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Main thesis

Randomness

is equivalent to

Differentiability
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Main thesis, in more detail

A real z ∈ [0,1] satisfies an algorithmic randomness notion
(such as Martin-Löf random, computably random)

⇐⇒

each effective function in an appropriate
class of functions is differentiable at z.
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Computable functions on the unit interval

Definition
Let f : [0,1]→ R. We say that f is computable if

(a) For each rational q ∈ [0,1], the real f (q) is computable uniformly
in q.

(b) f is effectively uniformly continuous:
there is a computable h : N→ N such that for each n,

|x − y | < 2−h(n) implies |f (x)− f (y)| < 2−n.

Proposition
If a nondecreasing function f satisfies (a) and is continuous, then it is
already computable.
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Example: computable randomness and differentiability

I Computable randomness is defined for infinite sequences Z of bits:
no computable betting strategy succeeds on Z .

I Via the binary expansion, this notion also makes sense for reals.

Theorem (Brattka, Miller, N: to appear)
A real z is computably random

⇐⇒

each computable monotone function
f : [0,1]→ R is differentiable at z.
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Computable randomness and differentiability:
Lipschitz functions

Different classes of functions can describe the same randomness
notion: instead of monotone, we can take Lipschitz functions.

Theorem (Freer, Kjos-Hanssen, N: to appear)
A real z is computably random

⇐⇒

each computable Lipschitz function
f : [0,1]→ R is differentiable at z.
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In this talk...

I We recall algorithmic randomness notions.

I We review classes of functions from classical real analysis, such as
functions of bounded variation, and Lipschitz functions.

I We characterize the algorithmic randomness notions in terms of
differentiability of effective functions in these classes.
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1 General background and motivation

2 Computable randomness: computable monotone functions,
computable Lipschitz functions

3 Martin-Löf randomness: computable functions of bounded variation

4 Schnorr randomness: Lipschitz functions that are computable in the
variation norm

5 Questions and further directions
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Being almost everywhere well-behaved

I Classically, to say a property holds for a “random” real in [0,1]

simply means that the property has Lebesgue measure 1.

I Several theorems in real analysis state that an appropriate function
is well-behaved at a “random” real.

Theorem (Lebesgue, 1904)
Let f : [0,1]→ R be non-decreasing. Then f ′(z) exists for a.e. z,
that is, with uniform probability 1.
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Algorithmic randomness notions

The idea in algorithmic randomness
z is random⇐⇒ z avoids each algorithmic null set.

I One has to specify a kind of algorithmic null sets.

I To do so, one introduces a test notion. Failing the test means to be
in the null set.

I For instance, a Martin-Löf test is a uniformly c.e. sequence of open
sets (Gm)m∈N in the unit interval such that λGm ≤ 2−m for each m.

I The algorithmic null set it describes is
⋂

m Gm.
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Understanding an algorithmic randomness notion
via analysis

The characterizations via differentiability can be used to better
understand the algorithmic randomness notion:

I Randomness notions of reals are preserved under maps such as
z →

√
z (computable bijections with positive derivative).

I Computable randomness is base invariant.

I An analog of computable randomness can be defined in spaces
other than the reals via differentiability of computable Lipschitz
functions.
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Understanding analysis via
algorithmic randomness notions

The results also yield a better understanding of the classical theorems.

I The exception sets for differentiability of nondecreasing functions
are simpler than the exception sets for bounded variation functions.

I We can calibrate, in the sense of reverse mathematics, the strength
of theorems saying that a certain function is a.e. well behaved.

I The benchmark principles have the form “for each oracle X there is
a set R that is random in X ”. An example of such a principle is
WWKL0, which is the existence principle for Martin-Löf random
sets.
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Tests versus functions

I We will convert tests to computable functions on the unit interval,
and conversely.

I A real fails the test⇐⇒ the function is non-differentiable at the real.

I A test concept for an algorithmic randomness notion

corresponds to

a natural class, taken from analysis, of effective functions.
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Upper and lower derivatives

Let f : [0,1]→ R. We define

Df (z) = lim sup
h→0

f (z + h)− f (z)

h

Df (z) = lim inf
h→0

f (z + h)− f (z)

h

Then

f ′(z) exists⇐⇒ Df (z) equals Df (z) and is finite.
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1 General background and motivation

2 Computable randomness: computable monotone functions,
computable Lipschitz functions

3 Martin-Löf randomness: computable functions of bounded variation

4 Schnorr randomness: Lipschitz functions that are computable in the
variation norm

5 Questions and further directions
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Randomness via betting strategies

Computable betting strategies are certain computable functions M
from binary strings to the non-negative reals.

