35

What you should know by today

CPU basic architecture
Registers
Instructions
Data representation
* Hexadecimal, little-big endian, 2’s representation
Basic architecture of an assembly program
* Included files, comments, structure
» Passing arguments to subroutines
» Returning values when leaving functions

Lecture notes at the following address:

http://www.citr.auckland.ac.nz/~patrice/lecture _notes.htmi

CompSci.210.T.S1 2004

The Layout of an Assembly Language Program

Example 1:
What does an assembly language program look like?

entry main.enter;

import "../IMPORT/register.h";
import "../IMPORT/callsys.h";

/[void main()

/l {
/l while (TRUE)
/l {
/l char c;
/l ¢ = getChar();
/l putchar(c);
/l }
/l }
block main uses register, CALLSYS {
code {
public enter:
loop:

Idig $a0, CALLSYS GETCHAR;
call pal CALL_PAL_ CALLSYS;
mov $v0, $ail;

Idig $a0, CALLSYS PUTCHAR,;
call pal CALL_PAL CALLSYS;
br loop;

end:

}

CompSci.210.T.S1 2004

37

System calls

In fact the instructions for making system call requests are usually
put inside functions, and the functions are called instead.

block Sys {
Il char getChar()
I {
/[Read a character from the simple terminal;

I}
public block getChar uses proc, CALLSYS

{

code
{
public enter:
Ida $sp, -sav0($sp);
stq $ra, savRet($sp);
body:
Idig $a0, CALLSYS GETCHAR,;
call_pal CALL_PAL_CALLSYS;
return:
Idq $ra, savRet($sp);
Ida $sp, +sav0($sp);
ret;

}

CompSci.210.T.S1 2004

/[void putChar(char c)

Il {
Il Write a character to the simple terminal,
/1l }
public block putChar uses proc, CALLSYS
{
code
{
public enter:
/INext 2 lines to store registers into memory
Ida $sp, -sav0($sp);
stq $ra, savRet($sp);
body:
[/Imove content of register a0 into register al
mov $a0, $al;
/I put constant value (quadword) CALLSYS_PUTCHAR into register a0
Idig $a0, CALLSYS PUTCHAR,;
/Imake a request to the OS to do something (print a Char)
call pal CALL PAL_CALLSYS;
return:
/INext 2 lines to restore registers value previously store into memory
Idq $ra, savRet($sp);
Ida $sp, +savO($sp);
ret;
}
}
}

Ida $sp, -savO($sp);
stq $ra, savRet($sp); save registers on entry of a function

Idq $ra, savRet($sp);
Ida $sp, +sav0($sp);
ret; restore registers on exit of a function

Printing a character: performed by calling the function Sys.putChar.enter
Getting a character: performed by calling the function Sys.getChar.enter

38

CompSci.210.T.S1 2004

Memory allocation for variables, data, constants, strings

By definition saved registers can be used to store the values of your program
variables.
» Good for small programs
0 easy to run out of registers to use for simple variables:
= Only 6 saved registers
» Registers (8 bytes long) can only be used to contain simple values:
o Integers, characters, boolean values, etc...
» Arrays and strings are too big to be stored in a register, and have to be
stored in memory.

Space for string constants can be allocated in the constant section.
Space for variables and arrays can be allocated in the data section.

Rules:

To allocate space, we need:
* An alignment statement
» A label to refer to the memory address where data is stored
* A memory allocation statement. We can initialise memory, by
specifying a data type, followed by the initial value, then a *;”.
const {
align quad;
messagel:
asciiz "Type some input: ";
align quad;
messagez2:
asciiz "The input was: ",

}

39

CompSci.210.T.S1 2004

40

Data types can be keywords such as byte, ubyte, quad, ascii, asciiz, etc, to
allocate space for a signed byte, unsigned byte, signed quadword,
unterminated ASCII string, null terminated ASCII string, etc.

Apart from the data types corresponding to strings, memory allocation
instructions allocate the appropriate amount of memory in the relevant section
(1 byte for byte and ubyte, 2 bytes for word and uword, 4 bytes for long and
ulong, 8 bytes for quad and uquad, 4 bytes for float, 8 bytes for double).

Difference between the signed and unsigned variants:
» Check if the value is in the range.
For the ascii directive:
» The number of bytes allocated is equal to the length of the string.
» The content is the data within the string.

For the asciiz directive:
» Similar with an extra zero byte allocated and added on the end.

To allocate data that is initially zero.
data {

C: quad;

d: quad;

¥

To allocate blocks of memory, by declaring an array:
data {

align quad;

buffer:

byte [BUFFERSIZE + 11;

}

Memory statements (with no initial values provided) usually only occur
within a data section.

