COMPSCI 210 S1T 2005 Tutorial Five -------Data Representation

Aim for the tutorial:

In this tutorial, we will study examples for cover all knowledge of Data Representation. How to represent binaries, transform, and operate. What is Decimal, binary, octal, and hexadecimal Number representation? Transform octal number to decimal number, hexadecimal number to octal number and so on. Also we need know what different when we represent unsigned and signed number in binary. The 1's complement representation and the 2 's complement representation, arithmetic with 1 's complement and 2's complement.

1. Number represent in different base number:

Number	$\begin{aligned} & \text { Decimal(base } \\ & \text { 10) } \end{aligned}$	binary (base 2 in four bit)	octal(base8)	hexadecimal(bas e 16)
0	0	0000	0	0
1	1	0001	1	1
2	2	0010	2	2
3	3	0011	3	3
4	4	0100	4	4
5	5	0101	5	5
6	6	0110	6	6
7	7	0111	7	7
8	8	1000	//	8
9	9	1001	//	9
10	10	1010	//	A
11	11	1011	//	B
12	12	1100	//	C
13	13	1101	//	D
14	14	1110	//	E
15	15	1111	//	F
\ldots	\ldots	//	//	//

Number	Decimal(base 10)	binary (base 2 in 12 bit)	octal(base8)	hexadecimal(base 16)
1	1	000000000001	1	1
2	2	000000000010	2	2
4	4	000000000100	4	4
8	8	000000001000	10	8
16	16	000000010000	20	10
32	32	000000100000	40	20
64	64	000001000000	100	30
128	128	000010000000	200	80
256	256	000100000000	400	100
512	512	001000000000	1000	200
1024	1024	010000000000	2000	400
2048	2048	100000000000	4000	800

2. Transformation of the number:

The powers of ten are determined by the position relative to the decimal point. Using positional coefficients and weights we can express any weighted number System in the following generalized form:
$\mathbf{X}=\mathbf{X n W n}_{n}+\mathbf{X n - 1} \mathbf{W n - 1}+\ldots+\mathbf{X}-1 \mathbf{W}-1+\ldots+\mathbf{X}-\mathrm{mW}-\mathrm{m}($ follow given condition in the lecture)
2.1 transform binary, octal, and hexadecimal to decimal

11001 (base 2) is:
$11001_{2}=1 \times 2^{* *} 4+1 \times 2^{* *} 3+0 \times 2^{* *} 2+0 \times 2^{* *} 1+1 \times 2^{* *} 0=25_{10}$
11361 (base 8) is:
$113618=1 \times 8^{* *} 4+1 \times 8^{* *} 3+3 \times 8^{* *} 2+6 \times 8^{* *} 1+1 \times 8^{* *} 0=4849_{10}$
11ACF (base 16) is:
$11 \mathrm{ACF}_{16}=1 \times 16^{* *} 4+1 \times 16^{* * 3}+10 \times 16^{* *} 2+12 \times 16^{* *} 1+1 \times 16^{* *} 0=72399_{10}$
2.2 transform decimal, octal, and hexadecimal to binary
method: subtract largest power of 2 smaller than 51 until you reach 1 :
$51_{10}=32+16+2+1=2 * * 5+2 * * 4+0+0+2 * 1+2 * 0=110012$
Tip: Best way to transform from decimal to octal is to go via Binary Octal representation to binary representation
$3458=3 \times 8^{* *} 2+4 \times 8^{* *} 1+5 \times 8^{* *} 0$
In Binary: $011100101 \rightarrow 011100101_{2}$
$38 \mathrm{~F}_{16}=3 \times 16^{* *} 2+8 \times 16^{* *} 1+15 \times 6{ }^{* *} 0$
In Binary: $001110001111 \rightarrow 0011100011112$
2.3 transform binary, decimal, and hexadecimal to octal
$111001101011_{2}=111001101011=71538$
$51_{10}=32+16+2+1=2 * * 5+2 * * 4+0+0+2 * 1+2 * 0=110012 \rightarrow \underline{0} 110012 \rightarrow 318$ (please group by 3its starting from lsb)
$2 \mathrm{EF} 7816=00101110111101111_{10002}=\underline{0} 001011101111011110002=5675708$
2.4 transform binary, octal, and decimal to hexadecimal
$10101001110101011_{2}=\underline{0001} 0101001110101011_{2}=153 \mathrm{AB}_{16} \quad($ please group by 4 its starting from lsb)
$376728 \rightarrow 0111111101110102 \rightarrow \underline{0} 0111111101110102 \rightarrow 3 \mathrm{FBA}_{16}$

```
165610= 1024+512+64+32+16+8=2**10+2**9+2**6+2**5+2**4+2**3 =110011110002 }->\underline{0}11
0111 10002 -> 67816
```