I Let Z be a sequence of bits. When the player has seen the string
σ of the first n bits of Z , she can make a bet q, where
0 ≤ q ≤ M(σ), on what the next bit Z (n) is.

I If she is right, she gets q. Otherwise she loses q. Thus, we have

M(σ0) + M(σ1) = 2M(σ)

for each string σ.
I She wins on Z if M is unbounded along Z . We call a set Z

computably random if no computable betting strategy wins on Z .

Martin-Löf random⇒ computably random, but not conversely.
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Some facts on computable randomness

I Computable randomness lies strictly in between Martin-Löf and
Schnorr randomness. Such sets can have very slowly growing
initial segment complexity, e.g. K (Z �n) ≤ 2 log n.

I Left-c.e. computably random sets can be Turing incomplete. In fact
they exist in each high c.e. degree (N, Stephan, Terwijn 2005).

I Low for computably random⇒ computable (N 2005).

I There is a characterization by Downey and Griffiths (2004) in terms
of special ML-tests called “computably graded tests”.

I There is a characterization by Day (2009) via the initial segment
complexity given by “quick process machines”.
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Characterizing computable randomness via analysis

Theorem (Brattka, Miller, N: 2010)
A real z is computably random

⇐⇒

each computable non-decreasing function
f : [0,1]→ R is differentiable at z.

I To prove the implication⇐= (tests-to-functions), for each
computable betting strategy, we define a non-decreasing
computable function f .

I If the strategy succeeds on z, then f ′(z) does not exist.
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Tests-to-functions for computable randomness
I Let M be a computable betting strategy (also called a computable

martingale).
I Let µ be the measure induced by M. It is determined by its values

on the basic clopen sets: µ([σ]) = M(σ)2−|σ|.
I Let

gM(x) = µ[0, x ].

Then gM is nonincreasing, and gM(q) is computable for each
dyadic rational q.

I Since M(σ) = (gM(0.σ1)− gM(0.σ))/2−|σ| and M succeeds on z,
we have DgM(z) =∞.

Now suppose z is not computably random.
Then some computable martingale M with the savings property
succeeds on z.
In this case gM is continuous, and hence computable.
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Functions-to-tests for computable randomness

We now discuss the implication =⇒ of

Theorem (Brattka, Miller, N: 2010)
A real z is computably random⇐⇒ each computable non-decreasing

function f : [0,1]→ R is differentiable at z.

I For each non-decreasing computable function f , we build a
computable betting strategy.

I If f ′(z) does not exist, then the strategy succeeds on z.
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Turning nondecreasing functions into martingales

For the simplest case suppose that Dg(z) =∞ for g computable
nondecreasing. Then martingale M succeeds on z, where for a string
σ, we let

M(σ) =
g(0.σ + 2−|σ|)− g(0.σ)

2−|σ|
.

Thus M(σ) is the slope of g
between the points 0.σ and
0.σ + 2−|σ|. It is clear that
this is a martingale. For
instance, the following shows
2M(1) = M(10) + M(11).

Slope = M(10)

Sl
op

e 
= 

M
(11

)

Slo
pe

 = 
M(1)

0.10 0.11 1.0
g

1
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Functions-to-tests for computable randomness

I For the general case, suppose f ′(z) fails to exist for nondecreasing
computable f .

I We build a nondecreasing computable g such that Dg(z) =∞
using a method related to the Doob martingale convergence
theorem.

I The function g can be converted into a computable martingale M
that succeeds on z. (We can’t just take the slope of g at dyadic
rationals, because Dg(z) =∞ may not be “visible” there.)

I For detail see the paper, or my 2010 talk at CCR Notre Dame.

As a corollary, we obtain that computable randomness for reals is base
invariant. For instance, we could equivalently define it via computable
strategies betting on the ternary expansion of a real.
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Computable randomness and Lipschitz functions

Recall that f is Lipschitz if |f (x)− f (y | ≤ C(|x − y |) for some C ∈ N.

Theorem (Freer, Kjos-Hanssen, N: to appear)
A real z is computably random

⇐⇒

each computable Lipschitz function f : [0,1]→ R is differentiable at z.

=⇒ (functions-to-tests):
I write

f (x) = (f (x) + Cx)− Cx .

