32 bit IEEE 754 format

8 bits 23 bits

| s exponent | significand |
| :--- | :--- | :--- | \qquad

$\longleftarrow 32$ bits \longrightarrow

- Sign Bit:
- 0 means positive, 1 means negative

Value of a number is:
$(-1)^{\mathrm{s}} \times \mathrm{F} \times 2^{\mathrm{E}}$

Normalized Numbers and the significand

\qquad
\qquad

- Normalized binary numbers always start with a 1 (the leftmost bit of the significand \qquad value is a 1).
- Why store the 1 (it's always there)?
- IEEE 754 uses this, so the fraction is 24 bits but only 23 need to be stored. \qquad
- All numbers must be normalized!

Exponent Representation

- We need negative and positive exponents.
- Could use 2s complement notation
- this would make comparison of floating point numbers a bit tricky.
- exponent value 11111111 is smaller than 00000000 .
\qquad
- Instead they chose a biased (excess-K) \qquad representation.
- exponent values are offset by a fixed bias. \qquad
\qquad
${ }^{9}$

32 bit IEEE 754 exponent

- The exponent uses 8 bits. \qquad
- The bias is 127 .
- treat the 8 bit exponent as a unsigned integer \qquad and subtract 127 from it.

00000001 is the representation for -126
10000000 is the representation for +1
11111110 is the representation for +127
\qquad
\qquad
\qquad

Special Exponents

- 00000000 is a special case exponent
- used for the representation of the floating point number 0 (and other things, depending on the sign and significand).
- 11111111 is also a special case
- used in the representation of infinity (and other things, depending on the sign and significand).

32 bit IEEE 754 Range

- Smallest (positive) normalized number is:
$1.00000000000000000000000 \times 2^{-126}$
- Largest normalized number is:
$1.11111111111111111111111 \times 2^{127}$
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11 bits		
s	exponent	signif.......

........................... icand
\qquad
\qquad
\qquad
\qquad
\qquad

64 bit IEEE 754

- exponent is 11 bits
- bias is 1023 \qquad
- range is a little larger than the 32 bit format.
- Significand is 55 bits \qquad
- plus the leading 1.
- accuracy is much better than 32 bit format. \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercises

- What is the double precision (64 bit format) representation for the number 128 ?
- Same question for single precision
- What is the single precision format for the number -8.125 ?
- Same question for double precision \qquad
\qquad

Comparing Numbers

\qquad
exponent
significand \qquad

- Comparison of normalized floating point \qquad numbers:
- check sign bits \qquad
- check exponents.
- unsigned integer comparison works.
- Larger exponents are represented by larger unsigned ints.
\qquad
- check significand. \qquad
18

