Anomalous Efficiencies of Extended Huffman Codes

Abstract

It is well known the efficiency of noiseless coding may be improved by
coding extensions of the source; for large extensions the coding efficiency is
arbitrarily close to the entropy of the source. This paper shows that the
efficiency is not always improved just by coding the next extension. In
some cases an extended code is markedly less efficient than its predecessor,
although always within the theoretical limits of efficiency. We show how
the phenomenon arises from the quantisation of Huffman codes and

investigate it for binary and ternary codes.

Keywords Huffman codes, extended codes, efficiency, anomalies

Author Peter M. Fenwick, Member IEEE

Affiliation Department of Computer Science

University of Auckland
Auckland, New Zealand.

Postal Address Dr P.M. Fenwick

Dept of Computer Science

University of Auckland
Private Bag 92019
Auckland

New Zealand.

E-mail p_fenwick@cs.auckland.ac.nz

Telephone + 64 9 373 7599 ext 8298

FAX

+ 64 9 373 7453

Anomalous Efficiencies of Extended Huffman Codes

It is well known the efficiency of noiseless coding may be improved by
coding extensions of the source; for large extensions the coding efficiency is
arbitrarily close to the entropy of the source. This paper shows that the
efficiency is not always improved just by coding the next extension. In
some cases an extended code is markedly less efficient than its predecessor,
although always within the theoretical limits of efficiency. We show how
the phenomenon arises from the quantisation of Huffman codes and

investigate it for binary and ternary codes.

Introduction.

For an Information Source S described by a Source Alphabet of symbols occurring with
probabilities {P1, Py, P3,...}, the average information per source symbol is defined to be
the Source Entropy H(S) = -X Pilog(P;). When coding symbols from S for
transmission over a noiseless channel it is usual to encode each source symbol (with
probability P;) into a codeword with length L;, choosing shorter codewords for the more
probable symbols. Given that each codeword has the probability P; the average length
of the resultant code is L = ¥ P; Li. A fundamental result of Information Theory is that

H(S) < L. Alternatively, if we define the code efficiency to be n = H(S) /L, thenm < 1.
A second important result (Shannon’s First Theorem) is that we can improve the coding
efficiency by coding extensions of the source, ie grouping source symbols in groups of
2, 3 or more symbols and encoding the composite symbols. For the nth extension
(coding n source symbols at a time) the efficiency is bounded by 1 = > 1- 1/n. Thus
by encoding a sufficiently large extension, the efficiency can be forced arbitrarily close

to unity.

The usual code in this situation is the Huffman Codel3] and its performance has been

investigated by several authors. Given that the source entropy is H and the average
codeword length is L, we can characterise the quality of a code by either its efficiency

(n = H/L as above) or by its redundancy, R =L — H. Clearly, we have | = H/(H+R).

Gallager [2] shows that the upper bound on the redundancy is PE@0.0861, where P is

Huffman Encoding 7 October 2002 Page 1

the probability of the most frequent symbol. Johnsen [4] and Capocelli etal [1] derive

progressively tighter bounds to the redundancy, developing relations for different ranges

of P.

The above authors study only the “base” Huffman code, although a specified extension
can be treated much as a simple code in its own right. What does not seem to have been
examined as extensively is the behaviour as we code successively higher extensions of a
given source alphabet. Simple theory says that the efficiency will improve as higher-
order extensions are coded and it is generally assumed to approach the ideal quite
quickly as source extensions are encoded. Thus, if we consider the binary source P =
{0.85, 0.15}, encoded with a binary Huffman code, we find that the efficiencies of the
first few extensions are as shown in Table 1. The approach to the ideal is obviously

quite rapid.

Some Anomalous Cases

Although Shannon’s Theorem places bounds on the efficiency of a reasonable compact
code, it says very little about the behaviour of an actual code. With slight changes to
the source probabilities of Table 1, the Huffman code efficiencies for the binary source
P = {0.8, 0.2} are shown in Table 2. For the first three extensions the efficiency
improves as we would expect, but at the fourth extension it deteriorates markedly. The
fifth extension is little better than the fourth and both are markedly worse than the the
third. Note though that, even with these anomalies, the code efficiency is still well

within the theoretical bounds.

