210 Data Representation

Some important dates
1936: Alan Turing -
The Turing machine, computability, universal machine
1946 - Eckert and Archly
ENIAC - first electronic computer (with vacuum tubes)
1947 John von Neumann
First to describe modern day computer, with central processor, memory, output, input
-Early days of electronics, analog computers provided a relatively inexpensive means for solving complex problems (1950's and 60's)
In an analog computer, a voltage (or current) is used to represent a data value. Variables are then operated on by linear circuit elements to compute an output function. A voltage waveform may represent a time varying function, with the operations of integration and differentiation being relatively easily achieved. The basic building block of an analog computer was a linear amplifier. As with any hi-fi amplifier, the better the linearity, the lower the noise levels, and the smaller the distortion the better the accuracy of the computer. Even with state of the art electronics analog computers would rarely achieve 0.1% accuracy!
-Today's computers are built from transistors

- Transistor is either off or on \rightarrow Need to represent numbers using only off and on
- Two symbols off and on can represent the digits 0 and 1

BIT is Binary Digit
\rightarrow We need to know how to represent binaries, transform, operate, etc...

Number representation (Decimal)

Digits (or symbols) allowed: 0-9

Base (or radix): 10

The order of the digits is important as 345 is:
$3 \times 100+4 \times 10+5 \times 1$
$3 \times 10^{* *} 2+4 \times 10^{* *} 1+5 \times 10^{* *} 0$

- 3 is the most significant symbol (it carries the most weight)
- 5 is the least significant symbol (it carries the least weight)

In a more general way:
$137.06=1 \times 10^{* *} 2+3 \times 10^{*} 1+7 \times 10^{*} 0+0 \times 10^{-1}+6 \times 10^{-2}$

- The powers of ten are determined by the position relative to the decimal point.

Using positional coefficients and weights we can express any weighted number system in the following generalized form:
$\mathrm{X}=\mathrm{x}_{\mathrm{n}} \mathrm{w}_{\mathrm{n}}+\mathrm{x}_{\mathrm{n}-1} \mathrm{w}_{\mathrm{n}-1}+\ldots+\mathrm{x}_{-1} \mathrm{w}_{-1}+\ldots+\mathrm{x}_{-\mathrm{m}} \mathrm{w}_{-\mathrm{m}}$
where

- $\mathrm{w}_{\mathrm{i}}=\mathrm{r}^{\mathrm{i}}$ and $0 \leq \mathrm{x}_{\mathrm{i}} \leq(\mathrm{r}-1)$
- The r^{i} are the weighted values.
- r is the radix or base.
- The x_{i} are the positional coefficients.

Number representation (Binary-1)

Digits (symbols) allowed: 0, 1
Base (radix): 2 each binary digit is called a BIT
The order of the digits is significant
Numbering of the digits:
From MSB (bit $\mathrm{n}-1$) to LSB (Bit 0) where n is the number of digits in the number

MSB stands for most significant bit
LSB stands for least significant bit

Number representation (Binary-2)

1001 (base 2) is:
$1001_{2}=1 \times 2 * * 3+0 \times 2 * * 2+0 \times 2^{* *} 1+1 \times 2 * * 0$
9 (base 10) or 9_{10}
11001 (base 2) is:
$11001_{2}=1 \times 2 * * 4+1 \times 2 * * 3+0 \times 2 * * 2+0 \times 2 * * 1+1 \times 2 * * 0$
25 (base 10) or 25_{10}

For the alpha machine (and for simulator as well) no native function to represent binaries (why ??)