CompSci.210.T.S1 2004

41

Data has to be aligned to be accessed properly

Alignment statements are used to round the current address up to a multiple of the
size of a specified type.
* Good idea to align data labels to quadwords, no matter what the size of the
data.
» If labels are not at least aligned to longwords, then the memory display in
the simulator will be confused.

Exercise

Suppose we have the following alpha assembly language

data {

align quad;

message:

asciiz "0x12";

align quad;

value:

quad 0x123456789a;

}

Indicate the contents of each byte of memory in hexadecimal.

label address content label address content
0x1000000 0x1000008
0x1000001 0x1000009
0x1000002 0x100000a
0x1000003 0x100000b
0x1000004 0x100000c
0x1000005 0x100000d
0x1000006 0x100000e
0x1000007 0x100000f

The label message, is at address 0x1000000

CompSci.210.T.S1 2004

42

Getting character from the screen:
New section definitions

A const section is composed of the data for string constants, etc., that will not
be altered.

A data section is composed of the data for global variables that might be
altered.

/I char buffer[BUFFERSIZE + 1];
I/ void main() {

// while (TRUE) {

/I print("Type some input: ");

/I readline(buffer, BUFFERSIZE);
[print("The input was: ");

/1 print(buffer);

/I newline();

I}

I}

block main uses proc {

abs { //absolute section: provide symbolic names for constants->easier

NEWLINE ="\n’;
BUFFERSIZE = 200;
}

const {//allocate memory for data which will not changed
messagel: //contain the memory address of the first byte of string
[lasciiz: extra zero byte allocated and added at the end of a string
asciiz "Type some input: ";
message2:
asciiz "The input was: ";
}
data {//allocate memory for data which may be altered
buffer: //allocate blocks of memory by declaring an array
byte [BUFFERSIZE + 1];

¥

CompSci.210.T.S1 2004

43

code { //code section :specify instructions to execute
public enter:

{
loop:
/Ndig: load immediate quadword
Idig $a0, messagel; //load value messagel into register $a0
bsr 10.print.enter; //branch to subroutine 10.print.enter
Idig $a0, buffer;
Idig $al, BUFFERSIZE; $al contains the value BUFFERSIZE
bsr 10.readLine.enter;
Idig $a0, message2;
bsr 10.print.enter;
Idiq $a0, buffer;
bsr 10.print.enter;
bsr 10.newline.enter; //function which position cursor to the next line
br loop;
end:

¥
¥

Several calls to functions 10.print.enter, 10.readLine.enter, etc... to generate
actions such as reading a line, writing a line, going to the next line, etc...
» These functions have to be programmed: not already included in the
assembly simulator !

CompSci.210.T.S1 2004

Example: printing a line

block 10
{

Il void"p;rint(char*s) {
/' while (*s1=0){

I/ putChar(*s);
Il s++;
I}
I}
public block print uses proc
{
abs
{s=50;}
code {
public enter:

Ida $sp, -sav1($sp);

stq $ra, savRet($sp);

stq $s0, savO($sp);

body:

mov $a0, $s; // Pointer to char in string

while:
Idbu $a0, ($s); // Get character
beq $a0, end; // Break if at end of string
do:
bsr Sys.putChar.enter; // Print char
addg $s, 1; // Increment pointer
br while;
end:
return:
Idg $s0, sav0($sp);
Idq $ra, savRet($sp);
Ida $sp, +sav1($sp);
ret;

¥

44

CompSci.210.T.S1 2004

Assume the following directives have been used to reserve locations in the

memory:
dat a{

al i gn quad,

a: byteOx12
al i gn quad,;

b: word0x9876
al i gn quad,

c: 1ong0x89012345

al i gn quad,

d: quad0x1234567890123456

}

45

Fill the memory assuming that label a is stored at starting address 0x1000000

address | content address | content address | content address | content
00 08
01 09
02 0a
03 Ob
04 Oc
05 0d
06 Oe
07 of

CompSci.210.T.S1 2004

46

The following directives have been used to reserve memory locations.

dat a{

a: byteOx12;

b: 10ong0x34567890;
c: byteOxab;

d: wordOxcdef;

e: |ong0x87654321;

Show the contents of the memory and the labels for various locations
assuming that label a is stored at starting address 0x10...00.

label address content label address content
0x10...00 0x10...08
0x10...01 0x10...09
0x10...02 0x10...0a
0x10...03 0x10...0b
0x10...04 0x10...0c
0x10...05 0x10...0d
0x10...06 0x10...0e
0x10...07 0x10...0f

CompSci.210.T.S1 2004