To determine whether this result is an isolated one, a search was made of Huffman
codes (binary codes of binary sources) for probabilities {w, 1-w} with w varying from
0.05 to 0.50 in steps of 0.05 and for all extensions up to the 7th. The results are
summarised in Table 3, with the efficiencies underlined for all cases where the
efficiency is less than for the previous extension. (Only cases where the decrease is
greater than 0.0001 are indicated.) The anomalies all occur over ranges of extensions
and probabilities, but all areas are included in the table. We also see that even the
example given first is poorly-behaved as soon as we look beyond the range shown in
Table 1! In general we see that if an extension results in a particularly good code, it

may be counter-productive to attempt to use a higher extension.

Huffman Encoding 7 October 2002 Page 2

An alternative presentation in greater detail is in Table 4, with w varying from 0.01 to
0.5 in steps of 0.05, extensions up to 9 and showing the amount by which a code is
worse than for the immediately preceding extension with that probability. The digit

which shows the error is calculated by the formula 15 + loga(v) where v is the change in

efficiency relative the previous extension; it is approximately the number of low-order
bits which differ in the 4th decimal digit. (The scaling is actually chosen to allow the

anomalies to be displayed as single digits.)

Analysis of the behaviour

The answer lies in the coding of the Huffman code and the variation of that coding as
the symbol probabilities vary. The generated Huffman code, the shape of its associated
tree and the distribution of codeword lengths is critically dependent on the actual
symbol probabilities. Each tree is optimum at one set of probabilities; as we move
away from those values the coding will deteriorate. In many cases the coding with
another tree will be improving until, when the two are equal the code will “flip” to the
other tree and pattern of codeword lengths. We will thus get a discontinuity in the

graph of efficiency against symbol probability as one tree takes over from the other.

Figure 1 shows the efficiencies of binary Huffman codes for extensions up to the fourth
and for a range of symbol probabilities. It is clear that each curve is a combination of
several convex-upward functions, corresponding to the different coding trees as
discussed above. The simplest case is the second extension, the dotted line in Figure 1,
which has a discontinuity at about w = 0.4. By examining actual codes, we find that
for smaller values of w the codewords have lengths of {3, 3, 2, 1}, while for larger
values all codewords have a length of 2. The codes for symbol probabilities of {0.35,
0.65} and for {0.45, 0.55} are shown in Table 5; the table also includes the formulae for

the average codeword length of the first code as a function of w. Combining the
formulae and simplifying gives the average codeword length as LEBEw?2 + 3w + 1.

Setting L. = 2 gives the condition that the two codings give identical average lengths and
locates the discontinuity where the coding switches between the two alternatives.
Solving the quadratic equation shows that the transition occurs at w = 0.38196. Similar,
but more complex, analyses apply to the higher extensions; that for the third extension

is given later.

Huffman Encoding 7 October 2002 Page 3

More insight may be gained by considering Figure 2, which shows various functions of
the second extension of a binary Huffman code. The values which are shown are —
H(S) the entropy of the second extension of the source
L1 the average length of the code with word lengths {3, 3, 2, 1}. (This is
actually an inverted parabola, but the short segment shown here appears as
almost a straight line.)
nl the efficiency of the code using word lengths {3, 3, 2, 1}. (n1 = H(S)/L1)
n2 the efficiency of the code with word length 2.
Limit the lower bound to the efficiency, using the result of Capocelli etal.
The efficiency of the final code is simply the envelope of the efficiencies for the two
codeword configurations. Except for probabilities close to zero, it is always much
better than the bound of Capocelli etal. The theoretical bounds still apply, but there is

some degree of chaotic behaviour within those bounds.

