
TEST
(Version 1:4)

COMPSCI.210.F.T

Computer Systems

29th April 2002, 13:35 - 14:25pm

(TIME ALLOWED: 50 MINUTES)

DO NOT START, DO NOT OPEN SCRIPT!

UNTIL INSTRUCTED TO DO SO.

Please write your family name, given name and student ID

at the top of every page. Answer all questions on the test paper

in the spaces provided. The test is out of 100 (as a guide: allow

approx 1 minute for every 2 marks). The test is worth 10% of your

�nal grade.

No calculators are allowed!

There are three parts to the test. Part A (worth 30%) is on Data

Representation Part B (worth 20%) is on UNIX and Part C (worth

50%) is on the alpha assembly language.

{ 2 { COMPSCI.210.F.T

Print name clearly:

PART A: Number representation (worth 30% = 30 Marks)

A. 1

Convert the following decimal numbers �rst to binary and then to hexadecimal: [4 marks]

2310 12310

101112 11110112

1716 7B16

A. 2

Perform the following operations in 8-bit two's complement arithmetic showing explicitly the over-

ow and carry outcomes: [6 marks]

0110 1100 1101 0011

+ 0011 0101 + 1011 0100

(0) 1010 0001 overflow! (1) 1000 0111 no overflow!

A. 3

Convert the following unsigned hexadecimal numbers to octal: [4 marks]

22516 1EC316

001j000j100j101j 0j001j111j011j000j011j
10458 0173038

A. 4

Convert the decimal -43.75 into binary oating point assuming the following 16 bit format: the sign

bit is in MSB position. The next �ve (5) bits are allocated to storing the exponent which assumes

an XS31 representation, i.e., o�set binary with k = 31, and the remaining ten (10) LSB's record

the fraction, stored according to the IEEE normalisation convention, i.e., 1:M . [6 marks]

Now this question had a problem which only about 15% or so of students recognised. In setting

k = 31 where the exponent is limited to 5 bits, means the oating point format supported here is

asymmetric Not what was really intended.

�43:75 implies sign bit = 1, 43:7510 = 101011:112 = 1:0101111 � 2
5

Thus the fractional part will be 0101111000, the exponent is 31 + 5 = 36 = 1001002 clearly one

bit too big for the allotted 5 bits. Presumably in the current format this is truncated to 5 bits: the

result is: 1 00100 0101111000

A. 5

What is the worst case error implicit in the oating point format described in the previous question?

You may express this either as a ratio, or as a percentage. [3 marks]

The largest error may arise from round-o�, a `1' in the in the fractional part rounding in to the

10th place. Since we assume the smallest fractional value is 1:0000000000 then the most the error

can be is �2�11=1:0000000000. Expressed as percentage this is 2�11 � 100

1
% � :05%

A. 6

Take the 2's complement of the following 8-bit binary numbers: [4 marks]

0010 1101 1000 0111

1101 0010 0111 1000

+1 +1

1101 0011 0111 1001

A. 7

Convert the 4 characters \COMP" into the corresponding ASCII encoded, null delimited, hexadec-

imal string (see Appendix A): [3 marks]

From Appendix A we have the letters C O M P with ASCII hex codes given in lower left of each

box, thus COMP null delimited encodes as 434F4D5000

hexadecimal. [7 marks]

PART B: Subsystem components, UNIX, etc (worth 20% = 20 Marks)

terms:

[4 marks]

B. 1

Following is a diagram that shows a �le structure commencing at the root directory.

y , � () p

the output will be: bin file4 src unixbook

b. cd ./.. ; ls

harry joe mydir

{ 5 { COMPSCI.210.F.T

Print name clearly:

c. cd .. ; ls

harry joe mydir

d. echo *

bin src unixbook

B. 2

Assume that a �le called fruit contains a list:

apples

oranges

peaches

bananas

lemons

peaches

apricots

grapefruit

lemons.

