
PART B: Alpha Assembly Programming (total 50 marks)
In all questions in this section, assume the Alpha computer architecture.

All values are in hexadecimal (when written as 0x). The format of Integer operate instructions is

displayed below.

Operate instruction format

31 26 25 21 20 16 15 13 12 11 5 4 0

opcode Ra Rb 000 LF function Rc

31 26 25 21 20 13 12 11 5 4 0

opcode Ra value LF function Rc

As well, �nd below an extract of the ASCII character set.

00 NUL 1B ESC 7F DEL

21 ! 22 " 30 0

31 1 32 2 33 3

34 4 35 5 36 6

37 7 38 8 39 9

3A : 3B ; 3C <

41 A 42 B 43 C

44 D 45 E 46 F

61 a 62 b 63 c

64 d 65 e 66 f

76 v 77 w 78 x

79 y 7A z 7B f

Answer brie
y to each question.

a. Provide 2 di�erent ways to add the content of register $T1 and register $T2, $T2 holding the

result. [2 marks]

b. What is the main di�erence between the instructions addl and addq? [2 marks]

addl: Register Ra is added to register Rb or a literal and the sign-extended 32-bit sum is written

to Rc. The high order 32 bits of Ra and Rb are ignored.

c. How many registers (and what is their size contents) does the alpha chip studied in the lectures

contains? [3 marks]

32 integer registers, 32
oat registers both 64 bits long

d. What is the purpose of the address held in the Program Counter register? [3 marks]

e. Cite 3 advantages/inconvenient of using registers (internal chip memory) instead of using main

memory (external to the chip)? [3 marks]

Registers are accessed faster than chip-external memory (+). Registers latency is shorter, they

can be updated more often (+). Internal chip memory size is limited compared to external chip

memory (-).

f. What are the main characteristics of a 64-bit load/store RISC architecture? [4 marks]

Mainly operations between internal registers. Only external operations are access to memory via

load/store instructions. RISC for Reduced Instruction Set Computer Architecture.

g. An integer operate instruction is uniquely identi�ed by its Opcode and function code (see

"Operate instruction format" above). How many di�erent integer operate instructions can be

theoretically handled by the integer operate instruction format? [3 marks]

Opcode � > 6 bits: 26 possibilities. Function code � > 7 bits: 27 possibilities. Overall: 213

possibilities.

Assume the following section program is to be executed:

data f
align quad;

one: long 0x2327fffb;

align quad;

two: quad 0xaabbccdd98765432;

align quad;

message: asciiz "0x123abc";

align quad;

three: quad;

align quad;

last: word 0xff33;

g

Further assume that the memory address corresponding to label one is 0x100000 and the memory

has been reset beforehand. Indicate the contents of each byte of memory (and the correct addresses

labels are referring to) after the program section has executed.

Display all values in hexadecimal. [10 marks]

memory address memory memory address memory memory address memory

contents contents contents

0x100000 0xfb 0x100010 30 0x100010 00

0x100001 � 0x100011 78 0x100011 00

0x100002 27 0x100012 31 0x100012 00

0x100003 23 0x100013 32 0x100013 00

0x100004 00 0x100014 33 0x100014 00

0x100005 00 0x100015 61 0x100015 00

0x100006 00 0x100016 62 0x100016 00

0x100007 00 0x100017 63 0x100017 00

0x100008 32 0x100018 00 0x100018 33

0x100009 54 0x100019 0x100019 �

0x10000a 76 0x10001a 0x10001a 00

0x10000b 98 0x10001b 0x10001b 00

0x10000c dd 0x10001c 0x10001c 00

0x10000d cc 0x10001d 0x10001d 00

0x10000e bb 0x10001e 0x10001e 00

0x10000f aa 0x10001f 0x10001f 00

Assume the following instructions have to be executed one after another:
addq $t0, 0, $t0;

addq $t0, 38, $t1;

addq $t0, 0x26, $t1;

mulq $t0, 8, $t3;

mulq $t0, 0x10, $t4;

subq $31, 26, $t5;

not $t0;

or $t0, $t6, $t7;

and $t5, $t7, $t8; xor $t0, 51, $t9;

g

Further assume that register $t0 one holds the quadword 0x34 before the above instructions. Indi-

cate the contents of registers each time they are modi�ed when executing the previous instructions

one after another.

Display all values in hexadecimal as quadword. [20 marks]

addq $t0, 0, $t0; $t0 = 0x34 or 0x0000000000000034

addq $t0, 38, $t1; $t1 = 0x5a

addq $t0, 0x26, $t1; $t1 = 0x5a

mulq $t0, 8, $t2; <=> sll $t0, 3, $t2; $t2 = 0x00...01a0

mulq $t0, 0x10, $t4; <=> sll $t0, 4, $t2; $t4 = 0x00...0340

subq $31, 26, $t5; $t5 = -0x1a = 0x�...�e6

not $t0; $t0 = 0x�...�cb

or $t0, $t5, $t6; $t6 = 0x�...�ef

and $t5, $t6, $t7; $t6 = 0x�...�e6

xornot $t0, 51, $t8; 51 = 0x33

not 51 = 0x�...�cc

$t7 = 0x007

Additional area for answers:

