
IEEE TRANSACTIONS ON COMPUTERS, VOI-. C.34, NO. 6, JUNE 1985

Some Aspects of the Dynamic Behavior of
Hierarchical Memories

PETER M. FENWICK

Abstract
-ln a computer system with a cache memory, the cache is

effectively empty following a job switch, leading to a low hit rate and
consequently lowered performance until the cache becomes reasonably
full, The analysis shows that a job must run for several milliseconds before
the average performance approaches that expected from a steady-state
analysis. Care may therefore be needed in designing memory systems
which have very high page-fault rates from main memory, or which in-
clude many' levels in the memory hierarchy.

Index Terms
-Bubble memory, cache memory, dynamic behavior,

memory hierarchy, performance degradation.

I. HIERARCHICAL MEMoRIES

An extensive literature exists on the expected advantages of hier-
archical memory systems, and many analyses have been published
outlining methods of optimizing such a hierarchy. The work de-
scribed here was prompted by the advent of charge-coupled and
bubble memories, which, with an access time of a millisecond or so,
showed promise for filling the "access gap" between semiconductor
RAM (access about 500 ns) and rotating disks (access 10-30 ms).
With such buffer stores included, a typical computer would be
expected to have a four-level memory hierarchy as perhaps

Manuscript received September 12, 1983; revised December 12, 1984. This
work was suppo(ed in part by the University of Auckland, Auckland, New
Z.e,aland, and in part by Bunoughs Corporation, Mission Viejo, CA.

The author is with the Department of Computer Science, University of
Auckland, Auckland, New Zealand.

0018-9340/85/0600-0570$01.00 0 l98s rEEE

IEEE TRANsAcrroNS oN coMpurERs, vol. c-34, No. 6, luNt 1985

100 ns cache 1000 words

511

IV. PERFORMANCE ANALYSIS

In one of the few papers describing the dynamic behavior of
caches, Pohm, Agrawal, and Monroe [4] give a relation for the
miss rate of a partly full cache and use this to develop a model
for the dynamic behavior of the cache. They give results for the
variation of hit rate with time, but do not extend this to a predic-
tion of system performance. The present analysis uscs thcir model,
which assumes initially that the cache miss ratio (MR) is approxi-
mated by the expression

MR : ----1-9---
fw + al

where w is the cache size, / is the "filling factor," and a0 and a I
are constants. The two constants are readily calculated from the
steady-state MR (or hit ratio), noting that an empty cache has an MR
of 1. (This last shows that c0 : al.) Many caches use multiword
blocks to provide some measure of "prefetching" and a higher final
hit rate. The model [4, eq. 9] allows for blocks by simply multi-
plying the filling rate by the block size. This assumes that all pre-
fetched words are actually used and gives a rather optimistic filling
rate, but in the absence of any better information, it is probably a

reasonable approximation.
Pohm et al. give both the differential equation of the filling factor

and its analytical solution as a time function; for a numerical solu-
tion it has been found preferable to use an iterative solution
to the second equation to avoid initial-value problems with the
original differential equation. The calculation then procccds by
calculating in succession the filling factor, the miss rate, the effec-
tive memory cycle time, and then the time betwccn successive
memory requests, assuming a constant processor "think" time. Inte-
grating this last time gives the total elapsed time. which, divided
into the corresponding number of memory requests, gives the
average memory request rate (i.e., system performance) as a
function of time. Calculations were done for a system with the
following parameters:

500 ns RAM
I ms buffer

20 ms disk

1 million words
10 million words

100 million words.
The sizes of the different levels may be subject to adjustment if
the hierarchy cost/performance is optimized according to the
extant optimization procedures []-[3], but this does nor affect
the present argument.

II. THE DYNAMIC BEHAVIoR oF CACHE MEMoRIES

Many studies have been done on the behavior of cache memories,
but almost all of these studies are concerned only with the steady-
state performance. Very few authors have paid any attention to the
dynamic behavior of a cache, particularly as occurs on a major
change of program environment such as a job switch by the oper-
ating system. The cache is then initially empty as far as the new
environment is concerned and accumulates relevant new data only
as a result of "misses." The miss rate is initially high, but as the
cache fills, the miss rate falls, and the rate of filling also drops. A
considerable time may then be needed for the cache to fill and reach
its expected performance. The behavior is in many ways analogous
to the charging of a capacitor through a resistor-the cache is
"charged" with data at a rate which decreases as the cache fills.
Although the analogy is not exact, a cache of 2000 words receiving
2 million requests per second may be expected to fill in accordance
with a "time constant" of about I ms, reaching 99 percent of its
steady-state filling in about 5 ms. While the cache is filling and
operating at a low hit rate, the processor performance will be below
the value expected from the steady-state cache behavior. Reasonable
performance can be expected only ifthe cache is allowed to fill, i.e.,
if the processor is able to run for several milliseconds on each job.
It is essential to distinguish between the instantaneous processor
performance, which is a function of the hit rate at that instant. and
the average performance since the job switch. The average per-
formance is dominated by the initially low performance with the
cache nearly empty, and approaches the equilibrium value far more
slowly than does the instantaneous performance.

