
17

__
CompSci.210.T.S1 2004

What you should know by today

CPU basic architecture
• RISC, Units, Local Memory, Registers, Instructions

Registers
• Number, size, kind

Instructions
• Size, kind

Data representation
• Hexadecimal, little-big endian, one’s and 2’s

representation and computation rules.

Useful web address to find support on assembly, simulator

Tutorials:

• Architecture, registers, instructions format
• Using the simulator

Demonstrator:

• Familiar with the alpha simulator

18

__
CompSci.210.T.S1 2004

Instruction Format

All the instructions have a 6 bit opcode stored in bits 26-31 which
provides the instruction type. From there the CPU knows how to
decode the instruction.

Branch instructions: bne $1, loop
• Test the value of register Ra

o Do nothing
o Do something: modify the PC (signed 21-bit PC-relative

longword target displacement)

Integer instructions: addq $0, $1, $2

• Arithmetic and logical operations on registers
• Use Ra and Rb or a 8-bit litteral as source operand and write the

result in Rc

Memory instructions:
• Move bytes,…, quadwords between Ra and memory, using Rb

plus a signed 16-bit displacement as the memory adress
• Load data from memory into a register
• Store data from register into memory

ldq $2, 0($1) stl $3, 12($2)

Special instruction Format

31 26 25 21 20 16 15 5 4 0

Branch Format

Memory Format

Operate FormatRc Function Rb Ra Opcode

 Disp Rb Ra Opcode

 Disp Ra Opcode

 Number Opcode

bits

19

__
CompSci.210.T.S1 2004

Registers

Alpha has 32 integer registers and the same number of floating point registers.
We will only focus on the integer registers.
The registers are referred to by “$” sign followed by a number between 0 and
31 (inclusive), e.g. $0, $1, etc.
Each register is given a software name, which is normally used in programs.
When referring to a register, a “$” sign should precede the software name of
the register, e.g. $T0, $S0, etc.

Register software usage
number name
0 V0 Used for expression evaluations and to hold
 the integer function results.
1-8 T0-T7 Temporary registers used for expression

evaluations
9-14 S0-S5 Registers for holding values of variables.
15 FP Contains the frame pointer (if needed).
16-21 A0-A5 Used to pass the first six-integer type actual

arguments.
22-25 T8-T11 Temporary registers used for expression

evaluations.
26 RA Contains the return address.
27 PV Contains the function value and used for

expression evaluation.
28 AT Reserved for the assembler.
29 GP Contains the global pointer.
30 SP Contains the stack pointer.
31 ZERO Always has the value 0.

20

__
CompSci.210.T.S1 2004

Memory

Memory is accessed via 64-bit addressed (quadword), using either
the little-endian, or optionally the big-endian byte numbering
convention.
Why are longword addresses not enough: 232 = 4*1024*1024*1024
Memory addressing would be limited to 4Gbytes of memory
The memory of Alpha is byte addressable (The basic addressable unit in
the Alpha architecture is the 8-bit byte).
Data in memory needs to be aligned according to its size (e.g data
size).
An aligned datum of size 2n is stored in memory at a byte address
that is a multiple of 2n (One that has n-low order zeros). That is, the
last n bits of the address of the byte are zeros.

• Significant performance penalty when accessing longword
operands that are not naturally aligned.

• Instructions are represented by longwords: they need to be
stored at addresses multiple of 4 (bytes) which requires the
memory addresses to be longword aligned.

A word 0x1234 stored in memory must be at a word-aligned address
Word 0x1234 cannot be at address 0x1, since word is a 2 bytes long
entity (0x1 is not multiple of 2 !!)

• Can store a word at addresses such as 0x.…..4, 0x.....8
• Did I forget something? ->

Word:
• (least significant bit of address at 0: multiple of 2)

Longword:
• (2 least significant bits of address at 0: multiple of 4)

Quadword:
• (3 least significant bits of address at 0: multiple of 8)

21

__
CompSci.210.T.S1 2004

All machines: multi-byte object is stored as a continuous
sequence of byte, with the address of the object given by the
smallest address of the bytes used.

Let’s suppose we have a longword (of hexadecimal value
0x01234567) stored at a starting address 0x1000 (it is a
quadword).
The memory should look like:

Signed integer:
Most significant bit carries the sign :

• positive: 0
hexadecimal: from 0x00.. to 0x7ff….

• negative: 1
 hexadecimal: from 0x800.. to Oxff…

16-bit representation: 32-bit representation:
-12345 (digital): 0xcfc7 0xffffcfc7

0x1000 0x1003 0x10020x1001

01 67 4523

0x1000 0x1003 0x10020x1001

67 01 2345

Big endian

Little endian

22

__
CompSci.210.T.S1 2004

Little and Big Endian

On modern machines, Memory is byte addressable
Individual bytes can be referred to by an address.
Values (word, longword, quadword) which need more than one byte can be
referred to by the address of their low byte.