Then (f (x) + Cx) is computable and non-decreasing.
I From the monotone case, we obtain a test (martingale) for this

function. If f ′(z) does not exists, then z fails this test.
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Tests-to-functions (implication⇐=) for Lipschitz
I Suppose a computable martingale B succeeds on z. We use this

to build a computable martingale M with range contained in [1,2],
such that

lim supn M(z �n) = 2 and lim infn M(z �n) = 1.

I Then the associated computable function gM is Lipschitz, and has

Dg(z) = 2 and Dg(z) = 1.

I We build M by a “reverse Doob strategy”: we let

M = N0 − N1.

I In “up phases” of M, the strategy N0 bets with the same factors
as the given strategy B and N1 doesn’t bet, until M ’s capital
reaches 2;

I in “down phases” of M, the strategy N1 bets like B and N0

doesn’t bet, until M ’s capital is down to 1.
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Variation of a function

The variation of a function f : [0,1]→ R is

V (f ) = sup
n−1∑
i=1

|f (ti+1)− f (ti)| <∞,

where the sup is taken over all collections t1 ≤ t2 ≤ . . . ≤ tn in [0,1].

f is of bounded variation if V (f ) <∞.

It is a classical result of Jordan that such an f is of the form h0 − h1 for
some nondecreasing functions h0,h1. Therefore:

Theorem
Let f : [0,1]→ R be of bounded variation. Then

f ′(r) exists for each r outside a null set (depending on f ).
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Tests-to-functions for Martin-Löf randomness

Theorem (Demuth 1975/Brattka, Miller, Nies, to appear)
Let z ∈ [0,1]. Then
z is Martin-Löf random⇐⇒

each computable function of bounded variation is differentiable at z.

I Demuth stated the existence of such a function without a proof.
I For the implication⇐= (tests-to-functions), given a ML-test

(Gm)m∈N, we build a computable function f of bounded variation
such that f ′(z) fails to exist for each z ∈

⋂
Gm.

I f is the sum of a uniform sequence of “sawteeth” functions fm,
where fm has a sawtooth of slope 4m on each interval entering Gm.

I We actually need to modify (Gm)m∈N to make this work: we ensure
λGm ≤ 8−m, and that each interval B enumerated in Gm is a
subinterval of an interval A in Gm−1 that is at least 8m times longer.
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Functions-to-tests for ML-randomness
Let f be a computable of bounded variation.

I We know f = h0 − h1 for some nondecreasing functions h0,h1.

I The pairs of (names for such) functions can be seen as a Π0
1 class.

I Then, by the “low for z basis theorem”, z is ML-random (hence
computably random) relative to such a pair h0,h1.

I By the result for computable randomness relativized to z, the hi are
both differentiable at z. Thus f ′(z) exists.

I We have implicitly obtained a ML-test, but it depends on z!
But then, the universal ML-test covers the sets of
non-differentiability for all computable functions of bounded
variation.

What did Demuth do? No idea.
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Instead of a break...
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Some results from the Logic Blog 2010

Theorem (Yu and Peng)
Z is Schnorr random relative to H ⇔ Z is random in each low set.

Theorem (Freer, Kjos, Nies)

If A is traceable with uniformly ∆0
1 traces then A is already computably

traceable.

Further contributions by Stephan, Kallimullin, Ng, ... Question section
at the end:
Imagine we infinitely often toss a coin with probability δ for heads. Let r
be the real whose binary expansion is obtained in this way. Describe
the distribution fδ(x) = P[r ≤ x ].
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How to get ino Logicsharing

0. Install dropbox.com
1. Email andrenies@gmail.com to request access
2. Receive invitation to join
3. Move the folder (initially called ”np”) to somewhere convenient on
your machine.
The dropbox folder contains useful things- have a look!
Web site is planned.
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Schnorr randomness
I A Schnorr test is a ML-test (Gm)m∈N such that λGm is a computable

real uniformly in m.

I A real z is Schnorr random if z 6∈
⋂

m Gm for each Schnorr test
(Gm)m∈N.

I Equivalently, for the binary expansion Z of z, there is no
computable betting strategy M with an order function h such that
M(Z �n) ≥ h(n) for infinitely many n.

