1. Assembling and Disassembling

1. Convert instruction “addq $t0, $t1, $t2” to binary and hexadecimal.

2. Interpret instruction 0x4e003410 in hexadecimal to assembly instruction format.

3. Convert instruction “ldq $t0, -1($t0)” to binary and hexadecimal.

2. Calculate values in registers after executing a set of instructions

Exercise 1:

Suppose we have the following values in registers

$t0 0x55

$t1 0x68

$t2 0x24

$t3 0xfffffffffffffff3

How will the registers change after executing the instructions?

(1) subq $t0, 1;

(2) addq $t1, 0x45;

(3) addq $t2, 0x94;

(4) addq $t3, 0x94;

(5) mulq $t1, 0x4;

Exercise 2:

Suppose we have the following values in registers

$t0: 0x54

$t1: 0x2b4

$t2: 0xb8

$t3: 0x87

How will the registers change after executing the instructions?

(1) subq $t0, $t1, $t1;

(2) addq $t0, $t1;

(3) subq $t2, 0x124, $t3;

Exercise 3:

Suppose we have the following values in registers

$t0: 0xfffffffffffffdf4

$t1: 0xfffffffffffffda0

$t2: 0xb8

$t3: 0x87

How will the registers change after executing the instructions?

(1) and $t0, $t1;

(2) bic $t1, 0x55;

(3) bis $t2, $t1, $t1;

(4) eqv $t1, 0x23;

(5) ornot $t3, $t2;

(6) xor $t3, $t1;

Exercise 4:

Suppose we have the following values in registers

$t0: 0xfffffffffffffda0

$t1: 0x264

$t2: 0xb8

$t3: 0xfffffffffffffda3

How will the registers change after executing the instructions?

(1) sll $t1,$t3;

(2) srl $t2,$t2;

(3) sra $t3,0x4,$t0;

(4) srl $t3,0x4;

Exercise 5:
Write assembly code to allocate memory for a byte array. The byte array will be used to store asciiz string with max size as 10.

3. Memory allocation

Exercise 1:

Draw a memory table to display how following data is stored in memory. Suppose label “value0” refers to memory address 0x000000.

data{

value0:

asciiz
“ab”;

value1:

byte
0x12;

value2:

long
0x3456;

value3:

quad
0x87654321;

}

Exercise 2:

Draw a memory table to display how following data is stored in memory. Suppose label “value0” refers to memory address 0x000000.

data{

align

quad;

value0:

asciiz
“ab”;

align

word;

value1:

byte
0x12;

align

long;

value2:

word
0x3456;

value3:

long
0x7890;

}