A question which must be raised here concerns the relevance of
address traces to studies of cache behavior. ln a multiprogramming
environment the address trace applies only for a time less than the
page-fault interval, time slice, or other interruption ro a running
program. A trace of tens of thousands of memory references mav be
of doubtful relevance in some contexts.

IIL TSp OptrurzetroN oF MEMoRy Htrn,Ancures
Procedures for the optimization of memory hierarchies depend

on two basic facts. The first is that faster memories are more ex-
pensive than slower memories, and the second is that a larger
memory will have a lower page-fault rate, or its equivalent, than a
smaller memory in an otherwise similar hierarchy. At the main
memory level a large memory will have a low page-fault rate, but
will be expensive. Reducing its size will reduce the cost but increase
the fault rate. If the fault rate is within the capacity of the next level
(buffer or disk) the effect will be a gradual reduction in performance
as the fault rate increases with smaller memory and an improvement
in the ratio of cost to performance. When the fault rate approaches
or exceeds the capacity of the disk or buffer, the performance falls
off substantially as the system "thrashes." The optimum memory
size may then be expected to be that which gives a fault rate
approaching the capacity of the next level; a larger memory costs
more, and a smaller one thrashes.

If a bubble memory buffer has an access time of 1 ms, the page-
fault interval should not be more than about 2 ms for a cost-effective
configuration. Now this page-fault interval is comparable to the
cache filling time, and the processor might never be able to achieve
its optimal steady-state performance before a page fault occurs.

word cache
cachc access time
memory access time
average processor think time

8-5 percent linal cache hit rate
I or:1 words per cache block.

Results for the calculation are shown in Fig. 1 (cache hit rate) and
Fig. 2 (average processor performance), both plotted as a function
of time since the job switch. The steady-state memory request
rate is 3.15 requests per microsecond, and the system is arbitrarily
assumed to have reached the steady-state behavior when it reaches
90 percent of this value, or 2.83 requests per microsecond. With
one-word blocks, equilibrium occurs after about 4 ms, while with
four-word blocks it occurs in about I ms. While the improvement
with multiword blocks is quite dramatic, the earlier reservations
on the model should be remembered: the improvement might not
be this great, and 2.0-2.5 ms might be a more realistic value. A
comparison between the figures shows that the instantaneous hit
rate approaches the final value much more quickly than does the
average performance: this is in accordance with the earlier obser-
vation on instantaneous versus average performance.

From these results it is obvious that a page-fault interval of 1 or
2 ms, such as might be thought optimum with a bubble memory
buffer, can lead to a performance degradation of 15-25 percent
with single-word blocks in the cache . The main benefit frorn using
multiple-word cache blocks might in fact be in the faster approach
which they give to final cache equilibrium, rather than in improve-
ments in the cache hit rate and steady-state performance.

V. Burpgn MEMoRIES AND THE OpERATTNc Sysreu
In most cases, a page fault will result in action by the operating

system to process the fault and to resume or initiate some other
job. An entry to the operating system is a major context change and

1024
50 ns

500 ns
200 ns

572

o
T
o

CE

p

I
a)
o
oc
o
!
c
op
a
c
H

4-wond blocks

Elapsed Time (!s)
Fig. l. Hit rate after context change

4-wond b locks

IEI]E TRANSACTIONS ON COMPUTERS, VOI-. C-34, NO. 6, IUNE 1985

pages at the first page fault of the context change, should be able
to satisfy some of the following faults at buffer speed rather than
disk speed, with a consequent improvement in system performance.
The improvement should be especially significant for brief exe-
cutions of large programs (such as short compilations) for which
the time spent in loading pages can be l0 or 100 times the actual
processing time.

VII. CONCLUSIONS

It is apparent from the above results that under appropriate con-
ditions there may be considerable interference between a cache
and a disk-buffer memory, particularly if a cache of relatively low
performance is combined with a high-performance buffer. While
a buffer memory does in principle allow a very high page-fault
rate, this is a potentially incfficient mode of operation because of
both the cache effects and the cxtra overheads from frequent calls
on the operating system. Buffer memories should be used rather
to decrease the average access times to disks during program startup
or other times of inhercntly high page-fault rate.

