2.10. FLOATING-POINT REPRESENTATION 27

2.10 Floating-point representation

You have probably already have met standard scientific notation; e.g.

6.023 x 10?3

e Here a number is represented as an integer place followed by a number of significant digits.

e We can do this in binary by simply moving the binary point. (commonly referred to as the
decimal point) to a position to maximise the number of significant (digits) bits. Then the
position of the binary point is recorded in an exponent representation

e Hence the name floating point; Here one plays off efficiency with range and accuracy.

e Since the Real numbers are continuous, we can only approximate these in a computer. Float-
ing point maximises the resolution within a given set of space constraints.

e Floating point is in fact a form of sign magnitude. Actually sign exponent magnitude.

As a general rule for binary
+0.f x 2%

or more formally write
X = (=1)5 x fraction x 2{ezponent—K}
2.10.1 Sign S

0 for a positive number, 1 for a negative number.

2.10.2 Fraction

Just like you are used to, e.g.,
.0100011010

e The accuracy depends on number of bits. The idea is to maximise the number of significant
bits, using the exponent to record the position of the point.

e We can always shift (except in the case of zero) till the MSB is a 1. Thus we can assume
MSB to be a 1 (or 0) and then save space by not showing it.

28 CHAPTER 2. DATA REPRESENTATION

e This gives rise to the normalised fraction 0.5 < f < 1.0
e.g.

.100000002 1/512 absolute error (.0019) : 0.4%
A11111115 1/512 absolute error: 0.2%

2.10.3 Exponent

The convention is to use the Excess-K notation.

e To explain this further it is appropriate to use one of the VAX formats.

2.11 The VAX formats

The Alpha supports amongst its various data representations, the vax floating point formats. These
are designated;

e I (Floating, Single precision, 32 bits, 2 words, 4 bytes)
e D (Double precision, 64 bits, 4 words)

e G (Grand 64 bits)
e H(

Huge 128 bits 8 words, quadruple precision)

(The sign appears on the 16-bit word boundary which is an historic artifact reflecting the days of
the PDP-11).

2.11. THE VAX FORMATS 29

VAX data types supported on the ALPHA.

VAX floating point

G_floating
15 14 04 03 00
S Exponent Fraction
F_floating
Fraction
15 14 07 06 00
S Exponent Fraction Fraction
Fraction Fraction
31 16 63 00
H_floating
15 14 00
. S Exponent
D_floating
15 14 07 06 00 Fraction
S Exponent Fraction Fraction
Fraction Fraction
Fraction Fraction
Fraction Fraction
63 00
Fraction
Fraction
127 112

Take the G_floating format for example:

Sign (0/1S)
Note the position of the sign on the 16th bit boundary. This is a hang over from the days of the
PDP-11.

Fraction/mantissa (0.1M)
bits 0 — 3 = 4 bits +3 x 16 bits = 52 bits plus the implied bit (.1) = 53 bits covering 0.5 <

fraction < 1.0 normalised.

Exponent (XS-1024)
In the 11-bit notation, excess 1024 yields the range of values 1 — 2047 i.e. of —1023 to +1023.

A 0 exponent together with a 0 sign indicates a value 0 irrespective of the value of mantissa/fraction.

30 CHAPTER 2. DATA REPRESENTATION

Example 2.11.1 Suppose we have a G_Floating number

00000000180040801¢

and we want to convert this to decimal;

15 14 04 03 00
S Exponent Fraction
Fraction
Fraction
Fraction
63

Sign is 0 so we know the number is a positive number.

Exponent 4084 = 10321g
Offset by 1024, so exponent is 103219 — 102419 = 8.

Fraction
Re-constitute the fraction 01800000000001¢

in binary 000000011000...... 00002
normalised form;

so add a 1 on the left with the binary point
.1000000011000. . . 0000

Final conversion: multiply by the exponent 28

10000000.11

128 + .5 4+ .25 = 128.7519

