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A two-way interaction

Randomness

interacts with

Computability
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We can replace computability by other fields

Randomness

interacts with

Effective descriptive set theory

Work by Martin-Löf, 1970, Hjorth, Nies (2008); Chong, N, Yu (2009);
Kjos, Nies, Stephan and Yu (2009); Philipp Schlicht (recent)
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We can replace computability by further fields

Randomness

interacts with

Efficient computability

Work by Yongge Wang (1998), Lutz, Mayordomo, and others; Nies
(2003), etc.
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The interaction studied in this talk:

Randomness

interacts with

Computable analysis
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Main objects of study: computability theory versus
analysis

• Computability: the focus is on sets of natural numbers. They can be
identified with reals in [0, 1).

• Computable analysis: the focus is on functions from reals to reals.
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Random continuous functions

We can study randomness of continuous functions on the unit interval.
Here are two examples (graphics due to M. Hoyrup):

0 1

0 1

This leads to Brownian motion and its effective aspects (Asarin,
Fouché, P. and P. Potgieter, Kjos-Hanssen and Nerode, ...)
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Functions as tests

A different approach is to

• retain the focus on the randomness of a real z, and

• use

whether functions with particular properties
are well-behaved at that real
as a test for its randomness.

Main Thesis (details to follow )
Randomness of z is equivalent to differentiability at z.
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1 Randomness notions, and their base invariance

2 Demuth’s principle, and its converse

3 Our main results, and a glimpse of their proofs

4 Further directions
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Randomness

For many people, the primary intuition is of
randomness for sequences of bits:

• 00100100 00111111 01101010 10001000 1000 . . .
• 10010100 00010001 11110100 00101101 1111 . . .
• 11101101 01111010 10101111 11001110 1110 . . .

There is an (almost-) hierarchy of formal notions, corresponding to our
intuition in varying degrees of accuracy:

2-random ⇒ weakly 2-random ⇒ ML-random ⇒ Schnorr random.
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Randomness for reals

• Co-infinite sets of natural numbers can be identified with reals in
[0, 1) via the binary representation. For instance,
0101010101 . . . becomes 1/3;
001001000011111101101010100010001000 . . . becomes π − 3
(so that example from a previous slide wasn’t really random).

• The product measure on Cantor space 2N is turned into the uniform
(Lebesgue) measure on [0, 1], denoted λ.

• If a randomness notions is based on measure, it can be transferred
right away to the reals in [0, 1] (in fact, to any computable probability
space).
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Computable randomness

• Schnorr (1975): ML-tests are already too powerful to be considered
algorithmic.

• As a more restricted notion of a test, he proposed computable
betting strategies, certain computable functions M from {0, 1}∗ to
the non-negative reals.

• Let Z ⊆ N. When the player has seen σ = Z �n, she can make a
bet q, where 0 ≤ q ≤ M(σ), on what next bit Z (n) is.

• If she is right, she gets q. Otherwise she loses q. Thus we have

M(σ0) + M(σ1) = 2M(σ)

for each string σ.
• She wins on Z if M(Z �n) is unbounded.
• We call a set Z computably random if no computable betting

strategy wins on Z .
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Base invariance

• Computable randomness seems to be tied to sequences of bits, and
hence to the binary representation of reals. Is it really?

• We can ask the same question about stronger variants of
computable randomness: are they base dependent?

• Some notions between ML-randomness and computable
randomness:

Martin-Löf random ⇒ KL-random ⇒ permutation random
⇒ partial comp’bly random ⇒ comp’bly random.

• We know that computable randomness is base invariant.
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1 Randomness notions, and their base invariance

2 Demuth’s principle, and its converse

3 Our main results, and a glimpse of their proofs

4 Further directions
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A principle from classical analysis

• Let P be a “niceness” property of functions, taken from classical
analysis.

• Several theorems from analysis say:

“if you are nice, you behave well almost everywhere”.

• More formally, we have:

“Nice ⇒ well-behaved almost everywhere” principle
Every function f : [0, 1] → R satisfying niceness property P is
well–behaved at almost every x ∈ [0, 1].

• We will give two instances of this principle.
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Functions of bounded variation are differentiable a.e.

A function f : [0, 1] → R is of bounded variation if

∞ > sup
n∑

i=1

|f (ti+1)− f (ti)|,

where the sup is taken over all collections t1 ≤ t2 ≤ . . . ≤ tn in [0, 1].

