TEST (Version 1:4) COMPSCI.210.F.T Computer Systems

29th April 2002, 13:35 - 14:25pm

(TIME ALLOWED: 50 MINUTES)

DO NOT START, DO NOT OPEN SCRIPT!

UNTIL INSTRUCTED TO DO SO.

Please write your family name, given name and student ID at the top of every page. Answer all questions on the test paper in the spaces provided. The test is out of 100 (as a guide: allow approx 1 minute for every 2 marks). The test is worth 10% of your final grade.

No calculators are allowed!

There are three parts to the test. Part A (worth 30%) is on Data Representation Part B (worth 20%) is on UNIX and Part C (worth 50%) is on the alpha assembly language.

PART A: Number representation (worth 30% = 30 Marks)

A. 1

Convert the following decimal numbers first to binary and then to hexadecimal: [4 marks]

23_{10}	123_{10}	
10111_{2}	11110112	
17_{16}	$7B_{16}$	

A. 2

Perform the following operations in 8-bit two's complement arithmetic showing explicitly the overflow and carry outcomes: [6 marks]

0110 1100	1101 0011
+ 0011 0101	+ 1011 0100
(0) 1010 0001 overflow!	(1) 1000 0111 no overflow!

 $1EC3_{16}$

A. 3

Convert the following unsigned hexadecimal numbers to octal:

[4 marks]

225_{16}

001 000 100 101	0 001 111 011 000 011	
1045_{8}	017303_8	

A. 4

Convert the decimal -43.75 into binary floating point assuming the following 16 bit format: the sign bit is in MSB position. The next five (5) bits are allocated to storing the exponent which assumes an XS31 representation, i.e., offset binary with k = 31, and the remaining ten (10) LSB's record the fraction, stored according to the IEEE normalisation convention, i.e., 1.M. [6 marks]

Now this question had a problem which only about 15% or so of students recognised. In setting k = 31 where the exponent is limited to 5 bits, means the floating point format supported here is asymmetric Not what was really intended.

 $-43.75 \text{ implies sign bit} = 1, 43.75_{10} = 101011.11_2 = 1.0101111 \times 2^5$

Thus the fractional part will be 0101111000, the exponent is $31 + 5 = 36 = 100100_2$ clearly one bit too big for the allotted 5 bits. Presumably in the current format this is truncated to 5 bits: the result is: $1\ 00100\ 0101111000$

A. 5

What is the worst case error implicit in the floating point format described in the previous question? You may express this either as a ratio, or as a percentage. [3 marks]

The largest error may arise from round-off, a '1' in the in the fractional part rounding in to the 10th place. Since we assume the smallest fractional value is 1.00000000000 then the most the error can be is $\pm 2^{-11}/1.0000000000$. Expressed as percentage this is $2^{-11} \times \frac{100}{1}\% \approx .05\%$

A. 6

Take the 2's cc	omplement of the following	8-bit binary numbers:	[4	marks]
-------------------	----------------------------	-----------------------	----	--------

0010 1101	1000 0111	
1101 0010	0111 1000	
+1	+1	
1101 0011	0111 1001	
1101 0011	0111 1001	

A. 7

Convert the 4 characters "COMP" into the corresponding ASCII encoded, null delimited, hexadecimal string (see Appendix A): [3 marks]

From Appendix A we have the letters C O M P with ASCII hex codes given in lower left of each box, thus COMP null delimited encodes as 434F4D5000

hexadecimal.

[7 marks]

•				· ·	-
the output will be: bin	file4	src	unixbook		

b. cd B: Subsystem components, UNIX, etc (worth 20% = 20 Marks) terms:

harry joe mydir

B. 1

[4 marks]

Following is a diagram that shows a file structure commencing at the root directory.

Print name clearly:

 $c.\ {\tt cd}$... ; ls

harry joe mydir

d. echo \ast

bin src unixbook

B. 2

Assume that a file called fruit contains a list: apples oranges peaches bananas lemons peaches apricots grapefruit lemons.

Give a shell command (not a procedure) that converts the contents of the file to a sorted list, excluding duplicates, and saves this in a new file called fruit_list.

