32 bit IEEE 754 format		
8 bits	23 bits	
s exponent	significand	
• Sign Bit: - 0 means positive, 1 means negative		
Value of a number is:		
$(-1)^s \times F \times 2^E$		
	significand	7

Normalized Numbers and the significand

- Normalized binary numbers *always* start with a 1 (the leftmost bit of the significand value is a 1).
- Why store the 1 (it's always there)?
- IEEE 754 uses this, so the fraction is 24 bits but only 23 need to be stored.
- All numbers must be normalized!

8

Exponent Representation

- We need negative and positive exponents.
- Could use 2s complement notation
 - this would make comparison of floating point numbers a bit tricky.
 - exponent value 11111111 is smaller than 00000000.
- Instead they chose a *biased (excess-K)* representation.
 - exponent values are offset by a fixed bias.

32 bit IEEE 754 exponent

- The exponent uses 8 bits.
- The *bias* is 127.
 - treat the 8 bit exponent as a unsigned integer and subtract 127 from it.

00000001 is the representation for -126 **10000000** is the representation for +1 **11111110** is the representation for +127

10

Special Exponents

- 00000000 is a special case exponent
 - used for the representation of the floating point number 0 (and other things, depending on the sign and significand).
- 11111111 is also a special case
 - used in the representation of infinity (and other things, depending on the sign and significand).

1

32 bit IEEE 754 Range

- Largest normalized number is:

Expression for value of 32 bit IEEE 754

13

Double Precision

s exponent signif.....icand

14

64 bit IEEE 754

- exponent is 11 bits
 - bias is 1023
 - range is a *little* larger than the 32 bit format.
- Significand is 55 bits
 - plus the leading 1.
 - accuracy is much better than 32 bit format.

Exercises

- What is the double precision (64 bit format) representation for the number 128?
- · Same question for single precision
- What is the single precision format for the number –8.125?
- Same question for double precision

17

Comparing Numbers

s exponent significand

- Comparison of *normalized* floating point numbers:
 - check sign bits
 - check exponents.
 - unsigned integer comparison works.
 - Larger exponents are represented by larger unsigned ints.
 - check significand.