
68

__
CompSci.210.T.S1 2004

Move literal values to registers

You can assign a constant value to a register using ldiq instruction. For
example,
“ldiq $T0, 0x123” sets the value of $T0 to 0x0000000000000123.

Ldiq is also used to pass the value of a label into a register.
ldiq $T1, a;

Move address to registers

lda is used to pass memory address in a register rather than the contents of
the memory at the address. It is doing something like:

(Quadword) address = displacement + intReg[regB];
intReg[regA] = address;

For example, assume the value stored in T0 is 0x10…00. Then, the execution
of the following instruction will set the values in the T registers as below:
lda $T2, 3($T0)

T2 0x1000000000000003

The load address instruction can be seen as an add instruction with a constant,
except that the constant is a 16 bit signed value, rather than an 8 bit unsigned
value. It is often used when passing reference parameters to functions.

69

__
CompSci.210.T.S1 2004

Store data to memory

stX instructions are used to move data from registers to the memory.
X indicates the type of data to be moved. X is either b (byte) or w (word) or l
(longword) or q (quadword).

stX has two operands.

The first operand must be a register, which holds the value to store in memory.
The second operand must be either a memory label or an expression holding
the virtual address where data should be stored in memory.

stX Ra, Disp(Rb)

Va = (Rb)value + (Disp)sign extended

For example:

stb $T1, 2($T0);

Stores the least significant byte of $T1 at the effective address computed as
the sum of the contents of $T0 and the 64-bit sign extended offset (here 0x2).

stw $T1, 0x32($T0);

Stores the 2 least significant bytes of $T1 at the effective address computed as
the sum of the contents of $T0 and the 64-bit sign extended offset (here 0x32).

70

__
CompSci.210.T.S1 2004

Assume the following directives have been used to reserve locations in the
memory.
data {
a: byte0;
b: word0;
c: long0;
d: quad0;

}

label address contents label address contents
a 0x10…00 00 d 0x10…08 00
 0x10…01 00 0x10…09 00
b 0x10…02 00 0x10…0a 00
 0x10…03 00 0x10…0b 00
c 0x10…04 00 0x10…0c 00
 0x10…05 00 0x10…0d 00
 0x10…06 00 0x10…0e 00
 0x10…07 00 0x10…0f 00

Assume the values in the T registers are as below:
T0 0x1000000000000000
T1 0x1234567890123456
T2 0x9876543210987654
T3 0xabcdef0123456789
T4 0x123456789abcdef0

After the execution of the following instructions, the contents of the memory
becomes:

stb $T1, 0($T0);
stw $T2, 2($T0);
stl $T3, 4($T0);
stq $T4, 8($T0);

71

__
CompSci.210.T.S1 2004

label address contents label address contents
a 0x10…00 56 d 0x10…08 f0
 0x10…01 00 0x10…09 de
b 0x10…02 54 0x10…0a bc
 0x10…03 76 0x10…0b 9a
c 0x10…04 89 0x10…0c 78
 0x10…05 67 0x10…0d 56
 0x10…06 45 0x10…0e 34
 0x10…07 23 0x10…0f 12

• stX instructions also require the starting address where data should be

stored to respect the alignment requirement specified by the instruction.

“stl $T3, 2($T0)” and “stq $T4, 2($T0)” cannot be executed,
since the effective address is neither longword nor quadword aligned.