3. Binary arithmetic:

value	Sing Magnitude	Offset Binary	1's complement	2's complement
$+7$	$\underline{0} 111$	1111	0111	0111
+6	$\underline{0110}$	1110	0110	0110
+5	$\underline{0101}$	1101	0101	0101
+4	$\underline{0} 100$	1101	0100	0100
+3	$\underline{0} 011$	1100	0011	0011
+2	$\underline{0} 010$	1011	0010	0010
+1	$\underline{001}$	1010	0001	0001
0	$\underline{0} 000$	1000	0000	0000
-1	1001	0111	1110	1111
-2	1010	0110	1101	1110
-3	1011	0101	1100	1101
-4	$\underline{1100}$	0100	1011	1100
-5	$\underline{1101}$	0011	1010	1011
-6	$\underline{1110}$	0010	1001	1010
-7	1111	0001	1000	1001
-8	//	0000	//	1000
-0	1000	//	1111	//

All the numbers you've looked at so far have been positive whole numbers. There is no equivalent in binary to the minus sign so other ways have been devised to represent negative values. The two most widely used are: Sign magnitude and two's complement.

The rules for binary arithmetic are shown in the table below.

$0+0$	$=0$
$1+0$	$=1$
$1+1$	$=10$
$1+1+1$	$=11$

This means that a 4-bit number cannot represent any value greater than 7 because the 4 th bit is used to indicate the sign. However the 4 bits can still represent 15 different values when the negative numbers are included. These values are:
$-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7$
If there was no sign bit, 4 bits would represent the following 16 values:

$\mathbf{0 , 1}, 2,3,4,5,6,7,8,9,10,11,12,13,14,15$

Decimal arithmetic uses different operations for addition and subtraction. Using two's complement, subtraction is carried out using the machine operation for addition. This system works for bit strings of any length. The examples given will use 8 or 4-bit strings for simplicity but a working PC is likely to use 32 or 64-bit strings. The first bit is again used to indicate a negative value but it also bears the position value.

Converting a number to its negative form is a two stage process:
complement (invert) all the bits (the result at this stage is known as one's complement).
add 1.
If you're working with 8 -bit strings all values must appear as 8 bits and the possible values will be in the range - 128 to 127.

Two's Complement representation using 4 bit binary strings

1011 means $-8+3$

Example of Subtraction:

The processor treats subtraction like the addition of a negative number.
$A-B=A+(-B)$
All examples will be shown using 8 bit two's complement strings.

Subtraction is a 3 stage process:
invert the number to be subtracted; add 1;
perform addition.

- Subtraction of 19 from 53

To evaluate 53-19

Step 1 19	00010011
invert	11101100
Step 2 add 1	00000001
	11101101

Step 3 add 53 and -19 00110101
11101101
1
00100010
The bit on the left is overflow and is not included in the result. So the result of $53-19=00100010$. You should always check the answer by converting it to decimal.

$$
\begin{array}{r}
0010001032+2=34 \\
53-19=34
\end{array}
$$

Overflow and Underflow in addition:
Adding two numbers with different signs can never produce an overflow or underflow.
Adding two positive numbers produces an overflow if the sign of the result is negative.
Adding two negative numbers produces an underflow if the sign of the result is positive.
Note that in one case there is a carry out and in the other there is not

$(+7) 0111$	$(-7) 1001$
$(+6) 0110$	$(-4) 1100$
$(+13) 1101$	$(-11) 0101$

Overflow and Underflow in Subtraction:
Subtracting two numbers with the same signs can never produce an overflow or underflow. Subtracting a negative number from a positive number produces an overflow if the sign of the result is negative.
Subtracting a positive number from a negative number produces an underflow if the sign of the result is positive.

$(+4)$	01000100	-4	11001100
$-(-5)$	-10110101	$-(+5)$	-01011011
+9	1001	-9	0111

4. Exercise:

Question 1:

Can you work out why there are only 15 values when you use sign and magnitude but 16 when there is no sign bit?
Answer:
If you write out all the values for both representations, you'll see that there are two different versions of zero in sign and magnitude $(0=0000$ and $-0=1000)$. These mean exactly the same.

Question 2:

What is two's complement number for 10001010 ?

Answer:

10001010
$=-128+0+0+0+8+0+2+0$
$=-118$

Question 3:

To convert $1101\left(13_{10}\right)$ to its negative:

Answer:

.write the number in 8 bit format 00001101
invert the bits
11110010
add 1
00000001
11110011

It is easy to check the answer:
11110011
$=-128+64+32+16+0+0+2+1$
$=-128+115$
$=-13$

Q4 What is the decimal value of the unsigned 8-bit integer at location 0021
a. Hex value at location 0021 is 9 B
b. Convert 9B to binary

9	B						
1	0	0	1	1	0	1	1
c. Convert binary to decimal							
\rightarrow128 64 32 16 8 4 2 1 1 0 0 1 1 0 1 1 $128+16+8+2+1$							

d. Add up $128+16+8+2+1=155$

Decimal value is 155
Q5 What is the octal value of the unsigned 8-bit integer at location 002B
a. Hex value at location 002B is CA
b. Convert to binary

Octal value is 312
Q6 What is result (in hexadecimal) of adding the 8-bit unsigned integers at locations 0058 and 005F