Represent 110011_{2} in base $10 \rightarrow 51_{10}$
Represent 51_{10} in binary
My method: subtract largest power of 2 smaller than 51 until you reach 1

- largest power of 2 smaller than 51:32 -> 51-32=19
- largest power of 2 smaller than 19: $16->19-16=3$
- largest power of 2 smaller than 3:2->3-2=1
- $51_{10}=32+16+2+1=2 * * 5+2 * * 4+2 * 1+2 * 0=110011_{2}$

Number representation (Octal)

Digits (symbols) allowed: 0, 1, .. 7

Base (radix): 8

The order of the digits is important
345 (base 8) is:
$345_{8}=3 \times 8^{* *} 2+4 \times 8^{* *} 1+5 \times 8^{* *} 0=192+32+5=229_{10}$
1001 (base 8) is:
$1001_{8}=1 \times 8^{* *} 3+0 \times 8^{* *} 2+0 \times 8^{* *} 1+1 \times 8^{* *} 0512+0+0+1$
513 (base 10)
Easy: Transform from Binary to Octal
$229_{10}=128+64+32+4+1=11100101_{2}(011100101)->345_{8}$
\rightarrow Best way to transform from decimal to octal is to go via Binary
Octal representation to binary representation
$345_{8}=3 \times 8 * * 2+4 \times 8 * * 1+5 \times 8 * * 0$
In Binary: $011100101 \rightarrow 011100101_{2}$

Number representation (hexadecimal)

Digits (symbols) allowed: 0-9, a-f
Base (radix): 16
The order of the digits is important
hex decimal binary

0	0	0000	
1	1	0001	
9	9	1001	a3 ${ }_{16}$ or 0xa3
a	10	1010	(1010 0011) 10100011 ${ }_{2}$
b	11	1011	$(010100011)-->2438$
c	12	1100	
d	13	1101	
e	14	1110	
f	15	1111	

a3 (base 16) is:
$a 3_{16}(0 \times \mathrm{xa} 3)=\mathrm{ax} 16^{* *} 1+3 \times 16^{* *} 0=160+3=163$ (base 10)
Transformations between hexadecimal-binary-octal-decimal use binary as intermediate data representation

Bits/Bytes and Words

- A bit is a single value, either 1 or 0 .
- A byte is an ordered sequence of 8 bits.
- memory is typically byte addressed - each byte has a unique address.
- A word is an ordered sequence of bits, the length depends on the processor architecture.
- typical value for modern computers is 32 (64 for the alpha) bits.

Byte Values

- There are 256 different byte values

00000000
00000001
00000010
00000011

11111110
11111111

Bytes as unsigned integers

- Base 2 number using positional notation

Hexadecimal

- Values are often expressed in base 16.
- One sequence of 4 bits is reduced to a single hexadecimal digit:

binary	0000	0001	0010	0011	0100	0101	0110	0111
	hex	0	1	2	3	4	5	6

binary	1000	1001	1010	1011	1100	1101	1110	1111
hex	8	9	A	B	C	D	E	F

- A byte is represented by a 2 digits hexadecimal

Basic Data Types

- Integral
- Stored \& operated on in general registers

Intel	GAS	Bytes	C
byte	b	$\mathbf{1}$	[unsigned] char
word	w	$\mathbf{2}$	[unsigned] short
long word	1	$\mathbf{4}$	[unsigned] int
quadword		8	

Hexadecimal and Octal

-Hexadecimal is well suited for byte (8-bit word) oriented machines which are most often organized as 16 or 32 bit words. A word is then 2 or 4 (8-bit) bytes. In 'Hex' a byte is represented by 2 hex digits.

- In the past there have been 12-bit and 36-bit machines (note, the IBM 1620 which used a 6-bit alphanumeric representation).
- Octal offers a natural way to represent 6-bit groups (two octal digits).
- However Octal representation of 16 -bit words has the effect of disguising the 8 -bit bytes; Example
$A=101_{8}=01000001_{2}$
$B=102_{8}=01000010_{2}$
$\operatorname{word}(\mathrm{AB})=0100000101000010_{2}$
$=0100000101000010_{2}$
$=040502_{8}$
- Since hexadecimal does not have this problem, it is the favored representation for current machines.
$\mathrm{A}=41_{16}$
$B=42_{16}$
$\mathrm{AB}=4142_{16}$
and $\mathrm{BA}=4241_{16}$

Transformation (1)

1. Any base --> decimal

Use the definition (summation) given above.
134 (base 5) $1 \times 5 * * 2+3 \times 5 * * 1+4 \times 5 * * 025+15+444$ (base 10)
2. Decimal --> ANY base

