, New Zealand.

email peter-f@cs.auckland.ac.nz

Telephone + 64 9 373 7599

Fax + 64 9 373 7453



Symbol ranking text compressors: review and 
implementation

Peter Fenwick,
Department of Computer Science, The University of Auckland, 

Private Bag 92019, Auckland, New Zealand.

peter-f@cs.auckland.ac.nz

Abstract

Methods used by Shannon in 1951 when investigating the information content of 
English text are shown to lead to a class of “symbol ranking” text compressors. 
Included in this class are some recent compressors which combine high performance 
with completely novel techniques. These are described under the aegis of the symbol 
ranking classification. Some new compressors, deliberately designed as symbol 
ranking, are then described. One of these has operated at over 1 Mbyte per second in 
software and should be suitable for hardware implementation at tens of megabytes 
per second, or higher.

KEY WORDS lossless compression, Shannon, statistical coding, Burrows-
Wheeler Transform, LZP compressor, ACB compressor

Introduction

Until quite recently, the field of lossless data compression was shared by Ziv-
Lempel compressors (as production compressors and especially where speed was 
important) and PPM1 (more particularly to demonstrate the possibilities of text 
compression). Apart from a few “outliers” such as DMC and Move-To-Front, the 
field appeared to be relatively stable and well understood and was documented by 
Bell et al1. 

Then, from early 1994, several novel text compressors appeared, some with very 
high performance. They included the “block sorting” compressor of Burrows and 
Wheeler, Bloom’s LZP compressors, and Buynovsky’s ACB compressor. The block 
sorting compressor is clearly related to techniques first described by Shannon in 
1951, where he estimated the information content of English text from the statistics 
of attempts to guess the next letter of text. Shannon’s approach can be regarded as the 
basis of a family of “symbol ranking” compressors which includes some of the new, 
1 A glossary of compression acronyms is included as an Appendix to this paper

Symbol Ranking SP & E PM Fenwick Page 1



unconventional, compressors and some new compressors which explicitly used 
symbol ranking.

This paper brings together the various members of the symbol ranking family. The 
next section gives a general review of symbol ranking and introduces compressors 
which are seen to use the technique. This is followed by more detailed descriptions of 
three of the most recent, and unconventional, compressors, none of which has had 
much recognition in the formal, refereed, literature. Finally is a detailed description 
of a symbol-ranking compressor which gives fast software compression and is 
suitable for hardware implementation.

History of Symbol Ranking

In 1951 Shannon published his seminal paper on the entropy of English text2. 
While his result of 0.6–1.3 bits per letter is well known and a challenge to all 
inventors of text compressors, his methods of measuring that entropy are much less 
recognised. 

Shannon used human test subjects who, knowing the preceding text or context, 
tried to predict the next letter. He used two methods —

1. The subject had one guess and was then told either “correct” or “the answer 
is …”, or

2. The subject had to keep on guessing until the correct answer was obtained.

Some compressors will be seen to use the “Shannon Type-1” coding, while others 
use “Shannon Type–2” coding, based on the two methods above.

Regarding the sequence of successes and failures as an information source 
allowed Shannon to predict the entropy of the original text. He also stated that the 
predictions were a recoding of the original text and that an “identical twin” of the 
subject who responded in the same way to the known text could recover the original 
input. It is this last concept which is developed here.

The essence of symbol ranking is that we maintain for each context a list of 
symbols ranked in the order of their likelihood of appearing in that context. Each 
input symbol is recoded into its rank in the list and that rank, N, is emitted as the code 
for the symbol. In the decompressor, an identical predictor offers symbols and the 
N’th is accepted as the correct symbol. So far we have just a symbol recoding or 
transformation, but as the recoded alphabet has a highly skewed frequency 

Symbol Ranking SP & E PM Fenwick Page 2



distribution, implying good compressibility, the code can be then processed by a 
following statistical compressor. The final compressor may use arithmetic coding (as 
in most of the better compressors), adaptive Huffman or similar discrete codes 
(Burrows and Wheeler’s original compressor and Sewell’s latest BZIP) or a 
combination of the two (Howard and Vitter). In general, arithmetic coding gives 
better but slower compression, while discrete codes are faster with somewhat poorer 
compression.