Give a shell command (not a procedure) that converts the contents of the �le to a sorted list,

excluding duplicates, and saves this in a new �le called fruit list.

[4 marks]

sort -u fruit > fruit list

command newvar = string. Give a command that will display

{ 6 { COMPSCI.210.F.T

Print name clearly:

B. 3

Give a grep command that will output, from the �le fruit list (see previous question)

[4 marks]

a. all words in the list containing the letter a

grep a fruit list or grep "a" fruit list

b. all words containing at least two a's

grep "a.*a" fruit list

B. 4

Write down UNIX shell commands to achieve each of the following tasks:

[6 marks]

a. To combine two text �les Chapt1 and Chapt2 into a new single �le called book:

cat Chapt1 Chapt2 > book

b. To initiate a remote terminal session with a UNIX host called m3r.tcs.auckland.ac.nz:

telnet m3r.tcs.auckland.ac.nz

c. To change the current working directory to its parent directory:

cd ..

a screen-full at a time.

Part C (worth 50%)

C. 1

For each of the following, answer with a simple Yes or No. [3 marks per correct answer]

1. beq $a0, end; implies, if a0 is equal to 1, branch to the label end.

No. You will branch to label end only if $a0 equal 0

2. The instructions addq $T0, $T1 and addq $T0, $T1, $T1 do the same thing.

No. The first does T0 = T0 + T1, the second does T1 = T0 + T1

3. On the alpha, the 64 integer registers are each composed of 32 bits.

No. On the alpha, the 32 integer registers are each composed of 64 bits

4. Both br and bsr instructions modify the $RA register (return address register).

No. The $RA register holds the Program counter register content when the bsr

instruction is called. The br instruction does not change the $RA register.

5. If I do not answer this question correctly, I'll get 3 marks.

To obtain 3 marks, you need to answer this question correctly.

Accepted answers were No or False.

C. 2

Suppose we have the following data in memory:

Location: Contents:

0x1000000 0x123456789abcdef0

0x1000008 0x9988776655443322

Fill out the table below to show, in hexadecimal, the given contents of memory (assume memory is

byte addressable): [10 marks]

memory address contents memory address contents

0x1000000 f0 0x1000008 22

0x1000001 de 0x1000009 33

0x1000002 bc 0x100000a 44

0x1000003 9a 0x100000b 55

0x1000004 78 0x100000c 66

0x1000005 56 0x100000d 77

0x1000006 34 0x100000e 88

0x1000007 12 0x100000f 99

Assuming the initial memory content from the previous question, �ll out the table below to show, in

hexadecimal, the amended contents of memory, as well as the register contents, after the execution

of the instructions listed below: [25 marks]

ldiq $T0, 0x1000000; T0 = 0x1000000

ldw $T1, 2($T0); T1 = 0xffffffffffff9abc

ldbu $T2, 6($T0); T2 = 0x34 or T2 = 0x0000000000000034

sll $T1, 56, $T3; T3 = 0xbc00000000000000 (shift 56 bits to the left)

sra $T3, 8, $T4; T4 = 0xffbc000000000000 (shift 8 bits to the right.Mind the MSB.)

addq $T3, $T4, $T5; T5 = 0xbbbc000000000000 (No overflow)

xor $T4, $T5, $T6; T6 = 0x4400000000000000 (Exclusive or)

cmpeq $T5, $T6, $T7; T7 = 0x0 (T5 and T6 are not equal)

cmovne $T7, -5, $T7; T7 = 0x0 (conditional move only if T7 is not equal to 0)

stl $T1, ($T0); (store 4 bytes at starting address 0x1000000)

stw $T7, 0x8($T0); (store 2 bytes at starting address 0x1000008)

stw $T2, 5($T0); Storing address not aligned to word size

memory address contents memory address contents register register contents

0x1000000 bc 0x1000008 00 T0 0x1000000

0x1000001 9a 0x1000009 00 T1 0x������9abc

0x1000002 � 0x100000a 44 T2 0x0000000000000034

0x1000003 � 0x100000b 55 T3 0xbc00000000000000

0x1000004 78 0x100000c 66 T4 0x�bc000000000000

0x1000005 56 0x100000d 77 T5 0xbbbc000000000000

0x1000006 34 0x100000e 88 T6 0x4400000000000000

0x1000007 12 0x100000f 99 T7 0x0

{ 9 { COMPSCI.210.F.T

Print name clearly:

Rough working area (will not be marked).

