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Assembling-Disassembling 
 
A program is written in assembly language (or even in a high level language). 
Then it is converted into (binary) machine code. 
What is involved in this translation? 
Because it is possible to refer to labels before they are declared, assemblers 
are usually multi-pass. 
Bruce Hutton’s assembler is composed of the following passes: 
• Lexical analysis and parsing.  

The input is analysed into tokens and constructs, and a tree is built, 
representing the structure of the program. 
• Collection of declarations.  

A treewalk is performed, to determine the names and nesting of blocks, 
and the identifiers declared within each block. The mapping of block names to 
blocks, for the list of blocks used by a block occurs in this pass. A 
consequence of this is that blocks must be declared before they are used. 
• Mapping of identifiers to declarations.  

A treewalk is performed to map all identifier applications to identifier 
declarations. Essentially this pass looks up the tables generated by the 
previous pass. 
• Address generation.  

A treewalk is performed to determine the offset of every statement from 
the base of its section, and the values of all identifiers (possibly as offsets 
from the base of a section). For local sections, this requires the calculation of 
the initial offset for the section. As a consequence, it must be defined in terms 
of constants and offsets of labels in previous local sections. Similarly, 
expressions are computed when they are needed to indicate the size of data 
(the expression in a space allocation statement, or an array declaration). 
• Determination of the address of each section.  

The code and data start at addresses that depend on whether the code is 
PAL, kernel, or user code. The constant and global table follows immediately 
after the code. 
• Code generation.  

A treewalk is performed to generate code. At this stage, all identifiers 
must be defined, in terms of absolute addresses. 
Each pass generates errors, with the offending construct indicated, and a line 
number. The line number is often one line after the real error. 
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You have to know the opcode and function codes of each instruction. For 
example, the format, opcode and function code is indicated below for some of 
the common instructions. 
The opcode and the function code uniquely define an instruction. 

Name Format Opcode Function code 
addq Operate 0x10 0x20 
subq Operate 0x10 0x29 
mulq Operate 0x13 0x20 
sra Operate 0x12 0x3c 
lda Memory 0x8  
ldq Memory 0x29  
ldbu Memory 0xa  
stq Memory 0x2d  
beq Branch 0x39  
bne Branch 0x3d  

    
 
Integer operate instructions 
The operate format is for instructions performing integer register to integer 
register operations, e.g. addq, subq. The operate format allows the 
specification of one destination operand and two source operands. One of the 
source operands can be a literal value. The two formats are distinguished by 
bit 12. If one of the source operand is a literal value, bit 12 is set to 1; 
otherwise, bit 12 is 0. It can be seen that each register field consists of 5 bits. 
This is because there are 32 integer registers. Thus, 5 bits is sufficient to hold 
the number denoting a register. In the diagrams below, ra and rb are the 
source registers’ fields and rc is the destination register’s field. 
Integer operate instructions have the following format: 
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Suppose we have the instruction “addq $a0, $t0, $t2;”. The identifiers a0, t0, 
t2 are symbolic names for registers 16, 1 and 3 (decimal), so we could write 
the instruction as “addq $16, $1, $3;”. 
Moreover, the literal flag must be 0, so the fields for the instruction are: 
 

Field opcode regA regB padding Literal flag function regC 
Hex 0x10 0x10 0x1 0x0 0x0 0x20 0x3 

Binary 010000 10000 00001 000 0 0100000 00011 
 
Grouping the bits in lots of 4 gives 
0100 0010 0000 0001 0000 0100 0000 0011 
Writing it in hexadecimal gives the instruction code as the number 
0x42010403. 
Consider the instruction “subq $t5, 1;”. 
Due to operate instruction format, it has to be expended to three operands, and 
replacing the symbolic name of registers by their numbers, gives “subq $6, 1, 
$6;”. 
This is an integer operate format, with a literal as second operand, so the fields 
for the instruction are: 

Field opcode regA Literal value Literal flag function regC 
Hex 0x10 0x6 0x1 0x1 0x29 0x6 

Binary 010000 00110 00000001 1 0101001 00110 
Grouping the bits in lots of 4: 
0100 0000 1100 0000 0011 0101 0010 0110 
Writing it in hexadecimal, gives the instruction code as the number 
0x40c03526. 
In fact, the computer must perform the translation in reverse order. Given the 
instruction in internal form, it must be able to determine the opcode and 
operands, so that it can execute the instruction. 
For example, suppose we have an instruction 0x4cf5540e. 
Writing this in binary, gives 0100 1100 1111 0101 0101 0100 0000 1110. 
The 6 bit opcode is 010011, 0x13 in hexadecimal, which represents an integer 
operate instruction. 
Moreover bit 12 is 1, so the instruction has a literal for the second operand. 
Splitting it up into the relevant fields, gives 

Field opcode regA Literal value Literal flag function regC 
Binary 010011 00111 10101010 1 0100000 01110 

Hex 0x13 0x7 0xaa 0x1 0x20 0xe 
Decimal  7 170   14 
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Opcode 0x13, and function code 0x20 represent the mulq instruction. The 
Instruction is “mulq $7, 170, $14;”, or using symbolic names for registers, 
“mulq $t6, 170, $s5;”. 
 
Memory access instructions 
Memory access instructions have the following format: 
 
 
 
 
 
 
 
 
The displacement is a signed two’s complement number. 
Suppose we have the instruction “lda $sp, +10($sp);”. 
 

Field opcode regA regB Displacement 
Hex 0x8 0x1e 0x1e 0xa 

Binary 001000 11110 11110 0000000000001010 
(Decimal 10 is hexadecimal 0xa and binary 1010.) 
Grouping the bits in lots of 4 gives 
0010 0011 1101 1110 0000 0000 0000 1010 
Writing it in hexadecimal, gives the instruction code as the number 
0x23de000a. 
Suppose we have the instruction “lda $sp, -10($sp);”. 
 