Hex value at 0058 is 54 , Hex value at 005 F is 04
a. Convert to 54 binary

c. Convert 04 to binary

0	4							
0	0	0	0	0	1	0	0	

d. Convert binary to decimal

\longrightarrow| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

$=4$
d. Add decimal values $84+4=88$
e. Convert decimal 88 to binary

128	64	32	16	8	4	2	1
0	1	0	1	1	0	0	0

f. Convert binary to hex

128	64	32	16	8	4	2	1
128							
0	1	0	1	1	0	0	0
5	8						

Hex value of sum is 58
Q7 What is result (in hexadecimal) of adding the decimal value 63 to the 8-bit unsigned integer at location 0047

Hex value at location 0047 is 28
a. Convert Hex 28 to binary

b. Convert binary to decimal

128	64	32	16	8	4	2	1
0	0	1	0	1	0	0	0

c. Decimal addition $63+40=103$
d. Convert decimal 103 to binary

128	64	32	16	8	4	2	1
0	1	1	0	0	1	1	1

e. Convert to binary to hex

0	1	1	0	0	1	1	1
6							

Hex value of sum is 67
In questions 5,6 and 7 signed 8 bit integers are represented in 2's complement form
Q8 What is the decimal value of the signed 8-bit integer at location 007D
Hex value at location 007D is 8 C
a. Convert to binary

8							
1	0	0	0	1	1	0	0

b. Inspect the sign bit $=1$, number is negative
c. Convert from 2's complement to normal binary
(i) Subtract 1

1	0	0	1	1	1	0	0
0	0	0	0	0	0	0	1
1	0	0	0	1	0	1	1

(ii)

Invert the bits, (turn 1 to 0 and 0 to 1)

1	0	0	0	1	0	1	1
0	1	1	1	0	1	0	0

d. Convert binary to decimal

128	64	32	16	8	4	2	1
128							
0	1	1	1	0	1	0	0

$=64+32+16+4=116$
e. Add back the sign noted in b

Decimal value is -116
Q9 What is the result (in hexadecimal) of adding the 8-bit signed at locations 008B and 0091
Hex value at 008 B is 9 D , hex value at 0091 is 27
Working with 9D
a. Convert hex to binary

9							
1	0	0	1	1	1	0	1

b. Inspect the sign bit $=1$, number is negative
c. Convert from 2's complement to normal binary
(i) Subtract 1

1	0	0	1	1	1	0	1
0	0	0	0	0	0	0	1
1	0	0	1	1	1	0	0

(ii) Invert the bits, (turn 1 to 0 and 0 to 1)

1	0	0	1	1	1	0	0
0	1	1	0	0	0	1	1

d. Convert binary to decimal

128	64	32	16	8	4	2	1
0	1	1	0	0	0	1	1

$=64+32+2+1=99$
e. Add back the sign noted in b

Decimal value is -99
Working with 27
f. Convert hex to binary

2			7				
0	0	1	0	0	1	1	1

g. Inspect the sign bit $=0$, number is positive
h. Convert from normal binary (2's complement only for negative numbdrs)
i. Convert binary to decimal

128	64	32	16	8	4	2	1
0	0	1	0	0	1	1	1

j. Result of decimal addition $-99+39=-60$
k. Check sign of result (negative)

1. Convert decimal to binary, need 2 's complement since it is negative
m. Convert 60 to binary

128	64	32	16	8	4	2	1
0	0	1	1	1	1	0	0

m . Convert to 2 's complement
(i) Invert the bits, (turn 1 to 0 and 0 to 1)

0	0	1	1	1	1	0	0
1	1	0	0	0	0	1	1

(ii)

1	1	0	0	0	0	1	1
0	0	0	0	0	0	0	1
1	1	0	0	0	1	0	0

n. Convert binary to hex

1	1	0	0	0	1	0	0
C							

Hex value of result of addition is C 4
Q10 What is signed 8-bit integer that results from adding the decimal
value 63 to the 8 -bit signed integer at location 00BF (show as hexadecimal)
Hex value at 00 BF is 92
a. Convert hex to binary

9				2			
1	0	0	1	0	0	1	0

b. Inspect the sign bit $=1$, number is negative
c. Convert from 2's complement to normal binary
(i) Subtract 1

1	0	0	1	0	0	1	0
0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	1

(ii)
Invert the bits, (turn 1 to 0 and 0 to 1)

1	0	0	1	0	0	0	1	
0	1	1	0	1	1	1	0	

d. Convert binary to decimal

$=64+32+8+4+2=110$
e. Add back the sign noted in b

Decimal value is -110
f. Result of decimal addition $-110+63=-47$
g. Convert -47 to binary, note that it is negative to 2 's complement is used
(i) convert 47 to binary

(ii) Invert the bits

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

(iii)
Add 1

1	1	0	1	0	0	0	0

							1
1	1	0	1	0	0	0	1

h. Convert binary to hex

Hex result of addition is D1

5. Reference:

http://scholar.hw.ac.uk/site/computing/topic1.asp?outline=no
http://www-ee.eng.hawaii.edu/Courses/EE150/Book/chap1/subsectio n2.1.2.1.html

