$2.4 B C D$

- Binary Coded Decimal is just what it says it is. Here the decimal digits 0-9 are coded into binary. For each digit we need 4 bits. $0000,0001, \ldots, 1001$. The remaining 4 -bit numbers are not used.

$$
137_{10}=000100110111(\mathrm{BCD})
$$

- This is not the same as Binary! looks like binary but...
- BCD provides ease of interfacing for digital displays e.g. 7 segment displays.

- BCD is wasteful of bits.
- The conversion between BCD and binary is complicated. Thus most arithmetic operations are done with binary rather than other representations. (However it is possible to implement arithmetic in BCD but with a carry between the columns).

2.5 Signed numbers

- Sooner or later it becomes necessary to represent negative numbers. Can't perform arithmetic easily without signed numbers.

2.5.1 Sign-magnitude representation

- Perhaps the simplest way to represent a negative number is to devote the MSB to indicating the sign.
- Sign-magnitude is often used where numbers are to be displayed (The MSB is simply tied to the sign display).
- Sign-magnitude is also used in some A/D conversion schemes.
- However sign-magnitude is not the best for carrying out computation.

2.5.2 Offset Binary representation (Excess-K)

- Offset Binary is where one subtracts K (usually half the largest possible number) from the representation to get the value.
- Has the advantage that the number sequence from the most negative to the most positive is a simple binary progression, which makes it a natural for binary counters.
- note that the $M S B$ still carries the sign information.
- Excess K is used in conjunction with floating point representations for the exponent. We will meet this again shortly.
- A note on arithmetic in Excess K:

Assume a, b, c are three values:

$$
\begin{aligned}
& (a+b)=c \\
& (a+k)+(b+k) \quad \text { (representations) } \\
& =(a+b)+2 k \\
& =(c+k)+k
\end{aligned}
$$

Rewriting A, B, C in Excess- K representations:

$$
\begin{aligned}
& A+B=C+k \\
& C=(A+B)-k
\end{aligned}
$$

- Try this for $(-1)+(+1)=0$

2.5.3 2 's complement

- 2's complement represents the method most widely used for integer computation.
- Positive numbers are represented in simple unsigned binary.
- The system is rigged so that a negative number is represented as the binary number that when added to a positive number of the same magnitude gives zero.
- To get the two's complement, first take the ones complement, then add one.

2.5.4 1's complement

- Exchange all the 1's for 0's and vice versa.

value	1's complement	2's complement
+7	0111	0111
+6	0110	0110
+5	0101	0101
+4	0100	0100
+3	0011	0011
+2	0010	0010
+1	0001	0001
0	0000	0000
-1	1110	1111
-2	1101	1110
-3	1100	1101
-4	1011	1100
-5	1010	1011
-6	1001	1010
-7	1000	1001
-8	-	1000
-0	1111	-

2.6 Performing Arithmetic

2.6.1 In 1's complement

Some examples of arithmetic with 1's complement.

Example 2.6.1 (addition)

0011	$(+3)$
+0010	$(+2)$
0101	$(+5)$

Example 2.6.2 (subtraction)

$$
\begin{array}{rr}
0011 & (+3) \\
+1101 & (-2) \\
(1) 0000 & (0 ?)
\end{array}
$$

Example 2.6.3 (subtraction from a negative)

$$
\begin{array}{r}
1100 \\
+1101 \\
\hline(1) 1001
\end{array}
$$

The solution is to wrap the carry back in to the LSB.

Exercise 2.6.4 Can you explain why this works?

2.6.2 In 2's complement

The Arithmetic operations are perhaps easiest in 2's complement.

- To add ... just like in any other base.

Example 2.6.5 (addition $5+(-2):$)

$$
\begin{aligned}
0101 & (+5) \\
+1110 & (-2) \\
\hline 0011 & (+3)
\end{aligned}
$$

- To subtract B from A take the 2's complement of B and add to A.

Example 2.6.6 (subtraction 2-5:)

$$
\begin{array}{cl}
0010 & (+2) \quad(2+(-5)) \\
+1011 & (-5) \text { since }+5=0101: \\
\hline 1101 & (-3)
\end{array}
$$

value	Sign Magnitude	Offset Binary	2's complement
+7	0111	1111	0111
+6	0110	1110	0110
+5	0101	1101	0101
+4	0100	1100	0100
+3	0011	1011	0011
+2	0010	1010	0010
+1	0001	1001	0001
0	0000	1000	0000
-1	1001	0111	1111
-2	1010	0110	1110
-3	1011	0101	1101
-4	1100	0100	1100
-5	1101	0011	1011
-6	1110	0010	1010
-7	1111	0001	1001
-8	-	0000	1000
-0	1000	-	-

- Multiplication also works right in 2's complement. Long multiplication reduces to shifts and adds
- We have implicitly used the concept of carry. In particular we dropped/ignored the carry bit in the case of the two's complement number representation.

Example 2.6.7 (3-3=)

$$
\begin{array}{r}
0011 \\
+1101 \\
(1) 0000
\end{array}
$$

(c.f. above 1's complement example)

- It should be clear that for the unsigned binary the carry has relevance.

Example 2.6.8 $(3+13=)$

0011	(3)
+1101	$(+13)$
$(1) 0000$	(16)

- We can also perform subtraction directly and still ignore the carry/borrow bit.

Example 2.6.9 (2's complement borrow)

$$
\begin{aligned}
& 0011 \\
& \text { (1) } \begin{array}{c}
\frac{-0100}{1111} \\
\frac{(-4)}{(-1)}
\end{array} \text { (3) } \\
& \hline
\end{aligned}
$$

- However, for subtraction with the unsigned binary the borrow is important, particularly in multiple word operations.

Example 2.6.10 (multiple word addition/carry)

$$
\begin{array}{r}
00110011 \\
+0000^{1} 1101 \\
\hline 01000000
\end{array}
$$

Example 2.6.11 (multiple subtraction/borrow)

$$
\begin{array}{r}
01000000 \\
-0000^{1} 1101 \\
\hline 00110011
\end{array}
$$

- These still could represent two's complement. but low order words must treated as if unsigned.