All symbol ranking compressors exploit the skewness of the recoded input text. 
For example Table 1 is reproduced from Shannon’s original paper and shows the 
number of attempts to obtain the correct symbol. Shannon worked with a mono-case 
alphabet and test subjects who had extensive experience with English text, to obtain 
rather better predictions than are observed in equivalent programmed 
implementations.

Guesses, or symbol ranking 1 2 3 4 5 > 5
Probability  79% 8% 3% 2% 2% 5%

Table 1. Shannon’s original prediction statistics

Symbol ranking compression proceeds in two phases, the production of the ranked 
list of symbols and the coding of the indices into these lists. Compression may be 
improved by having a better predictor, or by having a better final coder. In the 
discussion to follow it is often difficult, if not impossible, to separate the two aspects; 
published results must be accepted as given. In two cases (block sorting or BWT, and 
sliding window) the internal details were available and the intermediate ranks and 
rank frequencies could be compared.

128643216842

Sliding-
Window 

Sym Rank

100k

10k

1k

100

10

1

100k

10k

1k

100

10

1
128643216842

Burrows-
Wheeler 

Transform

Symbol Rank – 1 origin Symbol Rank – 1 origin

Rank 
Frequency

Rank 
Frequency

Figure 1. Frequencies of different code ranks for Burrows-Wheeler and 
Sliding-Window compression.

Symbol Ranking SP & E PM Fenwick Page 3



Symbol ranks from actual compressors for the Calgary Corpus2 file PAPER1 are 
given in Figure 1. They emphasis the skewness of the symbol frequencies and 
confirm the underlying similarity of the two quite different methods.

Several compressors can be seen as implementing the methods of symbol ranking, 
but without reference to Shannon’s original work. An early example is the MTF 
compressor of Bentley et al3, which uses words rather than individual characters as 
its basic compression symbols. Lelewer and Hirschberg4 describe the use of self-
organising lists to store the contexts in a compressor derived from the PPM 
compressor described by Cleary and Witten5. Compressors by Howard and Vitter 
and by Yokoo are described later.

The significance of symbol ranking and the relation to Shannon’s original work 
became apparent during study of the Burrows-Wheeler algorithm. When Bloom6 
announced his LZP compressors, they too were seen to be an implementation of a 
“type 1” Shannon encoding. As the concepts of symbol ranking became clearer, 
Bloom’s methods were extended to give the sliding window symbol ranking 
compressor described later.

Symbol ranking also appears in the “CACM” implementation of arithmetic 
coding7. There the symbols are maintained in a frequency-ordered list with mapping 
tables to transform symbols to ranks and vice versa. The emitted code is really 
related to the symbol rank, rather than the symbol itself. The ordering of symbols by 
frequency is intended to minimise the search length; the fact that it implements an 
order-0 symbol ranking compressor is largely incidental to the main purpose. 

Symbol ranking text compressors are clearly related to predictive coding, delta-
coding or ADPCM of analogue data transmission. There, the signal values at 
preceding sample points are used to predict the signal at the next sample point, for 
example by polynomial curve fitting, and the error or difference between the 
prediction and actual value is transmitted. While at first sight there is no obvious way 
by which a text symbol or byte can be “slightly in error” or “a lot in error”, a context-
dependent ranked list of symbols provides such a mechanism. A symbol with a small 
but non-zero ranking is “nearly correct” and has a “small error”, while one with a 
large ranking is clearly unexpected and can be transmitted as a “large error”.

Symbol ranking has obvious parallels to PPM compression. Indeed, Cleary et al8 

2 The files of the Calgary compression corpus are available by anonymous FTP from 
ftp.cpsc.ucalgary.ca: /pub/projects/text.compression.corpus/ textcompression.corpus.tar.Z

Symbol Ranking SP & E PM Fenwick Page 4



have shown that PPM data structures lead directly to BWT compression if symbols 
are ranked according to probability within each context order (with exclusions), and 
the contexts then traversed from longest to shortest. PPM compressors must maintain 
two parallel data streams, one for the data proper and one for the context orders. 
Many of the improvements to PPM come from improving the tracking of the 
encoding and decoding models so that little context information needs to be 
transmitted. The hope in developing symbol ranking compressors was that symbol 
ranking, needing no information at all on the actual context order, might turn out a 
viable alternative to PPM.