[4 marks]

sort -u fruit > fruit_list

command newvar = string. Give a command that will display

Print name clearly:

Give a grep command that will output, from the file fruit_list (see previous question)

[4 marks]

a. all words in the list containing the letter ${\tt a}$

grep a fruit_list or grep "a" fruit_list

b. all words containing at least two a's

grep "a.*a" fruit_list

B. 4

Write down UNIX shell commands to achieve each of the following tasks:

[6 marks]

a. To combine two text files Chapt1 and Chapt2 into a new single file called book:

cat Chapt1 Chapt2 > book

b. To initiate a remote terminal session with a UNIX host called m3r.tcs.auckland.ac.nz:

telnet m3r.tcs.auckland.ac.nz

c. To change the current working directory to its parent directory:

cd ..

a screen-full at a time.

C. 1
For each of the following, answer with a simple Yes or No. [3 marks per correct answer]
1. beq \$a0, end; implies, if a0 is equal to 1, branch to the label end.

No. You will branch to label end only if \$a0 equal 0

2. The instructions addq \$TO, \$T1 and addq \$TO, \$T1, \$T1 do the same thing.

No. The first does T0 = T0 + T1, the second does T1 = T0 + T1

3. On the alpha, the 64 integer registers are each composed of 32 bits.

No. On the alpha, the 32 integer registers are each composed of 64 bits

4. Both br and bsr instructions modify the \$RA register (return address register).

No. The RA register holds the Program counter register content when the bsr instruction is called. The br instruction does not change the RA register.

5. If I do not answer this question correctly, I'll get 3 marks.

To obtain 3 marks, you need to answer this question correctly. Accepted answers were No or False.

C. 2 Suppose we have the following data in memory:

Location:	Contents:
0x1000000	0x123456789abcdef0
0x1000008	0x9988776655443322

Fill out the table below to show, in hexadecimal, the given contents of memory (assume memory is byte addressable): [10 marks]

memory address	contents	memory address	contents
0x1000000	$f\theta$	0x1000008	22
0x1000001	de	0x1000009	33
0x1000002	bc	0x100000a	44
0x1000003	9a	0x100000b	55
0x1000004	78	0x100000c	66
0x1000005	56	0x100000d	77
0x1000006	34	0x100000e	88
0x1000007	12	0x100000f	99

Assuming the initial memory content from the previous question, fill out the table below to show, in hexadecimal, the amended contents of memory, as well as the register contents, after the execution of the instructions listed below: [25 marks]

ldiq	\$ТО,	0x1000000; T0 = 0x1000000
ldw	\$T1,	2(\$T0); T1 = 0xffffffffffff9abc
ldbu	\$T2,	6(\$T0); T2 = 0x34 or T2 = 0x00000000000034
sll	\$T1,	56, \$T3; T3 = 0xbc000000000000000000 (shift 56 bits to the left)
sra	\$ТЗ,	8, \$T4; T4 = 0xffbc00000000000 (shift 8 bits to the right.Mind the MSB.)
addq	\$ТЗ,	\$T4, \$T5; T5 = 0xbbbc000000000000 (No overflow)
xor	\$T4,	\$T5, \$T6; T6 = 0x440000000000000000 (Exclusive or)
cmpeq	\$T5,	T6, T7; T7 = 0x0 (T5 and T6 are not equal)
cmovne	\$T7,	-5, $T7$; T7 = 0x0 (conditional move only if T7 is not equal to 0)
stl	\$T1,	(\$T0); (store 4 bytes at starting address 0x1000000)
stw	\$T7,	<pre>0x8(\$T0); (store 2 bytes at starting address 0x1000008)</pre>
stw	\$T2,	5(\$T0); Storing address not aligned to word size

memory address	contents	memory address	contents	register	register $contents$
0x1000000	bc	0x1000008	00	$T\theta$	0x1000000
0x1000001	9a	0x1000009	00	<i>T1</i>	$0x\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f\!f$
0x1000002	ff	0x100000a	44	T2	0x00000000000000034
0x1000003	ff	0x100000b	55	T3	0xbc00000000000000000000000000000000000
0x1000004	78	0x100000c	66	T4	0xffbc00000000000000
0x1000005	56	0x100000d	77	T5	0xbbbc00000000000000
0x1000006	34	0x100000e	88	T6	0x4400000000000000000
0x1000007	12	0x100000f	$\overline{g}g$	T7	0x0

Rough working area (will not be marked).

Rough working area (will not be marked).