Field opcode regA regB Displacement 
Hex 0x8 0x1e 0x1e 0xfff6 

Binary 001000 11110 11110 1111111111110110 
(The decimal -10 is represented as a two’s complement number by writing 
decimal 10 in binary as 0000000000001010, taking the one’s complement 
1111111111110101, add 1 to get 1111111111110110. You MUST take into 
account the number of bits used to store the value.) 
Grouping the bits in lots of 4 gives  
0010 0011 1101 1110 1111 1111 1111 0110. 
Writing it in hexadecimal, gives the instruction code as the number 
0x23defff6. 
 
 
 

 Opcode RbRa Signed displacement 

6 
bits 

5 bits 16 bits

31                 26 25 21 20   16 15                                             0 
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The reverse way 
Suppose we have the instruction 0x23deffe0. In binary it transforms to: 
0010 0011 1101 1110 1111 1111 1110 0000 
The opcode is 0x8, so it is a lda instruction. Splitting it up into fields gives: 
 

Field opcode regA regB Displacement 
Hex 0x8 0x1e 0x1e 0xffe0 

Binary 001000 11110 11110 1111111111100000 
In other words, “lda $sp, -0x20($sp);”. (We can determine the negative 
number the displacement corresponds to by taking the two’s complement, to 
get a positive number. Alternatively, 0xffe0 can be substracted from 
0x10000.) 
 
Branch instructions 
Branch instructions are a little more complex, because the displacement stored 
in the instruction is relative to the PC, at the time at which the instruction is 
executed (after the PC has been incremented to point to just after the 
instruction), and the displacement is counted in longwords (in other words, the 
low two bits of the byte displacement are discarded), because all instructions 
must be longword aligned. 

 
 
 
 
 
 
 
 
 
Suppose we have an instruction “bne $s1, label1;”, at address 0x80023c, and 
label1 correponds to address 0x80027c. 
The PC will be 0x800240 at the time the instruction is executed. So the 
address to branch to is 0x80027c - 0x800240 = +0x3c bytes away. Dividing 
this by 4 (Displacement size is a multiple of longword size) gives us a 
displacement of +0xf. The opcode for bne is 0x3d, and register s1 is register 
10 (decimal): 
 

Field opcode regA Displacement/4 
Hex 0x3d 0xa 0xf 

Binary 111101 01010 000000000000000001111 
Grouping the bits in lots of 4 gives 
1111 0101 0100 0000 0000 0000 0000 1111 

 Opcode Ra Signed displacement/4 

6 bits 21 bits

31                 26 25 21 20                                                               0 
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Writing it in hexadecimal, gives the instruction code as the number 
0xf540000f. 
Suppose we have an instruction “beq $v0, label2;” at address 0x80025c, and 
label2 corresponds to address 0x80022c. 
The PC will be 0x800260 at the time the instruction is executed. So the 
address to branch to is 0x80022c - 0x800260 = -0x34 bytes away (0x7fffcc, 
when written as a 23 bit 2’s complement number). 
Dividing this by 4 gives us a displacement of -0xd (0x1ffff3, when written as 
a 21 bit 2’s complement number). The opcode for beq is 0x39, and register v0 
is register 0: 
 

Field opcode regA Displacement/4 
Hex 0x39 0x0 -0xd(0x1ffff3) 

Binary 111001 00000 111111111111111110011 
 
(There are various ways of performing the arithmetic. One way is to do 
everything in binary. Another way is to do it in hexadecimal. Negative 
numbers come out as numbers with.f’s on the left. When the data is packed in 
the displacement field, the extra bits are discarded.) 
Grouping the bits in lots of 4 gives 
1110 0100 0001 1111 1111 1111 1111 0011 
Writing it in hexadecimal, gives the instruction code as the number 
0xe41ffff3. 
The reverse way 
Suppose we have the instruction 0xe6000003, at address 0x800200. In binary 
this correspond to 1110 0110 0000 0000 0000 0000 0000 0011. 
The opcode is 0x39, so it is a beq instruction. 
Splitting it up into fields gives: 
 

Field opcode regA Displacement/4 
Hex 0x39 0x10 0x3 

Binary 111001 10000 000000000000000000011 
 
The destination adress is 4 * 0x3 + 0x800204 = 0x800210, giving the 
instruction “beq $a0, 0x800210;”. If the address 0x800210 has a label, the 
symbolic label can replace it. 
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Assembling 
 

Convert the instructions below to hexadecimal code. 
 
mulq$16, $17, $18 (reg 16 is 0x10)

31 26 25 21 20 16 15 13 12 11 5 4 0
010011 10000 10001 000 0 0100000 10010
Opcode Ra Rb padding LF Function Rc
0x13 0x10 0x11 0x0 0x0 0x20 0x12

0x4e110412

addq$19, $20
31 26 25 21 20 16 15 13 12 11 5 4 0
010000 10011 10100 000 0 0100000 10011
Opcode Ra Rb padding LF Function Rc
0x10 0x13 0x14 0x0 0x0 0x20 0x13

0x42740413

addq$21, 0x34, $1
31 26 25 21 20 13 12 11 5 4 0
010000 10101 00110100 1 0100000 00001
Opcode Ra Literal LF Function Rc 
0x10 0x15 0x34 0x1 0x20 0x1 

0x42a69401

subq$2, 12
31 26 25 21 20 13 12 11 5 4 0
010000 00010 00001100 1 0101001 00010
Opcode Ra Literal LF Function Rc 
0x10 0x2 0xc 0x1 0x29 0x2 

0x40419522 
 
 

 
 
 