{ 10 { COMPSCI.210.F.T

Print name clearly:

Rough working area (will not be marked).

Appendix A

b7

b6

b5

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

BITS

b4 b3 b2 b1

CONTROL
SYMBOLS

NUMBERS
UPPER CASE LOWER CASE

0 0 0 0

0

NUL
0 0

16

DLE
10 20

32

SP
20 40

48

0
30 60

64

@
40 100

80

P
50 120

96

`
60 140

112

p
70 160

0 0 0 1

1

SOH
1 1

17

DC1
11 21

33

!
21 41

49

1
31 61

65

A
41 101

81

Q
51 121

97

a
61 141

113

q
71 161

0 0 1 0

2

STX
2 2

18

DC2
12 22

34

"
22 42

50

2
32 62

66

B
42 102

82

R
52 122

98

b
62 142

114

r
72 162

0 0 1 1

3

ETX
3 3

19

DC3
13 23

35

#
23 43

51

3
33 63

67

C
43 103

83

S
53 123

99

c
63 143

115

s
73 163

0 1 0 0

4

EOT
4 4

20

DC4
14 24

36

$
24 44

52

4
34 64

68

D
44 104

84

T
54 124

100

d
64 144

116

t
74 164

0 1 0 1

5

ENQ
5 5

21

NAK
15 25

37

%
25 45

53

5
35 65

69

E
45 105

85

U
55 125

101

e
65 145

117

u
75 165

0 1 1 0

6

ACK
6 6

22

SYN
16 26

38

&
26 46

54

6
36 66

70

F
46 106

86

V
56 126

102

f
66 146

118

v
76 166

0 1 1 1

7

BEL
7 7

23

ETB
17 27

39

'
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

g
67 147

119

w
77 167

1 0 0 0

8

BS
8 10

24

CAN
18 30

40

(
28 50

56

8
38 70

72

H
48 110

88

X
58 130

104

h
68 150

120

x
78 170

1 0 0 1

9

HT
9 11

25

EM
19 31

41

)
29 51

57

9
39 71

73

I
49 111

89

Y
59 131

105

i
69 151

121

y
79 171

1 0 1 0

10

LF
A 12

26

SUB
1A 32

42

*
2A 52

58

:
3A 72

74

J
4A 112

90

Z
5A 132

106

j
6A 152

122

z
7A 172

1 0 1 1

11

VT
B 13

27

ESC
1B 33

43

+
2B 53

59

;
3B 73

75

K
4B 113

91

[
5B 133

107

k
6B 153

123

f
7B 173

1 1 0 0

12

FF
C 14

28

FS
1C 34

44

,
2C 54

60

<
3C 74

76

L
4C 114

92

n
5C 134

108

l
6C 154

124

j
7C 174

1 1 0 1

13

CR
D 15

29

GS
1D 35

45

�
2D 55

61

=
3D 75

77

M
4D 115

93

]
5D 135

109

m
6D 155

125

g
7D 175

1 1 1 0

14

SO
E 16

30

RS
1E 36

46

.
2E 56

62

>
3E 76

78

N
4E 116

94

^
5E 136

110

n
6E 156

126

~
7E 176

1 1 1 1

15

SI
F 17

31

US
1F 37

47

/
2F 57

63

?
3F 77

79

O
4F 117

95

5F 137

111

o
6F 157

127

DEL
7F 177

LEGEND: dec

CHAR
hex oct

Figure 1: American Standard Code for Information Interchange (ASCII)

