
1

210 Data Representation
Some important dates
1936: Alan Turing –

The Turing machine, computability, universal machine
1946 – Eckert and Archly

ENIAC – first electronic computer (with vacuum tubes)
1947 John von Neumann

First to describe modern day computer, with central processor, memory, output, input
•Early days of electronics, analog computers provided a relatively inexpensive means for solving
complex problems (1950’s and 60’s)

In an analog computer, a voltage (or current) is used to represent a data value. Variables are
then operated on by linear circuit elements to compute an output function. A voltage waveform
may represent a time varying function, with the operations of integration and differentiation being
relatively easily achieved. The basic building block of an analog computer was a linear amplifier.
As with any hi-fi amplifier, the better the linearity, the lower the noise levels, and the smaller the
distortion the better the accuracy of the computer. Even with state of the art electronics analog
computers would rarely achieve 0.1% accuracy!
•Today’s computers are built from transistors

• Transistor is either off or on � Need to represent numbers using only off and on
• Two symbols off and on can represent the digits 0 and 1

BIT is Binary Digit
�We need to know how to represent binaries, transform, operate, etc…

Number representation (Decimal)
Digits (or symbols) allowed: 0-9
Base (or radix): 10
The order of the digits is important as 345 is:
3 x 100 + 4 x 10 + 5 x 1
3 x 10**2 + 4 x 10**1 + 5 x 10**0
• 3 is the most significant symbol (it carries the most weight)

• 5 is the least significant symbol (it carries the least weight)
In a more general way:
137.06 = 1 × 10**2 + 3 × 10*1 + 7 × 10*0 + 0 × 10-1 + 6 × 10-2

• The powers of ten are determined by the position relative to the decimal point.
Using positional coefficients and weights we can express any weighted number

system in the following generalized form:
X = xnwn + xn-1wn-1 + . . . + x-1w-1 + . . . + x-mw-m

where
• wi = ri and 0 ≤ xi ≤ (r - 1)
• The ri are the weighted values.
• r is the radix or base.
• The xi are the positional coefficients.

2

Number representation (Binary-1)
Digits (symbols) allowed: 0, 1
Base (radix): 2 each binary digit is called a BIT
The order of the digits is significant
Numbering of the digits:
From MSB (bit n-1) to LSB (Bit 0) where n is

the number of digits in the number
MSB stands for most significant bit
LSB stands for least significant bit

Number representation (Binary-2)
1001 (base 2) is:
10012= 1 x 2**3 + 0 x 2**2 + 0 x 2**1 + 1 x 2**0

9 (base 10) or 910
11001 (base 2) is:
110012 = 1 x 2**4 + 1 x 2**3 + 0 x 2**2 + 0 x 2**1 + 1 x 2**0
25 (base 10) or 2510

For the alpha machine (and for simulator as well) no native function to represent
binaries (why ??)

Represent 1100112 in base 10 � 5110
Represent 5110 in binary
My method: subtract largest power of 2 smaller than 51 until you reach 1
• largest power of 2 smaller than 51: 32 -> 51-32=19
• largest power of 2 smaller than 19: 16 -> 19-16=3
• largest power of 2 smaller than 3: 2 -> 3-2=1
• 5110=32+16+2+1=2**5+2**4+2*1+2*0= 1100112

3

Number representation (Octal)
Digits (symbols) allowed: 0, 1,…7
Base (radix): 8
The order of the digits is important
345 (base 8) is:
3458 = 3 x 8**2 + 4 x 8**1 + 5 x 8**0 = 192 + 32 + 5 =22910

1001 (base 8) is:
10018 = 1 x 8**3 + 0 x 8**2 + 0 x 8**1 + 1 x 8**0 512 + 0 + 0 + 1
513 (base 10)
Easy: Transform from Binary to Octal
22910=128+64+32+4+1=111001012 (011 100 101)->3458

� Best way to transform from decimal to octal is to go via Binary
Octal representation to binary representation
3458 = 3 x 8**2 + 4 x 8**1 + 5 x 8**0
In Binary: 011 100 101 � 0111001012

Number representation (hexadecimal)
Digits (symbols) allowed: 0-9, a-f
Base (radix): 16
The order of the digits is important
hex decimal binary
0 0 0000
1 1 0001
. . .
9 9 1001 a316 or 0xa3
a 10 1010 (1010 0011) 101000112

b 11 1011 (010 100 011)--> 2438

c 12 1100
d 13 1101
e 14 1110
f 15 1111

a3 (base 16) is:
a316 (0xa3) = a x 16**1 + 3 x 16**0 = 160 + 3 = 163 (base 10)

Transformations between hexadecimal-binary-octal-decimal use binary as intermediate
data representation

4

Bits/Bytes and Words

• A bit is a single value, either 1 or 0.
• A byte is an ordered sequence of 8 bits.

– memory is typically byte addressed – each byte has a
unique address.

• A word is an ordered sequence of bits, the length
depends on the processor architecture.
– typical value for modern computers is 32 (64 for the

alpha) bits.