Block Sorting, or Burrows Wheeler Transform

The Burrows and Wheeler “Block Sorting” compressor was first described in a 
1994 report by Burrows and Wheeler9; later literature tends to describe the algorithm 
as the “Burrows-Wheeler Transform” (BWT). Improved versions were described by 
Wheeler10 and Fenwick11, 12 and more recently commercial-strength 
implementations have been released by Seward13. Burrows and Wheeler state that 
the original algorithm combines the speed of Ziv-Lempel methods and the 
compression of PPM. These claims are supported by experience. Arnavut and 
Magliveras14 have shown that the Burrows-Wheeler Transform is but one of a group 
of permutations and that it may be possible to select a permutation group with better 
compression and accompany the compressed data with an ordinal group index or a 
coding of the permutation itself.

The Burrows-Wheeler Transform is unusual in that it compresses a permutation of 
the original text. The permuted text is processed by a Move-To-Front (MTF) 
transformation and then by an encoder designed for skew symbol distributions. 
Complete descriptions of the algorithm are found in references 9, 11 and 12.

In symbol ranking terms, the permutation collects together similar contexts and, 
therefore, similarly ranked sequences of symbols for adjacent contexts. The 
algorithm maintains just a single ranked table which it manages as the MTF list, 
emitting the symbol index as the code before moving the symbol to the front of the 
list. The MTF list changes gradually throughout the file as it adapts to the changing 
contexts and is generally a good approximation to the true ranking.

The results with the best arithmetic coding model are shown in Table 2. Discrete 
codes related to Huffman codes were used by Burrows and Wheeler in their original 

Symbol Ranking SP & E PM Fenwick Page 5



paper and by Seward in the final version of BZIP.

Bib Book1 Book2 Geo News Obj1 Obj2 Paper1 Paper2 Pic ProgC ProgL ProgP Trans AVG
1.95 2.39 2.04 4.50 2.50 3.87 2.46 2.46 2.41 0.77 2.49 1.72 1.70 1.50 2.34

Table 2. Block Sorting (Burrows-Wheeler Transform) 

Buynovsky’s ACB compressor

Another recent compressor is the “ACB” algorithm of Buynovsky15. It gives 
excellent compression, the most recent versions of ACB being among the best known 
text compressors. While its original form is related to LZ–77 compression, with 
clever ways of improving the phrase coding, an alternative coding is related to 
symbol ranking. 

The input text is processed sequentially, with the compressor building a sorted 
dictionary of all encountered contexts. Each symbol processed defines a new context 
and dictionary entry. Each context is followed in the input text (and therefore in the 
dictionary) by its corresponding content string or phrase. The symbols preceding the 
current symbol form the current context and the symbol and those following the 
current content. 

When processing a symbol the compressor first finds the longest context matching 
the current context. This index of the context in the dictionary may be called the 
anchor of the context. (The actual position of the anchor in the input text is 
irrelevant.) Having found the anchor, the compressor searches neighbouring (similar) 
contexts for the phrase from the contents with the longest match to the current 
content. If this best phrase has length λ and occurs a distance δ contexts from the 
anchor (δ may be negative), the phrase is represented by the couple {δ, λ}. 

The final coding of {δ, λ} is rather more subtle and largely determines the final 
quality of the compression. As an example of one such optimisation the chosen 
phrase will often match some earlier phrase (closer to the anchor) to some smaller 
length µ and the encoding is not {δ, λ} but {δ, λ–µ}. The most recent portion of the 
context may be used as a conditioning class for the final coding models. This is the 
basis of Buynovsky’s encoding.

Another coding follows by holding λ and manipulating δ. The match length λ 
defines a phrase length; as we move away from the anchor to the best match some of 
the phrases of length λ will match phrases which have been seen before, closer to the 

Symbol Ranking SP & E PM Fenwick Page 6



anchor. So we encode not δ but ε, the number of unique phrases of length λ seen 
before the matching phrase. This coding uses phrase exclusion, as compared with the 
more usual symbol exclusion.

In some ways the operation is best envisaged using the sorted contexts as in the 
Burrows-Wheeler algorithm; in other ways it is related to LZ–7716 (δ corresponds to 
a displacement and the use of contexts reduces the range of δ and thereby improves 
the coding), or it resembles LZ–7817, regarding the neighbouring contexts as a 
dictionary and emitting indices into that dictionary. 

