
48

__
CompSci.210.T.S1 2004

Integer operate instructions

Integer operate instructions are used to perform operations on values
in integer registers.

Instructions Format
Alpha instructions are all 32 bits long. Each instruction has a 6 bits
opcode field. There are four major instruction formats. We are going
to study three of them, i.e. operate format, memory format and
branch format.

The operate format is for instructions performing integer register to
integer register operations such as addq, subq. The operate format
allows the specification of one destination operand and two source
operands. One of the source operands can be a literal value. The two
formats are distinguished by bit 12. If one of the source operand is a
literal value, bit 12 is set to 1; otherwise, bit 12 is 0. It can be seen
that each register field consists of 5 bits. This is because there are 32
integer registers. Thus, 5 bits is sufficient to hold the number
denoting a register. In the diagrams below, Ra and Rb are the source
registers’ fields and Rc is the destination register’s field. The literal
is interpreted as a positive integer between 0 and 255 and is zero-
extended to 64 bits.

49

__
CompSci.210.T.S1 2004

Operate instruction format

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is
formed by bits <20:13> of the instruction.
The literal is interpreted as a positive integer between 0 and 255 and is zero-
extended to 64 bits.

Example:
If the 8-bit literal value is 0x40 the zero-extended 64-bit value is used for the
operation:

• 0x40 –> 0x0000000000000040
If the 8-bit literal value is 0x90 it is view as a positive value and is zero-
extended to a 64-bit value for the required operation

Rule:

Contents of registers must be written as 64 bits integer
Literal value involved in integer operates instructions must be
written as 8 bits value and zero-extended to 64 bits value when
performing an operation.

50

__
CompSci.210.T.S1 2004

Addition, multiplication, division

Addition

addq, subq and mulq instructions can have two or three operands.
The first operand must be a register. The other operands can be
either a litteral value or a register. For example:

addq $T0, $T1, $T2 $T2 = $T0+$T1
(addq s_reg1,s_reg2, d_reg)

addq $T0, $T1 $T0 = $T0+$T1
(addq d_reg/s_reg1, s_reg2)

addq $T0, 0x1, $T1 $T1 = $T0+0x1
(addq s_reg, val, d_reg)

addq $T0, 0x1 $T0 = $T0+0x1
(addq d_reg/s_reg, val)

Substraction

subq $T0, $T1, $T2 $T2 = $T0-$T1
(subq s_reg1, s_reg2, d_reg)

subq $T0, $T1 $T0 = $T0-$T1
(subq d_reg/s_reg1, s_reg2)

subq $T0, 0x1, $T1 $T1 = $T0-0x1
(subq s_reg, val, d_reg)

subq $T0, 0x1 $T0 = $T0-0x1
(subq d_reg/s_reg, val)

51

__
CompSci.210.T.S1 2004

Multiplication

mulq $T0, $T1, $T2 $T2 = $T0*$T1
(mulq s_reg1, s_reg2, d_reg)

mulq $T0, $T1 $T0 = $T0*$T1
(mulq d_reg/s_reg1, s_reg2)

mulq $T0, 0x1, $T1 $T1 = $T0*0x1
(mulq s_reg, val, d_reg)

mulq $T0, 0x1 $T0 = $T0*0x1
(mulq d_reg/s_reg, val)

Alpha does not have integer division instructions but the simulator
does.
The macro-instruction set includes integer division instructions.

• Assembler replaces the division instructions with a procedure
to carry out the division instructions.

• Integer division can be programmed quite easily:
§ 7 divided by 2: 7=3*2+1

Example
Suppose we have the following values in registers.

$t0 0x0000000000000000
$t1 0x0000000000000037
$t9 0x0000000000000093
$10 0xffffffffffffff93

How will the registers change after executing the instructions?

subq $t0, 1;
addq $t1, 0x45;
addq $t9, 0x94;
addq $t10, 0x94;
mulq $t1, 0x4;

52

__
CompSci.210.T.S1 2004

Boolean computations

Some “integer operate” instructions for performing Boolean
computations are:
 “and” (&), “bic” (bit clear & ~), “bis” (bit set) or “or” (|), “eqv”
(equivalent) or “xornot” (exclusive or not) ^~, “ornot” | ~, “xor”
(exclusive or ^).
 Example, “bic $1, $2, $3;” means

intReg[3] = intReg[1] & ~ intReg[2];

Boolean instructions tables:

T0 T1 AND AND

NOT
OR ORNOT XOR XORNOT

0 0 0 0 0 1 0 1
0 1 0 0 1 0 1 0
1 0 0 1 1 1 1 0
1 1 1 0 1 1 0 1

not instruction calculates the complement of each bit of a value. The
instruction can have one or two operands. In the two-operand
format, the complement of each of the first operand is stored in the
corresponding of the second operand. In the one-operand format,
each bit of the operand is complemented.

