Print name clearly: \qquad

PART A: multiple choice (worth 50\%)

Put a tick or cross in the box on the left of the correct answer (or answers). Important: In some questions you need to possibly mark more than one box in a given question to get full marks for that question. Incorrect answers are penalised.
Q. 1 The number 233_{10} is equal to the following:

\square	10101001_{2}	\square	$\square 1001001_{2}$	\square	$\square 1111001_{2}$	\square
$\mathbf{Q} 2$	$\square 1101001_{2}$					

Q. 2 The number 233_{8} is equal to the following:

| \square | 150_{10} | \square | 164_{10} | \square |
| :--- | :--- | :--- | :--- | :--- | | 155_{10} |
| :--- |\quad| \square |
| :--- |
| 159 |

Q. 3 What is the magnetude of the 10-bit two's complement number 1011100010_{2} :

| \square | 286_{10} | \square | -739_{10} |
| :--- | :--- | :--- | :--- |$\quad \square \quad 738_{10} \quad \square-286_{10}$

Q. 4 What is the 10 's complement of 4 :

\square 9's complement $+1 \quad \square \quad 5 \quad$| \square |
| :--- |

Q. 5 What representation scheme(s) let(s) me perform a 10's complement operation on binary representations of decimal digits, through performing the one's complement operation on the binary directly:

4221-code
the 2 's complement number system
XS-3 code
grey code
Q. 6 Express the unsigned fixed point binary 0011110010_{2} as a decimal, assuming the format bbbbb.bbbbb 2 :

\square	$\square .06250$	\square	$\square .56250$	\square

Q. $7 A B B A$ may represent :a number in base 16
a number in base 10
a number in base 14
a 70's pop group
Q. 8 The Hexadecimal number 67565_{16} has a value:

Q. 9 The sum $110101_{2}+101_{2}$ is equivalent to:
\square none of the others $\square \quad 111010_{10} \quad \square=65_{8}+5_{8} \quad \square \quad \underline{00111010_{2}}$

Print name clearly: \qquad
Q. 10 The binary product $110101_{2} \times 101_{2}$ is equivalent to:

\square	none of the others \square \square $\square$$\frac{110101_{2}+11010100_{2}}{110101_{2}+1101010_{2}}$
$5_{10} \times 65_{8}$	

Q. 11 Appendix A gives a table for 7-bit ASCII. Using this table, give the hexadecimal value corresponding to the encoding of the ascii string "ABBA" (Assume each 7-bit code occupies the space of an 8-bit byte with the $M S B=0$):

61626261_{16}
65666665_{16}
$\underline{41424241_{16}}$
101102102101_{16}

Q. 12 What decimal value has to be added to the ASCII for the upper case letter " F " to obtain the ASCII for the lower case letter "f" (see Appendix A):
$\square \quad 2^{5}-1$ \square 102-70 \square $66-46$
\square
$146-106$
Q. 13 From Appendix A, the binary ASCII code for the letter " G " is:

\square	1000111	\square	$\square 111 \times 100$	\square
$0111+100$	\square	$\square 11100$		

Q. 14 The first 32 characters of ASCII are control characters. For example, CR (Carriage Return) character is often used at the end of a line of text in a file. What key or combination of keys on the computer keyboard will generate the "CR" character

ctrl-M (i.e. "ctrl" key simultaneously with the " M " key)
shift-M (i.e. "shift" key simultaneously with the "M" key)
ctrl-H (i.e. "ctrl" key simultaneously with the " H ")
"enter" key
Q. 15 The binary number 11010.110001 is equivalent to:

1.110110001×2^{6}
1.110110001×2^{4}
$\underline{0.11010110001 \times 2^{5}}$
1.110110001×2^{5}