Here we prefer to interpret the method as a derivative of a symbol ranking 
compressor. The anchor and its content provide the best estimate of the phrase to be 
emitted; the distance of the correct phrase from the anchor is a measure of its ranking 
with respect to the anchor context. We then have not a symbol-ranking compressor, 
but a phrase-ranking compressor. The principle follows immediately from Shannon’s 
technique if we allow the predictions to be phrases rather than single symbols.

It is difficult to say much more about the ACB compressor, because many of the 
details which are crucial to the compression have not been released. The final 
compression has been published and the values are reproduced here for the version 
ACB_1.29b, Dec 1996.

Bib Book1 Book2 Geo News Obj1 Obj2 Paper1 Paper2 Pic ProgC ProgL ProgP Trans AVG
1.93 2.32 1.94 4.56 2.32 3.50 2.20 2.34 2.34 0.74 2.33 1.50 1.50 1.29 2.20

Table 3. Buynovsky’s ACB compressor results

Bloom’s LZP compressors

Much of the coding cost of LZ–77 compressors lies in the displacement to the 
matching phrase, which is essentially a random number and difficult to encode 
efficiently. Bloom’s LZP compressors6 arose from a desire to eliminate the 
displacement coding of LZ–77 compressors. They retain the sliding window of 
LZ–77 but, instead of finding the best forward match to the incoming symbols as for 
LZ–77, find the best backward match to the current context. The symbol immediately 
following that best matching context is found to be a good predictor of the next input 
symbol (60% success rate on a typical text file). The compressor then emits a flag to 
show either “correct prediction” or “incorrect prediction”, with the correct symbol 
following if necessary. This is a direct implementation of a “Shannon type 1” 

Symbol Ranking SP & E PM Fenwick Page 7



compressor.

Bloom emits the length of the matching phrase following the context, which may 
be regarded as a run-encoding of a succession of correct predictions. He presents 
several methods of finding the best matching context and several ways of 
representing the wrongly-predicted symbol. Combinations of these yield a variety of 
compressors, from ones which give moderate compression at very high speed to one 
which is among the best known compressors, but much slower. The compression is 
reported for the Calgary Corpus and speed for an Amiga 3000 (25 MHz 68030)

LZP1 The context table is accessed by hashing an order–3 context (4096 contexts), 
with each context referred back to its position in a 16 Kbyte sliding window. The 
output is encoded into byte-aligned combinations of literals match/mismatch 
flags, and codes for runs of literal matches. (4.15 bit/byte, 250 kbyte/s)

LZP2 This is like LZP1, but with Huffman coding of the output. (3.40 bit/byte, 80 
kbyte/s)

LZP3 An order-4 context is used, but with “context confirmation” to ensure that the 
hashed and current contexts match, and using lower context orders as necessary. 
The output coding uses a complex of Huffman coders, with context order as a 
conditioning class. (2.78 bit/byte, 30 kbyte/s)

LZP4 This uses order-5 contexts, with context confirmation but without dropping 
to lower orders. The final coder uses arithmetic coding with conditioning classes 
and literals handled by techniques similar to PPM. (2.28 bit/byte, 6 kbyte/s)

Bib Book1 Book2 Geo News Obj1 Obj2 Paper1 Paper2 Pic ProgC ProgL ProgP Trans AVG
4.15 5.72 4.56 6.80 4.78 4.86 3.77 4.53 4.89 1.40 4.15 2.96 2.86 2.64 4.15

Table 4. Bloom’s LZP1 compressor (highest speed)

Bib Book1 Book2 Geo News Obj1 Obj2 Paper1 Paper2 Pic ProgC ProgL ProgP Trans AVG
1.92 2.35 2.01 4.74 2.35 3.74 2.39 2.38 2.39 0.81 2.39 1.59 1.59 1.34 2.28

Table 5. Bloom’s LZP4 compressor (best compression)

Other Symbol Ranking Implementations

Howard and Vitter18 also follow PPM in developing a compressor, but one which 
explicitly ranks symbols and emits the rank. They show that ranking avoids the need 
for escape codes to move between orders, and also describe an efficient “time-stamp” 
exclusion mechanism. Much of their paper is devoted to the final encoder, using 

Symbol Ranking SP & E PM Fenwick Page 8



combinations of quasi-arithmetic coding and Rice codes19. Their final compressor 
has compression approaching that of Moffat’s PPMC20, but is considerably faster 
with the results reproduced in Table 5.

