Print	name clearly:					
Impo	a <u>tick</u> or <u>cross</u> in ortant: In some qu	PART A: multiple of the box on the left of uestions you need to p arks for that question	the ossib	correct answer	or ans	e box in a given
Q. 1	The number 233 ₁₀	is equal to the following:				
	10101001_2	110010012		11111001_2		<u>11101001</u> ₂
Q. 2	The number 233 ₈ is	is equal to the following:				
	150 ₁₀	164 ₁₀		<u>155₁₀</u>		159 ₁₀
Q. 3	What is the magne	etude of the 10-bit two's	compl	lement number 101	11100010	O_2 :
	286 ₁₀	-739 ₁₀		738_{10}		-286_{10}
Q. 4	What is the 10's co	omplement of 4:				
	9's complement+1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-6		<u>6</u>
	4221-code the 2's complement XS-3 code grey code	t number system ned fixed point binary 0	01111	0010s as a decim	nal assu	umina the format
•	$bbbbb_2$:	ica jazea poini oinary o	<i>J</i> 1111		<i>au</i> , <i>ass</i>	initing the formula
$\frac{}{\mathbf{Q.7}}$	7.06250 ABBA may repres	6.56250 eent:		-7.56250		7.56250
	a number in base a number in base 1 a number in base a 70's pop group	10				
Q. 8	The Hexadecimal n	number 67565 ₁₆ has a val	lue:			
	$=1472545_{8}$	< 67565 ₁₀		$< F0000_{16}$		< 1000000 ₁₀
Q. 9	The sum $110101_2 +$	+ 101 ₂ is equivalent to:				
	none of the others	3 111010 ₁₀		$=65_8+5_8$		00111010_2

Print name clearly:						
Q. 10 The binary product $110101_2 \times 101_2$ is equivalent to:						
none of the others						
$110101_2 + 11010100_2$						
$\boxed{ 110101_2 + 1101010_2 }$						
$5_{10} imes65_{8}$						
Q. 11 Appendix A gives a table for 7-bit ASCII. Using this table, give the hexadecimal value corresponding to the encoding of the ascii string "ABBA" (Assume each 7-bit code occupies the space of an 8-bit byte with the MSB=0):						
61626261_{16}						
$ \begin{array}{c c} \hline & 65666665_{16} \\ \hline & \underline{41424241_{16}} \\ \hline \end{array} $						
Q. 12 What decimal value has to be added to the ASCII for the upper case letter "F" to obtain the ASCII for the lower case letter "f" (see Appendix A):						
Q. 13 From Appendix A, the binary ASCII code for the letter "G" is:						
Q. 14 The first 32 characters of ASCII are control characters. For example, CR (Carriage Return) character is often used at the end of a line of text in a file. What key or combination of keys on the computer keyboard will generate the "CR" character						
ctrl-M (i.e. "ctrl" key simultaneously with the "M" key)						
shift-M (i.e. "shift" key simultaneously with the "M" key)						
ctrl-H (i.e. "ctrl" key simultaneously with the "H")						
<u>"enter" key</u>						
Q. 15 The binary number 11010.110001 is equivalent to:						
$1.110110001 imes 2^6$						
$\boxed{ 1.110110001 \times 2^4 }$						
$0.11010110001 \times 2^{5}$						
1.110110001×2^5						