not s_reg, d_reg not $T0, $T1
T0 = 0x0000000000000876
 T1 = 0xfffffffffffff789 T0 unchanged

not value, d_reg not 0xf1, $T0
T0 = 0x

not d_reg/s_reg not $T0

53

__
CompSci.210.T.S1 2004

T0 = 0x0..0123 T0 =
and instruction is normally used to clear selected bits in a register. It can also
be used to check if a specified bit is set. The instruction can have two or three
operands. The first operand must be a register. The instruction carries out a
bit-wise AND to the first two operands.

and s_reg1, s_reg2, d_reg and $T0, $T1, $T2
T0 = 0x000000000000008f T1 = 0x00000000000000e9
T2 = 0x0000000000000089

and s_reg, value, d_reg and $T0, 0xe1, $T1
T0 = 0x0000000000000078 T1 = 0x0000000000000060

and d_reg/s_reg1, s_reg2
and $T0, $T1

and d_reg/s_reg, value and $T0, 0xa2
T0 = 0x0000000000000083
T0 = 0x0000000000000082

or instruction is used to set certain bits in a register to one while leaving others
unchanged. The instruction can have two or three operands. The first operand
must be a register. The instruction carries out a bit-wise OR to the first two
operands.

or s_reg1, s_reg2, d_reg or $T0, $T1, $T2
T0 = 0x000000000000008f T1 = 0x00000000000000e9
T2 = 0x00000000000000ef

or s_reg, value, d_reg or $T0, 0xe1, $T1
T0 = 0x0000000000000078 T1 = 0x00000000000000f9

or d_reg/s_reg1, s_reg2 or $T0, $T1
T0 = 0 T1 = 0x0000000000000012 T1 = 0x0000000000000012

or d_reg/s_reg, value or $T0, 0xa2
T0 = 0x0000000000000083 T0 = 0x0000…T0 = 0x0000…T0 = 0x0000…T0 = 0x0000… 000a3000a3000a3000a3

54

__
CompSci.210.T.S1 2004

Shift Instructions

Three shift instructions: “ sll” (shift left logical), “ sra” (shift right
arithmetic), and “srl” (shift right logical), corresponding to <<, >>
and >>>.

• Used to shift the bit patterns left and right.
• The shift logical instructions fill the vacated bits with 0
• The shift right arithmetic instruction fills the vacated bits with

the sign bit.
These instructions can be used to extract fields out of a bit pattern,
and interpret them as either unsigned or signed numbers.

• A cheap way to multiply or divide by a power of 2.

sll shifts the contents of a register to the left. The instruction can
have two or three operands. The first operand must be a register. The
first operand holds the value to be shifted. The second operand
indicates the number of bits to be shifted. In the two operands
format, the first register holds the result of the operation. In the three
operands format, the third operand stores the result. The bits vacated
by the shift are filled with 0s.

sll s_reg1, s_reg2, d_reg sll $T0, $T1, $T2

• T0 = 0x0…08f T1 = x0…02 T2 = 0x0…023c
• If s_reg2 > 63 or < 0, shifted by s_reg2 AND 63

sll s_reg, value, d_reg sll $T0, 0x1, $T1

• T0 = 0x8000000000000078 T1 = 0x0…0f0

sll d_reg/s_reg1, s_reg2 sll $T0, $T1

• T0 = 0x0…012 T1 = 0x0…02 T0 = 0x0…048

sll d_reg/s_reg, value sll $T0, 0x1

• T0 = 0xc000000000000003 T0 = 0x8000000000000006

55

__
CompSci.210.T.S1 2004

srl shifts the contents of a register to the right. The instruction can
have two or three operands. The first operand must be a register. The
first operand holds the value to be shifted. The second operand
indicates the number of bits to be shifted. In the two operands
format, the first register holds the result of the operation. In the three
operands format, the third operand stores the result. The bits vacated
by the shift are filled with 0s.
srl s_reg1, s_reg2, d_reg srl $T0, $T1, $T2

• T0 = 0x0…08f T1 = 0x0…02 T2 = 0x0…023
• If s_reg2 > 63 or < 0, shifted by s_reg2 AND 63

srl s_reg, value, d_reg srl $T0, 0x1, $T1

• T0 = 0x8000000000000078 T1 = 0x4000000000000003c

srl d_reg/s_reg1, s_reg2 srl $T0, $T1

• T0 = 0x0…012 T1 = 0x0…02 T0 = 0x0…04

srl d_reg/s_reg, value srl $T0, 0x2
T0 = 0xc000000000000003 T0 = 0x3000000000000000

sra is similar to srl. The only difference between the two instructions
is the sign bit is used to set the vacated bits in sra.

sra s_reg1, s_reg2, d_reg sra $T0, $T1, $T2
T0 = 0x8000..00f T1 = 0x2 T2 = 0xe00…03
If s_reg2 > 63 or < 0, shifted by s_reg2 AND 63

sra s_reg, value, d_reg sra $T0, 0x1, $T1
T0 = 0x8000000000000078 T1 = 0xc000000000000003d

sra d_reg/s_reg1, s_reg2 sra $T0, $T1
T0 = 0x0…012 T2 = 0x2 T1 = 0x0…04

sra d_reg/s_reg, value sra $T0, 0x2
T0=0xc000000000000003 T0=0xf000000000000000