Bib Book1 Book2 Geo News Obj1 Obj2 Paper1 Paper2 Pic ProgC ProgL ProgP Trans AVG
2.19 2.51 2.29 2.78 2.62 2.51 2.68 1.99 1.96 1.88

Table 5. Results from Howard and Vitter

Yokoo21 has recently described a compressor which may be regarded as an on-
line version of the Burrows-Wheeler compressor, with similarities also to 
Buynovsky’s ACB compressor. It uses explicit symbol ranking, and various discrete 
final coders; the results of Table 6 are based on Elias γ codes22.

Yokoo uses a binary tree data structure to develop a sorted ordering of contexts 
and supplements the tree with a doubly linked list to maintain the lexical order of 
contexts. He measures the similarity of contexts by the lengths of their common 
suffixes.

Yokoo does not give results for the files PIC or TRANS, but from the other results 
it is possible to estimate the missing values and an average performance of about 2.8 
bits per byte. The estimated values are shown in italics in Table 6.

Bib Book1 Book2 Geo News Obj1 Obj2 Paper1 Paper2 Pic ProgC ProgL ProgP Trans AVG
2.40 2.87 2.48 6.24 2.89 4.77 2.95 2.78 2.80 0.90 2.80 1.82 2.09 1.70 2.8 (est)

Table 6. Yokoo’s “Sorted Contexts” compressor (γ codes)

A Sliding-Window Symbol Ranking Compressor

This compressor23 was apparently the first designed to use explicit symbol 
ranking, recognising the links to Shannon’s original work. It was intended as a “proof 
of concept” compressor, extending Bloom’s LZP compressors to handle “Type-2” 
Shannon encoding. It retains the sliding window to find previously matching 
contexts, but extends the search to find lower-ranked symbols. 

A search as in the LZP compressors finds the best matching context and thence 
predicts the first symbol; if this symbol is rejected the search continues at the same 
order or context length for more distant occurrences of that context. The symbols 
following those contexts are then offered as further candidates, with exclusion 
ensuring that symbols are offered only once in a particular context. If the text in the 
window is exhausted before finding the correct symbol, the order is reduced by 1 and 

Symbol Ranking SP & E PM Fenwick Page 9



the search resumed from the most recent text. An MTF table is eventually used as an 
order-0 predictor.

Within each context order the symbols are offered in order of recency, most recent 

first, which is equivalent to MTF coding within the context. The results are shown in 

Table 7.

Bib Book1 Book2 Geo News Obj1 Obj2 Paper1 Paper2 Pic ProgC ProgL ProgP Trans AVG
2.22 2.82 2.32 5.49 2.62 3.79 2.43 2.59 2.68 0.82 2.55 1.70 1.69 1.48 2.51

Table 7. Results with sliding window symbol ranking

Comments

When symbol ranking compressors were first investigated, following the 
recognition of relation of the Burrows-Wheeler algorithm to Shannon’s work, it was 
hoped that their avoidance of explicit escape codes might allow improvements over 
the closely related PPM methods. It was also hoped that the use of explicit contexts 
might give improvements over the BWT compressor.

The anticipated improvements did not materialise. In retrospect, the BWT 
algorithm is seen to provide very efficient context analysis and the simple passing on 
of a symbol-ranking list from one context to the next is usually a very good predictor 
of symbol order. The ignorance of specific context information seems not too much 
of a hindrance. In comparison with PPM, the extra step symbol → rank → code, 
instead of just symbol → code does seem to degrade compression because some 
information is lost at each conversion. Again in comparison with PPM, symbol 
ranking must infer symbol probabilities, whereas PPM is able to maintain better 
models with explicit probabilities, with correspondingly better compression.

It appears that symbol ranking gives on average about 10% poorer compression 
than PPM compressors with comparable context analysis methods. The use of 
discrete output codes in some compressors (Huffman, Elias, etc) gives a further 
5–10% compression penalty.

