
2.4. BCD 17

2.4 BCD

• Binary Coded Decimal is just what it says it is. Here the decimal digits 0 - 9 are coded into
binary. For each digit we need 4 bits. 0000, 0001, . . . , 1001. The remaining 4-bit numbers
are not used.

13710 = 0001 0011 0111 (BCD)

• This is not the same as Binary! looks like binary but...

• BCD provides ease of interfacing for digital displays e.g. 7 segment displays.

• BCD is wasteful of bits.

• The conversion between BCD and binary is complicated. Thus most arithmetic operations
are done with binary rather than other representations. (However it is possible to implement
arithmetic in BCD but with a carry between the columns).

2.5 Signed numbers

• Sooner or later it becomes necessary to represent negative numbers. Can’t perform arithmetic
easily without signed numbers.

2.5.1 Sign-magnitude representation

• Perhaps the simplest way to represent a negative number is to devote the MSB to indicating
the sign.

• Sign-magnitude is often used where numbers are to be displayed (The MSB is simply tied to
the sign display).

• Sign-magnitude is also used in some A/D conversion schemes.

• However sign-magnitude is not the best for carrying out computation.

18 CHAPTER 2. DATA REPRESENTATION

2.5.2 Offset Binary representation (Excess-K)

• Offset Binary is where one subtracts K (usually half the largest possible number) from the
representation to get the value.

• Has the advantage that the number sequence from the most negative to the most positive is
a simple binary progression, which makes it a natural for binary counters.

• note that the MSB still carries the sign information.

• Excess K is used in conjunction with floating point representations for the exponent. We will
meet this again shortly.

• A note on arithmetic in Excess K:

Assume a, b, c are three values:

(a + b) = c (values)

(a + k) + (b + k) (representations)
= (a + b) + 2k
= (c + k) + k

Rewriting A, B, C in Excess-K representations:

A + B = C + k
C = (A + B)− k

• Try this for (-1) + (+1) = 0

2.5.3 2’s complement

• 2’s complement represents the method most widely used for integer computation.

• Positive numbers are represented in simple unsigned binary.

• The system is rigged so that a negative number is represented as the binary number that
when added to a positive number of the same magnitude gives zero.

• To get the two’s complement, first take the ones complement, then add one.

2.5.4 1’s complement

• Exchange all the 1’s for 0’s and vice versa.

2.6. PERFORMING ARITHMETIC 19

value 1’s complement 2’s complement
+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+1 0001 0001
0 0000 0000
-1 1110 1111
-2 1101 1110
-3 1100 1101
-4 1011 1100
-5 1010 1011
-6 1001 1010
-7 1000 1001
-8 - 1000
-0 1111 -

2.6 Performing Arithmetic

2.6.1 In 1’s complement

Some examples of arithmetic with 1’s complement.

Example 2.6.1 (addition)

0011 (+3)
+0010 (+2)
0101 (+5)

Example 2.6.2 (subtraction)

0011 (+3)
+1101 (-2)

(1)0000 (0?)

20 CHAPTER 2. DATA REPRESENTATION

Example 2.6.3 (subtraction from a negative)

1100 (-3)
+1101 (-2)

(1)1001 (-6?)

The solution is to wrap the carry back in to the LSB.

Exercise 2.6.4 Can you explain why this works?

2.6.2 In 2’s complement

The Arithmetic operations are perhaps easiest in 2’s complement.

• To add . . . just like in any other base.

Example 2.6.5 (addition 5 + (-2):)

0101 (+5)
+1110 (-2)
0011 (+3)

• To subtract B from A take the 2’s complement of B and add to A.

Example 2.6.6 (subtraction 2 - 5:)

0010 (+2) (2 + (-5))
+1011 (-5) since +5 = 0101:
1101 (-3)

2.6. PERFORMING ARITHMETIC 21

value Sign Offset 2’s
Magnitude Binary complement

+7 0111 1111 0111
+6 0110 1110 0110
+5 0101 1101 0101
+4 0100 1100 0100
+3 0011 1011 0011
+2 0010 1010 0010
+1 0001 1001 0001
0 0000 1000 0000
-1 1001 0111 1111
-2 1010 0110 1110
-3 1011 0101 1101
-4 1100 0100 1100
-5 1101 0011 1011
-6 1110 0010 1010
-7 1111 0001 1001
-8 - 0000 1000
-0 1000 - -

• Multiplication also works right in 2’s complement. Long multiplication reduces to shifts and
adds

• We have implicitly used the concept of carry. In particular we dropped/ignored the carry bit
in the case of the two’s complement number representation.

Example 2.6.7 (3 – 3 =)

0011 (3)
+1101 (–3)

(1) 0000 (0)

(c.f. above 1’s
complement example)

22 CHAPTER 2. DATA REPRESENTATION

• It should be clear that for the unsigned binary the carry has relevance.

Example 2.6.8 (3 + 13 =)

0011 (3)
+1101 (+13)

(1) 0000 (16)

• We can also perform subtraction directly and still ignore the carry/borrow bit.

Example 2.6.9 (2’s complement borrow)

0011 (3)
–0100 (–4)

(1) 1111 (–1)

• However, for subtraction with the unsigned binary the borrow is important, particularly in
multiple word operations.

Example 2.6.10 (multiple word addition/carry)

0011 0011 (51)
+000011101 (13)
0100 0000 (64)

Example 2.6.11 (multiple subtraction/borrow)

0100 0000 (64)
–000011101 (–13)
0011 0011 (51)

• These still could represent two’s complement. but low order words must treated as if unsigned.