Divide decimal value by the base until the quotient is 0 .
The remainders give the digits of the value.
Examples:
36 (base 10) to base 2 (binary) $\rightarrow 36$ (base 10) $==100100$ (base 2)
$36 / 2=18 \mathbf{r}=\mathbf{0}<--1$ sb $18 / 2=9 \mathbf{r}=\mathbf{0} 9 / 2=4 \mathbf{r}=\mathbf{1} 4 / 2=2 \mathbf{r}=\mathbf{0} 2 / 2=1 \mathbf{r}=\mathbf{0} 1 / 2=0$

$$
\mathbf{r}=\mathbf{1}<-\mathrm{msb}
$$

14 (base 10) to base 2 (binary) $\rightarrow 14$ (base 10) $==1110$ (base 2)
$14 / 2=7 \mathbf{r}=\mathbf{0}<-\mathrm{l} \operatorname{lsb} 7 / 2=3 \mathbf{r}=13 / 2=1 \mathbf{r}=\mathbf{1} 1 / 2=0 \mathbf{r}=\mathbf{1}<-\mathrm{msb}$

38 (base 10) to base $3 \rightarrow 38$ (base 10) $==1102$ (base 3)
$38 / 3=12 \mathbf{r}=\mathbf{2}<-$ ls digit $12 / 3=4 \mathbf{r}=\mathbf{0} 4 / 3=1 \mathbf{r}=11 / 3=0 \mathbf{r}=\mathbf{1}<-\mathrm{ms}$ digit

100 (base 10) to base $5 \rightarrow 100$ (base 10) $=400$ (base 5)
$100 / 5=20 \mathbf{r}=\mathbf{0} 20 / 5=4 \mathbf{r}=\mathbf{0} 4 / 5=0 \mathbf{r}=\mathbf{4}$

Transformation (2)

3. Binary $->$ octal
4. group into 3 's starting at least significant symbol (if the number of bits is not evenly divisible by 3 , then add 0 's at the most significant end)
5. write 1 octal digit for each group:

$$
\begin{aligned}
& \text { - } \quad 100010111 \text { (binary) } 427 \text { (octal) } \\
& \text { - } \quad 10101110 \text { (binary) } 256 \text { (octal) }
\end{aligned}
$$

4. Binary --> hex (same as binary to octal)
5. group into 4's starting at least significant symbol (if the number of bits is not evenly divisible by 4 , then add 0 's at the most significant end)
6. write 1 hex digit for each group:

$$
\begin{aligned}
& -\quad 1001111001110000 \text { (binary) } \rightarrow 0 \times 9 \mathrm{e} 70 \\
& -\quad 1111110100011 \text { (binary) } \rightarrow 0 \times 1 \mathrm{fa} 3
\end{aligned}
$$

5. Hex --> binary
write down the 4 bit binary code for each hexadecimal digit:

$$
-\quad 0 x 39 \mathrm{c} 8 \text { (hex) } \rightarrow 0011100111001000
$$

6. Octal --> binary
write down the 8 bit binary code for each octal digit:

$$
-\quad 501_{8}(\text { Octal }) \rightarrow 101000001
$$

Transformation (3)

7. hex --> octal (2 steps)
8. hex --> binary
9. binary --> octal

Where the bases are growing powers of a common value, the transformation in between is straightforward
binary \rightarrow base 4 , octal \rightarrow hexadecimal, etc...
Examples:
Transformation from base 3 to base 9
2100122 (base 3)
One base 9 digit is substituted for each 2 base 3 digits.
base 39
000
011
022
103
114
125
206
217
228
2100122 (base 3) $\rightarrow 2318$ (base 9)

Exercises

Convert the following decimal numbers first to binary and then to hexadecimal: [4 marks] $27_{10} 121_{10}$
Convert the following unsigned hexadecimal numbers to octal: [4 marks] 225516 11EC3 $_{16}$
The number 233_{10} is equal to the following:

1. 10101001_{2}
2. 11001001_{2}
3. 11111001_{2}
4. 11101001_{2}

The number 2338 is equal to the following:

1. 15010
2. 16410
3. 15510
4. 15910