Theorem (Classical Analysis)
Let f : [0, 1] → R be of bounded variation. Then

λ-almost surely, f ′(x) exists.
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Lebesgue differentiation theorem

Theorem (Classical Analysis)

Let g be integrable (i.e., g ∈ L1([0, 1], λ). Then λ-almost surely,

g(x) = limr ,s→+0
1

r + s

∫ x+s

x−r
g(t)dλ(t).
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Computable functions on the unit interval
Recall that we want to study randomness using tools from computable
analysis. First we define computability of functions.

Definition
Let f : [0, 1] → R. We say that f is computable if

(a) For each rational q ∈ [0, 1], the real f (q) is computable uniformly
in q.

(b) f is effectively uniformly continuous:
there is a computable h : N → N such that for each n,

|x − y | < 2−h(n) implies |f (x)− f (y)| < 2−n

.

Proposition
If a nondecreasing function f satisfies (a) and is continuous, then it is
already computable.

André Nies (The University of Auckland) Randomness and differentiability With V. Brattka and J. S. Miller 18 / 36



Demuth’s principle
Let P be a niceness property of functions from classical analysis.
Let E be an effectiveness condition on functions (such as being
computable).

Demuth’s principle (effective version of previous principle)
At each random real, every E function satisfying P is well-behaved.

Thus, the exception set for a nice and effective function is an effective
null set, in a sense depending on P and E .
Instances:
• At each computably random real, every computable function that is

non-decreasing is differentiable. (Our first result).
• At each ML-random real, every computable function of bounded

variation is differentiable. (Demuth 1975/ our second result).
• At each ML-random real, every L1-computable function satisfies the

statement of the Lebesgue differentiation theorem (Noopur Pathak).
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Converse of Demuth’s principle

We show the converse for two instances of Demuth’s principle.
Recall P is a property of functions from classical analysis;
E is an effectiveness condition on functions.

Converse of Demuth’s principle
At each non-random real, some E function satisfying P is mis-behaved.

(This has no classical version because there, one only talks about null
sets, not effective null sets.)

Instances of the converse:
• For each real z that is not computably random, there is a

computable non-decreasing function f such that Df (z) = ∞.
• There is, in fact, a single computable function of bounded variation

that fails to be differentiable at all non-ML-random reals.
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1 Randomness notions, and their base invariance

2 Demuth’s principle, and its converse

3 Our main results, and a glimpse of their proofs

4 Further directions
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Computable randomness and differentiability

Let
Dg(z) = lim sup

h→0,h 6=0

g(z + h)− g(z)

h

Theorem
Let z ∈ [0, 1]. Then the following are equivalent.

(i) z is computably random.

(ii) f ′(z) exists for each computable nondecreasing function f .

(iii) Dg(z) < ∞ for each computable nondecreasing function g.
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Turning nondecreasing functions into martingales

(i)⇒(iii): If Dg(z) = ∞, then martingale Mg succeeds on z, where for a
string σ, we let

Mg(σ) =
g(0.σ + 2−|σ|)− g(0.σ)

2−|σ|
.

Thus Mg(σ) is the slope of g
between the points 0.σ and
0.σ + 2−|σ|. It is clear that
this is a martingale. For
instance, the following shows
2M(1) = M(10) + M(11).

0.1 0.11 1.0
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Turning martingales into nondecreasing functions
Proof of (iii)⇒(i):

Suppose z is not computably random. We want to show that
Dg(z) = ∞ for some nondecreasing computable function g.

• Let M be a martingale with the savings property that succeeds on z.
• Let µ be the measure induced by M. It is determined by its values

on the basic clopen sets: µ([σ]) = M(σ)2−|σ|. Then µ is non-atomic.
• Let

g(x) = µ[0, x ].

Then g is continuous nonincreasing, and g(q) is computable for
each dyadic rational q. So g is computable by a proposition we
discussed earlier on.

• Since M(σ) = (g(0.σ1)− g(0.σ))/2−|σ| and M succeeds on z, we
have Dg(z) = ∞.
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The implication (iii)⇒(ii)

(ii)⇒(iii) is trivial, so we are done if we can show (iii)⇒(ii).

• Recall the upper and lower derivatives:

Df (z) = lim sup
h→0

f (z + h)− f (z)

h
and Df (z) = lim inf

h→0

f (z + h)− f (z)

h

• Suppose that f ′(z) does not exist. We want to define a computable
nondecreasing function g such that Dg(z) = ∞.