Byte Values
• There are 256 different byte values

11111111

11111110

…

00000011

00000010

00000001

00000000

5

Bytes as unsigned integers

• Base 2 number using positional notation

128 64 32 16 8 4 2 1

0 0 1 0 0 0 1 1

Value is 32 + 2 + 1 = 3310

least
significant

bit

most
significant

bit

Hexadecimal
• Values are often expressed in base 16.
• One sequence of 4 bits is reduced to a single

hexadecimal digit:

• A byte is represented by a 2 digits hexadecimal

hex

binary

hex

binary

FEDCBA98

11111110110111001011101010011000

76543210

01110110010101000011001000010000

6

Basic Data Types
• Integral

– Stored & operated on in general registers
Intel GAS Bytes C
byte b 1 [unsigned] char

word w 2 [unsigned] short
long word l 4 [unsigned] int
quadword 8

Hexadecimal and Octal
•Hexadecimal is well suited for byte (8-bit word) oriented machines which are most often
organized as 16 or 32 bit words. A word is then 2 or 4 (8-bit) bytes. In ‘Hex’ a byte is
represented by 2 hex digits.
• In the past there have been 12-bit and 36-bit machines (note, the IBM 1620 which used a
6-bit alphanumeric representation).
• Octal offers a natural way to represent 6-bit groups (two octal digits).
• However Octal representation of 16-bit words has the effect of disguising the 8-bit bytes;
Example
A = 1018 = 01 000 0012
B = 1028 = 01 000 0102
word(AB) = 01 000 001 01 000 0102
= 0 100 000 101 000 0102
= 0405028
• Since hexadecimal does not have this problem, it is the favored representation for current
machines.
A = 4116
B = 4216
AB = 414216
and BA = 424116

7

Transformation (1)
1. Any base --> decimal
Use the definition (summation) given above.
134 (base 5) 1 x 5**2 + 3 x 5**1 + 4 x 5**0 25 + 15 + 4 44 (base 10)

2. Decimal --> ANY base
Divide decimal value by the base until the quotient is 0.
The remainders give the digits of the value.
Examples:
36 (base 10) to base 2 (binary) � 36 (base 10) == 100100 (base 2)
36/2 = 18 r=0 <-- lsb 18/2 = 9 r=0 9/2 = 4 r=1 4/2 = 2 r=0 2/2 = 1 r=0 1/2 = 0

r=1 <-- msb

14 (base 10) to base 2 (binary) � 14 (base 10) == 1110 (base 2)
14/2 = 7 r=0 <-- lsb 7/2 = 3 r=1 3/2 = 1 r=1 1/2 = 0 r=1 <-- msb

38 (base 10) to base 3 � 38 (base 10) == 1102 (base 3)
38/3 = 12 r=2 <-- ls digit 12/3 = 4 r=0 4/3 = 1 r=1 1/3 = 0 r=1 <-- ms digit

100 (base 10) to base 5 � 100 (base 10) = 400 (base 5)
100/5 = 20 r=0 20/5 = 4 r=0 4/5 = 0 r=4

Transformation (2)
3. Binary --> octal
1. group into 3's starting at least significant symbol (if the number of bits

is not evenly divisible by 3, then add 0's at the most significant end)
2. write 1 octal digit for each group:

– 100 010 111 (binary) 4 2 7 (octal)
– 10 101 110 (binary) 2 5 6 (octal)

4. Binary --> hex (same as binary to octal)
1. group into 4's starting at least significant symbol (if the number of bits

is not evenly divisible by 4, then add 0's at the most significant end)
2. write 1 hex digit for each group:

– 1001 1110 0111 0000 (binary) � 0x9e70
– 1 1111 1010 0011 (binary) � 0x1fa3

5. Hex --> binary
write down the 4 bit binary code for each hexadecimal digit:

– 0x39c8 (hex) � 0011 1001 1100 1000
6. Octal --> binary
write down the 8 bit binary code for each octal digit:

– 5018 (Octal) � 101 000 001

8

Transformation (3)
7. hex --> octal (2 steps)

1. hex --> binary
2. binary --> octal

Where the bases are growing powers of a common value, the transformation in
between is straightforward

– binary � base 4, octal � hexadecimal, etc…
Examples:
Transformation from base 3 to base 9
2100122 (base 3)

One base 9 digit is substituted for each 2 base 3 digits.
base 3 9

00 0
01 1
02 2
10 3
11 4
12 5
20 6
21 7
22 8

2 10 01 22 (base 3) � 2318 (base 9)

Exercises
Convert the following decimal numbers first to binary and

then to hexadecimal: [4 marks] 2710 12110

Convert the following unsigned hexadecimal numbers to
octal: [4 marks] 225516 11EC316

The number 23310 is equal to the following:
1. 101010012

2. 110010012

3. 111110012

4. 111010012

The number 2338 is equal to the following:
1. 15010
2. 16410
3. 15510
4. 15910