I A Schnorr random set Z satisfies
I all statistical criteria for randomness, such as the law of large

numbers;
I not all computability-theoretic criteria: for instance, even for a

computably random set Z , one can have Z0 ≡T Z1, where Z0

is the even bits and Z1 is the odd bits of Z .
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Variation norm
Recall that V (f ) = sup

∑n−1
i=1 |f (ti+1)− f (ti)| <∞, where the sup is

taken over all collections t1 ≤ t2 ≤ . . . ≤ tn in [0,1]. Let

||f ||BV = V (f ) + |f (0)|.

The functions f : [0,1]→ R of bounded variation form a Banach space
under this norm. We have ||f ||BV ≥ ||f ||∞ (the usual sup norm).

Let AC0[0,1] be the absolutely continuous functions f : [0,1]→ R such
that f (0) = 0.

Fundamental theorem
The map g →

∫ x
0 g is a computable Banach space isometry

(L1[0,1], ||.||1)→ (AC0[0,1], ||.||BV ).

The inverse is differentiation.
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Computability in the variation norm
Definition
We say that a function f : [0,1]→ R of bounded variation is
computable in the variation norm if there is an effective sequence
(qn)n∈N of polygonal functions with rational slopes and corners such
that ||f − qn||BV ≤ 2−n for each n.

I If f is absolutely continuous, then this is equivalent to saying that
the almost everywhere defined function f ′ is L1-computable.

I Since ||f ||BV ≥ ||f ||∞, computability in the variation norm implies
usual computability of f .

I The implication is strict: for each left-c.e. real α, Freer, Kjos, N
[2010] build a computable Lipschitz function f such that V (f ) = α.
If α is non-computable, then f is not computable in the variation
norm.
(In fact, they characterize the variation functions of computable [Lipschitz]
functions as the continuous “interval-c.e. functions” that vanish at 0.)
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Characterizing Schnorr randomness via analysis

I J. Rute, and indendently Pathak and Simpson, have announced
that a real z is Schnorr random iff z is a Lebesgue point of each
L1-computable function. The implication⇒ improved a result of
Pathak, who needed the stronger hypothesis that z is ML-random.

I In our language, this result amounts to saying that each absolutely
continuous function (= function of the form

∫ x
0 g) that is computable

in the variation norm is differentiable at z.

I Subsequently, Freer, Kjos and N proved the analogous result for
Lipschitz functions:
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Characterizing Schnorr randomness via analysis

Theorem (Freer, Kjos-Hanssen, N: 2010)
A real z is Schnorr random

⇐⇒

each Lipschitz function f : [0,1]→ R that is
computable in the variation norm is differentiable at z.

The implication⇒ (functions-to-tests) follows from the Rute /
Pathak-Simpson result because each Lipschitz function is absolutely
continuous.
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Tests-to-functions for Schnorr randomness

To prove the implication⇐ (tests-to-functions),

I one approach would be to build a saw teeth function as in the case
of ML-randomness, but now for a given Schnorr test. However, this
merely yields an absolutely continuous function, not a Lipschitz
function.

I Instead, we took some inspiration from Zahorsky’s 1946 result that
each Gδσ set in [0,1] is the set of non-differentiability points of a
Lipschitz function.

I (A recent 2007 paper by Fowler and Preiss does a simpler version of this
proof. The 2010 ICM paper by Alberti, Csörnyei and Preiss looks at
Lipschitz functions in higher dimensions.)
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Tests-to-functions for Schnorr randomness

I Let G ⊆ [0,1] be c.e. open. Then 1G is L1-computable⇔ λG is
computable. This holds uniformly.

I Using this we can convert an (appropriately modified) Schnorr test
(Gm)m∈N into a variation computable Lipschitz function f such that

Df (z) = 1 and Df (z) = −1

for each z failing the test. The function has the form

f =

∫ x

0

∑
(−1)m1Gm .
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Randomness notions that haven’t yet been
characterized by analysis

We say that z is weakly random (or Kurtz random) if z is in no
null Π0

1 class. A function h is called singular if h′(x) = 0 for a.e. x .

I think that weak randomness
can be characterized via
differentiability of computable
singular functions; maybe
they also need to be
monotonic. An example is
Cantor’s function.
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Randomness notions that haven’t yet been
characterized by analysis

Notions stronger than Martin-Löf’s:

I Weak 2-randomness: open.

I Demuth randomness: Demuth showed that at a Demuth random z,
each constructive f satisfies the Denjoy alternative. Martin-Löf
randomness of z is not sufficient. The converse of Demuth’s result
is unknown.

Question: why do well-known notions in analysis correspond to
algorithmic randomness notions? Could some analytic notion of
functions yield a completely new randomness notion?
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