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What you should know by today 
 
 

CPU basic architecture 
•  RISC, Units, Local Memory, Registers, Instructions 

Registers 
•  Number, size, kind 

Instructions 
•  Size, kind 

Data representation 
•  Hexadecimal, little-big endian, one’s and 2’s 

representation and computation rules. 
 

Useful web address to find support on assembly, simulator 
 
 
 
Tutorials: 

•  Architecture, registers, instructions format 
•  Using the simulator 

 
Demonstrator: 

•  Familiar with the alpha simulator 
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Instruction Format 
 

 
 
 
 
 
 
 

 
 
All the instructions have a 6 bit opcode stored in bits 26-31 which 
provides the instruction type. From there the CPU knows how to 
decode the instruction. 

Branch instructions:  bne $1, loop 
•  Test the value of register Ra 

o Do nothing 
o Do something: modify the PC (signed 21-bit PC-relative 

longword target displacement) 
 
Integer instructions:  addq $0, $1, $2 

•  Arithmetic and logical operations on registers 
•  Use Ra and Rb or a 8-bit litteral as source operand and write the 

result in Rc  
 

Memory instructions:  
•  Move bytes,…, quadwords between Ra and memory, using Rb 

plus a signed 16-bit displacement as the memory adress 
•  Load data from memory into a register 
•  Store data from register into memory 

ldq $2, 0($1)  stl  $3, 12($2) 
  

Special instruction Format

31             26 25       21 20      16 15                  5 4             0 

Branch Format 

Memory Format

Operate FormatRc Function Rb Ra Opcode 
 

 Disp    Rb Ra Opcode 
 

 Disp Ra Opcode 
 

 Number   Opcode 

bits 
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Registers 
 

Alpha has 32 integer registers and the same number of floating point registers.  
We will only focus on the integer registers.  
The registers are referred to by “$” sign followed by a number between 0 and 
31 (inclusive), e.g. $0, $1, etc.  
Each register is given a software name, which is normally used in programs.  
When referring to a register, a “$” sign should precede the software name of 
the register, e.g. $T0, $S0, etc. 
 
Register  software usage 
number  name 
0   V0  Used for expression evaluations and to hold  
    the integer function results.  
1-8  T0-T7 Temporary registers used for expression  

evaluations  
9-14  S0-S5 Registers for holding values of variables.  
15  FP  Contains the frame pointer (if needed).  
16-21 A0-A5 Used to pass the first six-integer type actual  

arguments.  
22-25 T8-T11 Temporary registers used for expression  

evaluations.  
26  RA  Contains the return address.  
27  PV  Contains the function value and used for  

expression evaluation. 
28  AT  Reserved for the assembler.  
29  GP  Contains the global pointer.  
30  SP  Contains the stack pointer.  
31  ZERO Always has the value 0. 
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Memory 

 
 
Memory is accessed via 64-bit addressed (quadword), using either 
the little-endian, or optionally the big-endian byte numbering 
convention. 
Why are longword addresses not enough: 232 = 4*1024*1024*1024  
Memory addressing would be limited to 4Gbytes of memory 
The memory of Alpha is byte addressable (The basic addressable unit in 
the Alpha architecture is the 8-bit byte).  
Data in memory needs to be aligned according to its size (e.g data 
size). 
An aligned datum of size 2n is stored in memory at a byte address 
that is a multiple of 2n (One that has n-low order zeros). That is, the 
last n bits of the address of the byte are zeros.  

•  Significant performance penalty when accessing longword 
operands that are not naturally aligned. 

•  Instructions are represented by longwords: they need to be 
stored at addresses multiple of 4 (bytes) which requires the 
memory addresses to be longword aligned.  

 
A word 0x1234 stored in memory must be at a word-aligned address 
Word 0x1234 cannot be at address 0x1, since word is a 2 bytes long 
entity (0x1 is not multiple of 2 !!) 

•  Can store a word at addresses such as 0x.…..4, 0x.....8 
•  Did I forget something? -> 

Word: 
•  (least significant bit of address at 0: multiple of 2) 

Longword: 
•  (2 least significant bits of address at 0: multiple of 4) 

Quadword: 
•  (3 least significant bits of address at 0: multiple of 8) 
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All machines: multi-byte object is stored as a continuous 
sequence of byte, with the address of the object given by the 
smallest address of the bytes used. 
 
Let’s suppose we have a longword (of hexadecimal value 
0x01234567) stored at a starting address 0x1000 (it is a 
quadword). 
The memory should look like: 
 
 

 
 
 
 
 
   
 
 
 
Signed integer: 
Most significant bit carries the sign :  

•  positive: 0           
hexadecimal: from 0x00..  to 0x7ff…. 

•  negative: 1   
  hexadecimal: from 0x800.. to Oxff… 
 
16-bit representation:   32-bit representation: 
-12345 (digital): 0xcfc7    0xffffcfc7 

0x1000 0x1003 0x10020x1001

01 67 4523

0x1000 0x1003 0x10020x1001

67 01 2345

Big endian 

Little endian 
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Little and Big Endian  

 
On modern machines, Memory is byte addressable 
Individual bytes can be referred to by an address. 
Values (word, longword, quadword) which need more than one byte can be 
referred to by the address of their low byte. 
 