Returning to Figure 1, we see that the third extension is characterised by several
patterns of codewords. The details of these patterns are given in Table 6. (We start by
giving approximate ranges only; the transition between the second and third cases is
barely visible in the diagram.) For each range we give the formula for the average
length as a function of w. As for the second extension, transitions from one coding to
the next occur when the corresponding lengths are equal. The transitions occur at @ =

0.2929, w =0.3333 and » =0.4302.

Ternary Codes

Having investigated the behaviour of binary Huffman codes, we now extend the
analysis to ternary (base 3) codes. One problem is that high extensions of non-binary
codes very soon include an enormous set of codewords, over 2000 for the 7th extension
of a ternary code, making the codes expensive to generate. Another major problem lies
in the presentation of the results as there are now three probabilities and the extension,
to give three independent variables. To simplify the presentation we display only the
regions where the performance deteriorates, showing the number of the anomalous

extension and ignoring the magnitude of the deterioration.

Considerable simplification results from the symmetries of the probabilities. Given that

the source alphabet S = {A, B, C}, we have that P(A) + P(B) + P(C) = 1.0, and can

Huffman Encoding 7 October 2002 Page 4

immediately write P(C) = 1.0 — P(A) — P(B). There are therefore only two independent
probability variables and they can be represented as the axes of a conventional graph.
Because all of the probabilities are interchangeable we can take advantage of further
symmetries; for the first probability it is sufficient to cover the range 0 < P(A) < 0.5

and for the second 0 < P(B) < P(A), up to maximum value of 0.25.

The results are given in Table 7, where the digits show which extension gives poorer
performance than its predecessor for a combination of probabilities. The greatest
changes are those shown in underlined bold-face. In going from the 2nd to the 3rd
extension, the greatest deterioration occurs at {0.20, 0.20, 0.60} where the efficiency
drops from 0.9829 to 0.9512, a change of 0.0317. The corresponding change for the 3rd
to 4th extension occurs at {0.08, 0.23, 0.69}, a fall from 0.9985 to 0.9597, or change of
0.0388.

Conclusions

We have shown that coding a higher extension of a Huffman code does not necessarily
improve the code efficiency. In all cases the coding with a particular Huffman tree is
optimal for only a range of source probabilities and deteriorates as the source
probabilities deviate more from the optimum. Eventually another tree will give better
performance and the coding will change to use the new tree. The code efficiency may
be relatively poor in the region of the transition. If the probability at the transition is
close to an optimum probability for the previous extension, the performance may
deteriorate when moving to the higher extension. In all cases the efficiency is well

within the known theoretical bounds.

The regions of anomalous behaviour have been investigated for binary codes (up to the

9th extension) and for ternary codes.

References

[1] R.M. Capocelli, R. Giancarlo, I.J. Taneja, “Bounds on the redundancy of Huffman
codes”, IEEE Trans. Inform.. Theory, Vol. IT-32, no 6, pp 854-857, Nov. 1986.

[2] R.G. Gallager, “Variations on a theme by Huffman”, IEEE Trans. Inform..
Theory, Vol. IT-24, no 6, pp 668-674, Nov. 1978

[3] D.A. Huffman, “A method for the construction of minimum redundancy codes”,

Huffman Encoding 7 October 2002 Page 5

Proc. IRE, Vol. 40, pp 1098-1101, 1952
[4] O. Johnsen, “On the redundancy of binary Huffman codes”, IEEE Trans. Inform..
Theory, Vol. IT-26, no 2, pp 220-223, Mar 1980

Figure captions

Table 1. Efficiencies of {0.85, 0.15} Huffman code extensions

Table 2. Efficiencies of {0.80, 0.20} Huffman code extensions

Table 3. Efficiencies for extensions of a range of binary codes

Table 4. Efficiency losses for extensions of a range of binary codes

Table 5. Huffman codes for probabilities of 0.35 and 0.45

Table 6. Code trees and word lengths for third extension

Table 7. Anomalies for ternary Huffman codes

Figure 1. Huffman code efficiency; extension as parameter

Figure 2. Details of efficiency, second extension of binary code

Huffman Encoding 7 October 2002 Page 6