• If Df (z) = ∞ we are done. Otherwise, since f ′(z) does not exist,

0 ≤ Df (z) < Df (z).
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Dyadic case
For a nonempty interval A = [a, b] we let Sf (A) be the slope
(f (b)− f (a))/(b − a).

• A basic dyadic interval has the form [i2−n, (i + 1)2−n] for some
i ∈ Z, n ∈ N.

• Given z ∈ [0, 1]−Q let An be the dyadic interval of length 2−n

containing z.
• If we are lucky, then lim infn Sf (An) < β < γ < lim supn Sf (An) for

rationals β < γ.
• In this case we construct a computable M that succeeds on z

essentially by the technique of the first Doob martingale
convergence theorem.

(1) When Sf (A) < β, start betting like Sf on basic dyadic subintervals
B ⊆ A. If Sf (B) > γ switch to the non-betting state within B.
(2) On basic dyadic subintervals C ⊆ B, don’t bet till Sf (C) < β. Now
switch back to the betting state within C.
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The dyadic case is not enough
It can happen that the hypothesis Df (z) < Df (z) does not become
apparent on the basic dyadic intervals. The following function f has
Df (z) < Df (z) = ∞, but Sf (An) = 1 for each n.

z
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The general case

• We define the desired nondecreasing computable function g such
that Dg(z) = ∞ via a betting strategy Γ, with domain a tree rational
intervals B, and range the non-negative reals. Then we determine g
by Sg(B) = Γ(B).

• For rationals q and p > 0, a (p, q)-interval is the image of a basic
dyadic interval under the affine map x → px + q.

• We show that there are rationals p, q and r , s such that

lim inf
z∈A, A is (p,q)−interval

Sf (A) < lim sup
z∈B, B is (r ,s)−interval

.Sf (B)

• Strategy Γ is in the betting state on (p, q) intervals, and in the
non-betting state on (r , s)-intervals.

• When Γ switches state, the current interval is split into intervals of
the other type (usually, infinitely many). �
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Martin-Löf randomness and differentiability

Recall that a function f : [0, 1] → R is of bounded variation if

∞ > sup
n∑

i=1

|f (ti+1)− f (ti)|,

where the sup is taken over all collections t1 ≤ t2 ≤ . . . ≤ tn in [0, 1].

Theorem
Let z ∈ [0, 1]. Then
z is Martin-Löf random ⇐⇒

every computable function f of bounded variation
is differentiable at z.

For “⇐” we build a single computable function f of bounded variation
that is only differentiable at ML-random reals.
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Demuth’s original result

A constructivist version of the implication “⇒” was already obtained by
Demuth (1975).

Theorem (Demuth, 1975)
Every constructive function which cannot fail to be a function of weakly
bounded variation is finitely pseudo-differentiable on each Π2 number.

• A constructive function is a computable function well-defined on all
indices for computable reals.

• Some constructive function does not extend to a computable
function.
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The implication “⇒” follows from the corresponding
implication of the result for computable randomness

Suppose f is computable of bounded variation.
Let z is Martin-Löf random. We want to show f ′(z) exists.

• It is a classical result that f = h0 − h1 for some nondecreasing
functions h0, h1.

• Even if f is computable, the functions h0, h1 cannot always be
chosen computable. However, the pairs of names for such functions
h0, h1 can be seen as a Π0

1 class.

• Then, by the “low for z basis theorem”, z is ML-random (hence
computably random) relative to such a pair h0, h1.

• By the previous theorem relativized to z, the hi are both
differentiable at z. Thus f ′(z) exists.
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Denjoy alternative

Theorem
Let f be an arbitrary function [0, 1] → R. Then λ-almost surely, the
Denjoy alternative holds at x:

f ′(x) exists, or

Df (x) = ∞ and Df (x) = −∞.
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Denjoy randomness

Definition (Kučera)
A real z is Denjoy random if for each computable f , the Denjoy
alternative holds at z.

Corollary
Denjoy random implies computably random.

• Suppose z is Denjoy random.
• Let f be a nondecreasing computable function.
• Then Df (z) ≥ 0.
• Thus the Denjoy alternative at z implies that f ′(z) exists.
• Hence z is computably random.

Question
Does the converse implication hold?
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Further questions

• Base invariance for partial computable and permutation
randomness.

• Characterize further randomness notions by differentiability: Schnorr
rd, Demuth rd, weakly 2-rd...

• Study left-c.e. nondecreasing functions g. For instance, is each
continuous such g a variation, i.e., of the form x → V (f � [0, x ]) for
some computable f?

• Connections to lowness properties.
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