When several bytes are necessary to represent (store) a number: 
Little endian (least significant byte first) 
Big endian (Most significant byte first) 
 
Writing numbers: 
 
Everyday you write decimal values in big endian (most significant number 
first) in the base 10: 
For example, twelve hundreds and thirty four is represented as: 
 
1234 = 1*1000 + 2*100 + 3*10 + 4*1 
 
You could decide to write decimal values in little endian format (least 
significant part of the value first): 
For example, twelve hundreds and thirty four could be represented as: 
“1234” = 1234 = 4*1 + 3*10 + 2*100 + 1*1000 
 
Values of the numbers are the same, it is just the way they are 
represented (stored) which defer. 
 
For big endian data: 
The value of a longword stored at address base is computed as 
byte[ base ] << 24 + byte[ base + 1 ] << 16  
+ byte[ base + 2 ] << 8 + byte[ base + 3 ] 
 
For little endian data: 
 
The value of a longword stored at address base is computed as 
byte[ base ] + byte[ base + 1 ] << 8 + 
+ byte[ base + 2 ] << 16 + byte[ base + 3 ] << 24 
 

•  Expand the previous formulae for quadwords. 
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Examples 
 
Store the quadword 0x0123456789abcdef in memory at 
starting memory address 0x1000000 (it is a quadword address) 
 

            Big endian   Little endian 
 

0x1000000   

0x1000001    

0x1000002   

0x1000003   

0x1000004   

0x1000005   

0x1000006   

0x1000007   

 

•  No consistency among different computer architectures 
regarding storage of numbers in big endian or little 
endian format. 

•  Choose the format on the Alpha on startup, but the 
choice tends to be little endian 

•  Alpha simulator only supports this alternative. 
Strings are stored as a sequence of bytes, with one character 
per byte.  

•  The end of the string is indicated by a null (zero) byte. 
•  Strings are always stored in big endian format 

o The first character (stored first) at the low address 
end. 

 
68 65 6c 6c 6f 21 00  

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘!’ ‘\0’  
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The 2’s complement representation 
 

 
 

To add, subtract, or multiply two complement numbers, we just perform the 
operation as if the numbers are unsigned, and throw away any additional bits 
generated. To perform negation, form the ones complement (subtract from all 
ones (the representation of -1), then add 1. 
Suppose we have n bits. We can represent numbers between -2n-1 and +(2n-1 - 

1). For example if n is 8, we represent numbers between -128 and +127. 
• A positive number x is represented as itself, x. 
• 0 is represented as itself, 0. 
• A negative number -x is represented as: 
 ((1 << n) - 1) - x + 1 (i.e. (2n -1) - x + 1). 
 

Now (1 << n) - 1 or 2 n - 1 is the bit pattern 1111...11, and it is easy to subtract 
a number from this value in binary, because it is just a matter of interchanging 
0’s and 1’s. 
 
For example -30 is represented as 11111111 - 00011110 + 1 = 11100001 + 1 = 
11100010. 
Exercise 
What is the bit pattern for decimal 42 and -42 as 8 bit two’s complement 
numbers? 
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Unsigned integers representation 

 
Given 8 bits, we can interpret the bit patterns 00000000, 00000001, 00000010, 
00000011, ...11111110, 11111111 as unsigned integers 0, 1, 2, 3, ... 254, 255 
(decimal). With this interpretation, we cannot represent integers outside the 
range 0 ... 255. We can have a similar representation if we have more bits. 

 
 
Suppose we have n bits. We can represent numbers between 0 and 2n - 1. For 
example if n is 8, we represent numbers between 0 and 255. 
For example, decimal 30 is 16 + 8 + 4 + 2, and so is represented as the bit 
pattern 00011110.
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Data representation examples 
 

Find the hexadecimal representation for 12345:  
 

12345 = 8192+4096+32+16+8+1 
 

Decimal 
12345 

3
2
7
7
6 

1
6
3
8
4 

8
1
9
2 

4
0
9
6

2
0
4
8

1
0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2 

1
6

8 4 2 1 

0x3039 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 
 
Compute 2’s representation for –12345: 
 
0x1111111111111111 – 0x0011000000111001 + 1 
 
  1111111111111111 
- 
  0011000000111001 
---------------------------------- 
  1100111111000110 
+ 
        1 
--------------------------------- 
1100|1111|1100|0111 
 
0xcfc7 
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Extending an hexadecimal number to 64 bits 

 
Represent the signed hexadecimal word 0x9876 as 3 bytes 

hexadecimal number 
  

0x9876: 1001 1000 0111 0110: -2^15 + 2^12+…… 
0xff9876: 1111 1111 1001 1000 0111 0110: 
 
-2^23+2^22+2^21+2^20+2^19+…+2^15+2^12+…. = 
 -2^22  +2^21+………………………………… = 
  -2^21    +2^20+………………………….. = 
            
     -2^16+2^15+2^12+………. = 
      -2^15+2^12+………. = 
         0x9876 
 
Extends this work to obtain the hexadecimal representation of the 
word 0x9876 as an hexadecimal longword 