Appen	div	Α
Appen	uix	\boldsymbol{n}

	b7			0			0			0			0			1			1			1			1		
		b6			0			0			1			1			0			0			1			1	
			h5			0			1			0			1			0			1			0			1
BITS																											
				CONTROL					SYMBOLS					LIPPER CASE					LOWER CASE								
			CONTROL					NUMBERS					UFFLIX CASE														
b4	b3	b2	b1	0									40														
0	0	0	0	0	NUL		16	DIF		32	SP		48	0		64	0		80	Р		96	,		112	n	
				0		0	10		20	20	<u> </u>	40	30 49	•	60	40 65	_	100	50 81	-	120	60 97		140	70	r	160
0	0	0	1	1	SOH		11	DC1		55	ļ		45	1		00	А		01	Q		51	а		115	q	
				1 2		1	11 18		21	21 34		41	31 50		61	41 66		101	51 82	-	121	61 98		141	71 114		161
0	0	1	0		STX	_		DC2			"			2			В			R			b			r	
				2		2	12 19		22	22 35		42	32 51		62	42 67		102	52 83		122	62 99		142	72 115		162
0	0	1	1		ETX		1.9	DC3	0.0	0.0	#	49	• •	3	6.9	49	С	109	50	S	10.2	6.9	с	149	7.9	s	169
				4		0	20		20	23 36		40	52		03	43 68		105	84		120	100		140	116		103
0	1	0	0	4	ΕΟΤ	4	14	DC4	24	24	\$	44	34	4	64	44	D	104	54	Т	124	64	d	144	74	t	164
				5			21			37			53		01	69		101	85			101			117		
0	1	0	1	5	ENQ	5	15	NAK	25	25	%	45	35	5	65	45	Е	105	55	U	125	65	е	145	75	u	165
		4	0	6	1.014		22	0.41		38	•		54			70	-		86			102			118		
0	1	1	0	6	ACK	6	16	SYN	26	26	&	46	36	6	66	46	F	106	56	V	126	66	t	146	76	V	166
0	1	1	1	7	DEL		23	гтр		39	,		55	7		71	<i>c</i>		87	14/		103			119		
0	1	1	1	7	DEL	7	17	EID	27	27		47	37	1	67	47	G	107	57	vv	127	67	g	147	77	w	167
1	0	0	0	8	DC		24	CAN		40	(56	0		72	ц		88	v		104	L		120		
	0	0	0	8	DD	10	18	CAN	30	28	l	50	38	0	70	48	П	110	58	^	130	68	n	150	78	X	170
1	0	0	1	9	нт		25	ЕM		41	ì		57	0		73	ī		89	v		105	;		121	v	
		0	-	9		11	19		31	29)	51	39	9	71	49		111	59	I	131	69		151	79	у	171
1	0	1	0	10	LE		26	SUB		42	*		58			74	ı.		90	7		106	i		122	7	
				A		12	1A	500	32	2 A		52	3 A		72	4 A	5	112	5 A		132	6 A	J	152	7 A		172
1	0	1	1	11	VТ		27	ESC		43	+		59	:		75	К		91	ſ		107	k		123	{	
				B		13	1B		33	2B		53	3B	,	73	4B		113	5B	L	133	6B		153	7B	ι 	173
1	1	0	0	12	FF		20	FS		44			00	<		10	L		92	\backslash		108			124		
				C 13		14	1C 29		34	2C 45	,	54	3C 61		74	4C		114	5C 93	1	134	6C		154	7C		174
1	1	0	1	10	CR		25	GS		40	_		01	=			М		50	1		105	m		120	}	
				D 14		15	1D 30		35	2D 46		55	3D 62		75	4D 78		115	5D 94	-	135	6D 110		155	7D 126		175
1	1	1	0		SO		00	RS		10				>			Ν			^			n		120	~	
				E 15		16	1E 31		36	2E 47		56	3E 63		76	4E 79		116	5E 95		136	$6E \\ 111$		156	7 E 127		176
1	1	1	1		SI			US			/			?			0			_			о			DEL	
				F		17	1F		37	2F		57	3F		77	4F		117	5 F		137	6F		157	7 F		177
LEGEND								dec	CHA	R																	
Ľ									hex		oct	J															

Figure 1: American Standard Code for Information Interchange (ASCII)