
84

__
CompSci.210.T.S1 2004

Move Instructions

Move instructions move data between registers.

Unconditional move instructions

mov instruction has two formats:
mov s_reg, d_reg mov $T0, $T1
mov value, d_reg mov 2, $T0

T0 = 1 then mov $T0, $T1 results $T1 = 1

Conditional move instructions

cmovXY can have two or three operands. The first operand must be a register.
The instruction is only executed if the value of the first operand satisfies the
condition specified by the instruction. XY can be as below:
eq The instruction is executed if the first operand is equal to zero.
ne The instruction is executed if the first operand is not equal to zero.
lt The instruction is executed if the first operand is less than zero.
le The instruction is executed if the first operand is less than or equal to
zero.
gt The instruction is executed if the first operand is greater than zero.
ge The instruction is executed if the first operand is greater than or equal to
zero.

 The format of the conditional move instruction with three operands is as
below:
cmovXY s_reg1, s_reg2, d_reg cmovXY $T0, $T1, $T2
cmovXY s_reg, value, d_reg cmovXY $T0, 2, $T1

Cmovne $T0, $T1, $T2
• Where T0 = 0x02 and T1 = 3 executed T2 = 3
• Where T0 = 0x03 and T1 = 3 not executed, T2 unchanged

Cmovle $T0, 3, $T1
• Where T0 = 0xf…f executed T1 = 3
• Where T0 = 0x4 not executed T1 unchanged
• Where T0 = 0 executed T1 = 3

The format of the conditional move instruction with two operands is as follow:

85

__
CompSci.210.T.S1 2004

cmovXY d_reg/s_reg1, s_reg2 cmovXY $T0, $T1
cmovXY d_reg/s_reg, value cmovXY $T0, 2

• The destination register is the first one.

Cmovge $T0, $T1
• where T0 = 0x02 and T1 = 2 executed T0 = 2
• where T0 = 0xf…f and T1 = 2 not executed, T0 unchanged

Cmovlt $T0, 3

• where T0 = 0xf…f executed T0 = 3
• where T0 = 0x4 not executed T0 = 0x4

More Arithmetic Instructions

clr instruction sets the value of a register to 0, e.g. clr $T0
Only one operand
Can be done with mov # mov 0, $T0

absq instruction calculates the absolute value of a quadword. For example:

absq-0x123, $T0 $T0 = |-0x123|

T0 = 123

absq$T0 $T0 = |$T0|
If $T0 is –123, T0 will be 123

absq$T0, $T1 $T1 = |$T0|

If T0 is –123, T1 will be 123, T0 unchanged

negq instruction negates the contents of an operand. For example:
negq0x123, $T0 $T0 = -0x123
negq$T0 $T0 = -$T0
negq$T0, $T1 $T1 = -$T0

86

__
CompSci.210.T.S1 2004

 Example: What are the contents of the registers after the execution of the
program below? The content of each of the registers should be written as a
quadword.

.
.
.
code{

mov 10, $T0
mov -2, $T1
mov $T0, $T2
cmovle $T0, 2
cmovgt $T2, $T1, $T3
cmovne $T1, -5
}

.

.

.

Answer:

mov 10, $T0 # T0 = 10 T0 = 0x000000000000000a
 mov -2, $T1 # T1 = -2 T1 = 0xfffffffffffffffe
 mov $T0, $T2 # T2 = 10 T2 = 0x000000000000000a
 cmovle $T0, 2 # not executed
 cmovgt $T2, $T1, $T3 # T3 = -2 T3 = 0xfffffffffffffffe
 cmovne $T1, -5 # T1 = -5 T1 = 0xfffffffffffffffb

87

__
CompSci.210.T.S1 2004

Another example

There are no integer division instructions in Alpha.
You may implement integer division using addition and subtraction
statements.

void main () {

int quotient, remainder, divider=3, dividend=10;
quotient = 0;
remainder = dividend;
while (remainder >= divider) {

quotient++;
remainder = remainder - divider;

}
}

Convert the above C program to an assembly program. It should be assumed
that (a) each variable is a quadword, (b) dividend is stored in $S0, (c)
divider is stored in $S1, (d) quotient is in $S2 and (e) remainder is
in $S3. The converted program should have the same control structure as the
C program.
.
.
.
code{

mov 10, $S0 // $S0 is dividend
mov 3, $S1 // $S1 is divider
mov 0, $S2 // $S2 is quotient
mov $S0, $S3 // $S3 is remainder

check: cmple $S1, $S3, $T0 //check whether
divider <= remainder

beq $T0, stop
addq $S2, 1
subq $S3, $S1
br check

}
.
.