Constant-order Symbol Ranking Compression

Symbol ranking can be used for compressors which combine modest compression 
with very high speed. The one described here gives compression somewhat better 

Symbol Ranking SP & E PM Fenwick Page 10



than the early “compress” or “compact” routines, but achieves very high speeds and 
should be suitable for hardware implementation at speeds of tens of megabytes per 
second. It may be compared with the LZRW24 compressors, with Bloom’s LZP1 and 
LZP2, and with GZIP in its fastest mode.

The heart of the compressor is the management of the lists of ranked symbols for 
each context. The mechanism is precisely that of a standard set-associative cache 
with LRU (least recently used) updating, but used in an unconventional manner. In a 
cache we are concerned only with hits and misses; the LRU is completely private to 
the cache and is irrelevant to its external operation. Here we are definitely concerned 
with the LRU functions, with the position of a hit within the LRU list used to encode 
a symbol. Note that Least Recently Used (LRU) is identical to Move To Front 
(MTF); LRU replaces the tail list element, whereas MTF expects to use the head 
element. Figure 2 shows the compressor, as it might be implemented in hardware.

Hash generator

Data match & LRU

3-symbol context
input symbol

Coder
Output 

bit-stream

set associative cache 
for context storage

LRU match 
information

Approximate 
Move To Front 

recoding pseudo-MTF 
index

Selected context

rank 
0

rank 
1

rank 
2

Figure 2. A hardware constant-order symbol ranking compressor

The three previous symbols are used as an order-3 context, with the 6 low bits of 
each symbol concatenated as an index to access one line of the cache3 . The input 
symbol is matched against the LRU-ordered symbols, the match position is presented 
to the coder and the LRU status updated appropriately.

The final coding stage accepts the LRU match information and emits it with a 
defined variable-length coding, or the symbol itself if there is no LRU match. The 
coding is essentially unary, with a 0 for a correct prediction and a 1 for a failure and 
3 This approach gives about 10% better compression than a “good” hash function. It seems that it helps 
to retain some of input structure when forming the hash index.

Symbol Ranking SP & E PM Fenwick Page 11



step to the next rank. It is shown12 that this simple coding is well suited to the actual 
symbol distribution. Two additional techniques give a slight improvement in 
compression 

1. A Move-To-Front recoding of the symbol allows a shorter code for the more 
frequent symbols. While full MTF recoding is far too expensive in data 
movement, a similar effect can be achieved by exchanging the symbol with 
one halfway to the front of the MTF list25. A “short literal” of 5 bits (actually 
a 5 bit index into the MTF table) gives the best performance. Other literals are 
transmitted as the 8-bit index. Dithering the last 3 bits of the exchanged 
position gives an improvement of about 5%.

2. Runs of more than about 16 zeros are transmitted as an actual run length. The 
number of bits in the run length is sent as a “long literal” but with a value in 
the range of a short literal; no true long literal indices have these values.

The full coding is shown in Table 8, together with the code frequencies for 
compressing PAPER1 with 64K contexts. Compression for the whole Calgary 
Corpus is shown in Table 9. With 16K contexts the compression degrades by about 
2%. 

0 Rank-0 match 45%
10 xxxxx short literal (index < 32) 28%
110 Rank–1 match 15%
1110 Rank–2 match 7%
1111 xxxxxxxx Long literal; also long run of Rank–0 4%

Table 8. Output coding for constant-order compressor

Bib Book1 Book2 Geo News Obj1 Obj2 Paper1 Paper2 Pic ProgC ProgL ProgP Trans AVG

3.74 3.95 3.43 6.28 3.90 4.81 3.70 3.70 3.66 1.15 3.71 2.70 2.95 2.80 3.60

Table 9. Constant-order symbol ranking compressor – 

64K contexts,maximum rank = 2

Increasing the maximum rank to 3 (4-way set association) improves the 
compression of text files by about 2%, but degrades the compression of binary files, 
leaving a similar overall result. Less compressible files improve as the maximum 
rank is reduced. Coding only ranks 0 and 1 with 64K contexts gives 6.10 bit/byte for 
GEO and 4.66 with OBJ1, improvements of 6% over coding up to rank = 3.

Symbol Ranking SP & E PM Fenwick Page 12



7.0

6.0

5.0

4.0

3.0

2.0

geo

paper2

trans

book1

book2

2K 4K 8K 16K 32K 64K 128K 256K
Number of contexts

Compression
bits / byte

Figure 3. Constant-order compressor, compression v number of contexts

Results for representative files of the Calgary corpus are shown in Figure 3. 
Useful compression requires only a few thousand contexts for most files, but GEO 
and other binary files are quite anomalous, with the compression being better with 
fewer contexts.