When several bytes are necessary to represent (store) a number:
Little endian (least significant byte first)
Big endian (Most significant byte first)

Writing numbers:

Everyday you write decimal values in big endian (most significant number
first) in the base 10:
For example, twelve hundreds and thirty four is represented as:

1234 = 1*1000 + 2*100 + 3*10 + 4*1

You could decide to write decimal values in little endian format (least
significant part of the value first):
For example, twelve hundreds and thirty four could be represented as:
“1234” = 1234 = 4*1 + 3*10 + 2*100 + 1*1000

Values of the numbers are the same, it is just the way they are
represented (stored) which defer.

For big endian data:
The value of a longword stored at address base is computed as
byte[base] << 24 + byte[base + 1] << 16
+ byte[base + 2] << 8 + byte[base + 3]

For little endian data:

The value of a longword stored at address base is computed as
byte[base] + byte[base + 1] << 8 +
+ byte[base + 2] << 16 + byte[base + 3] << 24

• Expand the previous formulae for quadwords.

23

__
CompSci.210.T.S1 2004

Examples

Store the quadword 0x0123456789abcdef in memory at
starting memory address 0x1000000 (it is a quadword address)

 Big endian Little endian

0x1000000

0x1000001

0x1000002

0x1000003

0x1000004

0x1000005

0x1000006

0x1000007

• No consistency among different computer architectures
regarding storage of numbers in big endian or little
endian format.

• Choose the format on the Alpha on startup, but the
choice tends to be little endian

• Alpha simulator only supports this alternative.
Strings are stored as a sequence of bytes, with one character
per byte.

• The end of the string is indicated by a null (zero) byte.
• Strings are always stored in big endian format

o The first character (stored first) at the low address
end.

68 65 6c 6c 6f 21 00

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘!’ ‘\0’

24

__
CompSci.210.T.S1 2004

25

__
CompSci.210.T.S1 2004

The 2’s complement representation

To add, subtract, or multiply two complement numbers, we just perform the
operation as if the numbers are unsigned, and throw away any additional bits
generated. To perform negation, form the ones complement (subtract from all
ones (the representation of -1), then add 1.
Suppose we have n bits. We can represent numbers between -2n-1 and +(2n-1 -

1). For example if n is 8, we represent numbers between -128 and +127.
• A positive number x is represented as itself, x.
• 0 is represented as itself, 0.
• A negative number -x is represented as:
 ((1 << n) - 1) - x + 1 (i.e. (2n -1) - x + 1).

Now (1 << n) - 1 or 2 n - 1 is the bit pattern 1111...11, and it is easy to subtract
a number from this value in binary, because it is just a matter of interchanging
0’s and 1’s.

For example -30 is represented as 11111111 - 00011110 + 1 = 11100001 + 1 =
11100010.
Exercise
What is the bit pattern for decimal 42 and -42 as 8 bit two’s complement
numbers?

26

__
CompSci.210.T.S1 2004

Unsigned integers representation

Given 8 bits, we can interpret the bit patterns 00000000, 00000001, 00000010,
00000011, ...11111110, 11111111 as unsigned integers 0, 1, 2, 3, ... 254, 255
(decimal). With this interpretation, we cannot represent integers outside the
range 0 ... 255. We can have a similar representation if we have more bits.

Suppose we have n bits. We can represent numbers between 0 and 2n - 1. For
example if n is 8, we represent numbers between 0 and 255.
For example, decimal 30 is 16 + 8 + 4 + 2, and so is represented as the bit
pattern 00011110.

27

__
CompSci.210.T.S1 2004

Data representation examples

Find the hexadecimal representation for 12345:

12345 = 8192+4096+32+16+8+1

Decimal
12345

3
2
7
7
6

1
6
3
8
4

8
1
9
2

4
0
9
6

2
0
4
8

1
0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6

8 4 2 1

0x3039 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

Compute 2’s representation for –12345:

0x1111111111111111 – 0x0011000000111001 + 1

 1111111111111111
-
 0011000000111001

 1100111111000110
+
 1

1100|1111|1100|0111

0xcfc7

28

__
CompSci.210.T.S1 2004

Extending an hexadecimal number to 64 bits

Represent the signed hexadecimal word 0x9876 as 3 bytes

hexadecimal number

0x9876: 1001 1000 0111 0110: -2^15 + 2^12+……
0xff9876: 1111 1111 1001 1000 0111 0110:

-2^23+2^22+2^21+2^20+2^19+…+2^15+2^12+…. =
 -2^22 +2^21+………………………………… =
 -2^21 +2^20+………………………….. =

 -2^16+2^15+2^12+………. =
 -2^15+2^12+………. =
 0x9876

Extends this work to obtain the hexadecimal representation of the
word 0x9876 as an hexadecimal longword