Although fast disk buffers have not in fact been introduced to
the extent that was often predicted when this work was done in
1979. the results presented here are still rclevant. The fact that a
cache takes a considerable time to fill, and that it has a low per-
formance while it is filling, must be remembered by any designer
of a multilevel memory system. As processor speeds continue to
increase, some designcrs are considering the use of a small very
fast cache in an attempt to match processor memory-request intcr-
vals of 10-20 ns to conventional cache speeds. The points raised
here may be applicable to such a design.

AlogNpuv
Two recent papers by Clark [5] and Strecker [6] relate to the

subject of this paper. Clark studies cache behavior as measured
on a real system under a real workload and includes an extensive
discussion of most aspects of cache performance in the light of
his observations. One conclusion notcs the difficulty of relating
address traces to the memory access patterns of real processors.

Strecker deals with the transient behavior of a cache, again sup-
porte d bl actual measurements. He does not deal with the real-time
performance. ho*ever. measuring time only in terms of processor
requests. but does dei elop a model for cache behavior which should
be superior to that of Pohm er a/.

The modeling program used in this paper has been revised to
use both the Pohm model and the newer one of Strecker. The results
for the two models are in excellent agreement. Using Strecker's
values tbr a static miss rate of 0.05, the two models differ by less
than 2 percent in the value for the average processor performance
(Fig. 2 above).

AcrNowLgocveNr
The work for this correspondence was done while the author was

on study leave from the University of Auckland and employed by
Burroughs Corporation (Mission Viejo Plant). The author thanks
both of these organizations for financial support and for the oppor-
tunity to undertake the work reported in this paper.

Rr,rEnENcgs

t1l C. K. Chow, "Determination of cache's capacity and its matching storage
hierarchy," IEEE Trans. Comput., vol. C-25, pp. 151-164, Feb. 1976.

t2l J.S. MacDonald and K.L. Sigworth, "storage hierarchy optimization
procedure," lBM J . Res. D eve lop., vol. 19, no. 2, pp. 1 33-140, Mar. 1975.

t3l T. A. Welch, "Memory hierarchy configuration analysis," IEEE Trans.
Comput., vol. C-27, pp. 408-413, May 1978.

a
13
L
oo
a

o)o
0
cr

I. r.oL
ol>l<i

Final Miss Rate = 0.15

t
o._91 ., ,.' , , , , , .o.o 1000.0 2000.0 3000.o 40oo.o 5000.0 6000.o zooo.o

Etapsed Time (ps)

Fig. 2. Cumulative average performance after context change.

may cause the processor to operate inefficiently with a low cache
hit rate during much of the page-iault servicing. Furthermore, the
fault servicing may well take several hundred microseconds, which
ls a very large portion of the time between page faults if the page
fault is "matched" to the buffer access capacity. This lcads to the
separate and obvious conclusion. not related to cache dl.namic
behavior. that a computer which expects to use a hrgh fault rate.
as can be done with bubble memorr'. should har.e as much of the
page-fault and job-resumption logic as possible implemented in
hardware/firmware to minimize operating slstem overheads. As a
possible alternative there may be some benefit in using a ven. larse
cache, in_the expectation that a reasonable amount of operating
system information will remain between page faults, therebv reduc-
ing the time spent in servicing the faulr. Note though thai a ver1.
large cache might not have time to fill between context changes
unless it has a correspondingly large block size. Therefore, a laige
cache might not be cost effective, as much of its capacity miy
remain unused in practice.

VI. UsE op BuFrsn MEMORIES

Most emphatically, the preceding discussion does not say that
there is no place for a fast disk buffer memory within a hierarchical
memory. Rather, it is intended to point out possible interactions
between the buffer and cache if the design does not allow for the
dynamic behavior of the system. There does seem to be a definite
place for a fast disk or paging buffer within a memory hierarchy.
Although it seems unwise to design a system with a very high
deliberate page-fault rate, there will often be a high fault rate when
a program is being initiated or resumed, or when it enters a major
new region (perhaps a subroutine). A fast buffer connected as a
"disk cache," and loaded with a working set of hopefully related

1-wond b locks

IEEE TRANSAcrroNs oN coMpurERS, vot.. c-34, No. 6, luNE l9g5 513

t4l A. V. Pohm, O. P. Agrawal, and R. N. Monroe, ,,The cost and perform-
ance tradeoffs of buffered memories," p roc. I EEE, vol. 63. pp I I 29 I I 35,
Aug. 1975.

[5] D.W. Clark, "Cache performance in the VAX-Ilt7g0,,'ACM Trans.
Comput. S)sr., vol. 1, no. l, pp.24-37, Feb. 19g3.

t6l W. D. Strecker, "Transient behavior of cache memories.,' ACM Tran.s.
Comput. S).rr., vol. l, no. 4, pp. 281-293, Nov. 19g3.

00r8-9340/85/0600-0573$01.00 0 1985 IEEE