The main feature of this compressor is its speed. On a 275 MHz DEC Alpha, a 
software implementation compresses at about 1 Mbyte/s. Using well-proven cache 
techniques and discrete components such as field-programmable logic arrays and fast 
static RAM, a hardware implementation with a speed of 30 Mbyte/s should be 
possible with little trouble. A completely integrated design should be able to run at 
several times that speed.

Conclusions

Symbol ranking is an interesting “new/old” compression method, which seems to 
have been rediscovered in several guises. For the current context it prepares a table of 
possible symbols, ranked according to their likelihood in that context; the rank is 
emitted as recoding of the symbol and, having a highly skewed distribution, is 
amenable to a compact representation. The compressor normally uses contexts of 
variable order, but with the interesting feature that neither those contexts nor their 
orders are ever released to the coder.

Symbol Ranking SP & E PM Fenwick Page 13



Of the compressors described, the block-sorting or Burrows-Wheeler Transform 
(BWT) is probably the best as a general file compressor. It achieves very high speed 
and compression which is very close to that of the best PPM compressors. A version 
of symbol ranking especially suited to hardware implementation gives moderate 
compression and should be capable of operating at very high speeds.

Acknowledgements

This work was started while the author was on Study Leave at the University of 
California–Santa Cruz, the University of Wisconsin–Madison and at the University 
of Western Australia and continued at the University of Auckland. It was supported 
by the University of Auckland Research Grant A18/XXXXX/62090/F3414032. The 
support of all of these institutions is gratefully acknowledged.

Thanks are due to many people for their advice on the algorithms described here.

• David Wheeler and Mike Burrows for their assistance with their algorithm

• Georgii Buynovsky and Leo Broukhis for describing the operation of the ACB 

compressor

• Charles Bloom for comments on all of the algorithms, but especially his own 
LZP compressors

• Julian Seward for his BZIP compressor, a ‘clean room’ implementation of the 
published block-sorting implementations

Appendix : Compression Acronyms

It seems that any work on data compression is necessarily accompanied by a 
plethora of acronyms. To aid understanding, the acronyms used in this paper are 
collected here. The algorithms discussed in this paper are marked by an asterisk. 
Some of the other algorithms have references in the text.

ACB * A text compressor developed by George Buynovsky15.
BWT * Burrows–Wheeler Transform9. A compressor based on a permutation of 

the input, followed by a MTF operation and a statistical compressor.
BZIP * A BWT implementation by Julian Seward
DMC Dynamic Markov Coding. A compressor based on a Markov State 

representation of the input.
GZIP An implementation of LZ-77, released through the Free Software 

Symbol Ranking SP & E PM Fenwick Page 14



Foundation
LRU Least Recently Used. A version of MTF, especially as used when 

finding a candidate for replacement (using the list tail).
LZ-77 A compression technique following from work of Ziv and Lempel in 

197716. The incoming text is matched against “phrases” in the preceding 
text and a phrase replaced by the distance to the reference and its length.

LZ-78 A compression technique described by Ziv and Lempel in 197817, using 
a dictionary of previously seen phrases. Phrases are replaced by indices 
into the dictionary.

LZP * A family of compressors developed by Charles Bloom6, initially as a 
derivative of LZ-77.

LZRW A family of LZ-77 derived compressors which emphasise compression 
speed24.

MTF Move To Front. A symbol recoding technique in which a symbol is 
coded by its position in a list and the symbol then moved to the front of 
the list. Frequent symbols tend to stay near the head of the list, with 
small code values.

PPM Prediction by Partial Matching. A compressor described by Cleary and 
Witten5 which records contexts and the probabilities of symbols being 
seen in those contexts.

PPMC A version of PPM described by Moffat20; for some years it was the best 
known compressor

References
1. Bell, T.C., Cleary, J. G., and Witten, I. H., “Text Compression”, Prentice Hall, New Jersey, 

1990

2. Shannon, C.E. “Prediction and Entropy of Printed English”, Bell System Technical Journal, Vol 
30, pp 50–64.

3. Bentley, J.L., Sleator, D.D., Tarjan, R.E. and Wei,V.K. “A locally adaptive data compression 
algorithm”, Communications of the ACM, Vol 29, No 4, pp 320–330.

4. Lelewer, D.A., Hirschberg, D.S., “Streamlining Context Models for Data Compression”, Data 
Compression Conference, DCC-91, pp 313–322.

5. Cleary, J.G. and Witten, I.H. “Data compression using adaptive coding and partial string 
matching”, IEEE Trans Communications, COM-32, vol 4, pp 396–402 Apr 1984.

6. Bloom, C., “LZP: a new data compression algorithm”, Data Compression Conference, DCC’96

7. Witten, I., Neal, R., and Cleary, J., “Arithmetic coding for data compression”, Communications 
of the ACM, Vol 30 (1987), pp 520-540.

Symbol Ranking SP & E PM Fenwick Page 15



8. Cleary, J.G., Teahan W.J. and Witten, I.H. “Unbounded length contexts for PPM”, Data 
Compression Conference DCC-95 pp52–61, Snowbird Utah, March 1995.

9. Burrows, M. and Wheeler, D.J. “A Block-sorting Lossless Data Compression Algorithm”, SRC 
Research Report 124, Digital Systems Research Center, Palo Alto (1994). 
gatekeeper.dec.com/pub/DEC/SRC/research-reports/SRC-124.ps.Z

10. Wheeler, D.J. , private communication. (Oct ’95) This result was also posted to the 
comp.compression.research newsgroup. The files are available by anonymous FTP from 
ftp.cl.cam.ac.uk/users/djw3]

11. Fenwick, P.M. “Block sorting text compression”, Australasian Computer Science Conference, 
ACSC’96, Melbourne, Australia, (Feb). ftp.cs.auckland.ac.nz /out/peter-f/ACSC96.ps

12. P.M. Fenwick, “The Burrows–Wheeler Transform for Block Sorting Text Compression — 
Principles and Improvements”, The Computer Journal, Vol 39, No 9, pp 731–740, 1996.

13. Seward, J. “The BZIP compressor” posted to comp.compression.research newsgroup, (1996), 
later released by Free Software Foundation.

14. Arnavut, Z. and Magliveras, S.S., “Block Sorting and Compression”, Data Compression 
Conference, DCC’97, pp181-189

15. Buynovsky, G., “Associativnoe Kodirovanie”, (“Associative Coding”, in Russian), “Monitor”, 
Moscow, No 8, 1994, pp. 10–19.

16. Ziv,.J. and Lempel, A., “A universal algorithm for sequential data compression”, IEEE Trans. 
Information Theory, IT-23, No 3, pp 337–343 May 1977

17. Ziv,.J. and Lempel, A., “Compression of individual sequences via variable length coding”, IEEE 
Trans. Information Theory, IT-24, No 5, pp 530–536 Sep 1978

18. Howard, P.G., Vitter, J.S., “Design and Analysis of Fast Text Compression Based on Quasi-
Arithmetic Coding”, Data Compression Conference, DCC-93, pp 98–107.

19. Rice, R.F. ,“Some Practical Universal Noiseless Coding Techniques”, Jet Propulsion 
Laboratory, JPL Publication 79-22, Pasadena California Mar 1979 

20. Moffat, A. “Implementing the PPM data compression scheme”, IEEE Trans. Comm., Vol 38 No 
11, pp 1917–1921, 1990

21. Yokoo, H., “An Adaptive Data Compression Method Based on Context Sorting”, Data 
Compression Conference, DCC-96, Snowbird, Utah, pp 160–169. 

22. P. Elias, “Universal Codeword Sets and Representations of the Integers”, IEEE Trans. Info. 
Theory, Vol IT 21, No 2, pp 194–203, Mar 1975

23. P.M. Fenwick, “Symbol Ranking Text Compression with Shannon Recodings”, J.UCS Vol 3, 
No 2 pp 70–85 Feb 1997. 

24. Williams, R.N., An extremely Fast Ziv-Lempel Data Compression Algorithm”, Data 
Compression Conference, DCC-91, Snowbird, Utah, p362 ff.

25. Fenwick, P.M. , “A New Technique for Self Organising List Searches”, Computer Journal, pp 
450–454, Oct. 1991.

Symbol Ranking SP & E PM Fenwick Page 16


