Definability and Undecidability

André Nies The University of Chicago

June 26, 1999

Definability: examples

Structure	Subset	Formula
$(\mathbb{R},+,\cdot)$	$\{r:r\geq 0\}$	$\exists y \boldsymbol{x} = y \cdot y$
$(\mathbb{Z},+,\cdot)$	$\{n:n\geq 0\}$	$\exists y_1 \exists y_2 \exists y_3 \exists y_4 \\ \boldsymbol{x} = y_1 \cdot y_1 + y_2 \cdot y_2 + \\ y_3 \cdot y_3 + y_4 \cdot y_4 \end{cases}$

Some concepts from logic

- S symbol set, e.g. $\{f, g, R\}$ (R binary relation symbol, f, g unary function symbols)
- First-order formulas over S:

Rxx, $\forall x \exists y \ (Rxfy \land \neg fy = gz)$.

• An S-structure is of the form

$$\boldsymbol{A} = (A, f^A, g^A, R^A).$$

•
$$\boldsymbol{A} \models \varphi(a)$$
 denotes

"a satisfies φ in A".

Definability

• $M \subseteq \mathbf{A}$ is **definable** in first-order language if

$$M = \{ a \in A : \mathbf{A} \models \varphi(a) \}$$

for a formula $\varphi(x)$ in the language of A.

- Similarly: definability for relations $R \subseteq A^n$.
- There are only countably many definable relations on A.

The significance of definability

A property of an element of \boldsymbol{A} is definable

 \Leftrightarrow

the property can be formulated without reference to objects external to A.

In other words, one can restrict oneself to the universe given by \boldsymbol{A} . Not permitted are:

- quantifying over subsets of A
- infinite disjunctions

• . . .

Defining \mathbb{N} in \mathbb{Q}

Theorem 1 (Julia Robinson) $\mathbb{N} \subseteq \mathbb{Q}$ is definable in $(\mathbb{Q}, +, \times)$.

A second-order definition: $q \in \mathbb{N} \iff \forall X \subseteq \mathbb{Q}$

 $(*) \quad 0 \in X \land \forall m[m \in X \Rightarrow m+1 \in X] \ \Rightarrow \ \forall r \ r \in X$

J.R. shows: it suffices to require (*) for all the sets

$$X_{a,b} = \{ w : abw^2 + 2 \in Z_{a,b} \}.$$

 $Z_{a,b}$: the range of the quadratic form

$$x^2 + ay^2 - bz^2$$

Thus

 $q \in \mathbb{Q} - \mathbb{Z} \implies \exists a \exists b [q \notin X_{a,b} \land X_{a,b} \text{ inductive}].$ Now we can express (*) by a first-order formula. \diamondsuit

Parameters

 $U \subseteq \mathbf{A}^k$ is parameter-definable

$$M = \{a_1, \ldots, a_k \in A^k :$$

$$\boldsymbol{A} \models \varphi(a_1, \ldots, a_k; p_1, \ldots, p_n) \}$$

for a formula $\varphi(x)$ and a list of parametern p_1, \ldots, p_n .

A further example

Algebraic curves over \mathbb{R} are parameter-definable relations in $(\mathbb{R}, +, \times)$. E.g.

$$\{x, y: y^2 = x^3 + ax^2 + bx + c\}$$

is a parameter-definable relation. It is definable if $a, b, c \in \mathbb{Q}$. The defining formula has no quantifiers.

Invariance and L_{∞}

- $M \subseteq \mathbf{A}$ is **invariant** if $\Phi(M) = M$ for every automorphism Φ of \mathbf{A} .
- Definable \Rightarrow invariant.

 L_{∞} (or $L_{\omega_1,\omega}$) consists of formulas which can be built up with $\exists x, \neg$ and countable conjunctions and disjunctions. This language is considerably more expressive than first-order language. For instance, every $M \subseteq \mathbb{N}$ is L_{∞} -definable in $(\mathbb{N}, +, 1)$ via

$$\varphi(\boldsymbol{x}) \Leftrightarrow \bigvee_{n \in M} \boldsymbol{x} = \underbrace{1 + \ldots + 1}_{n}.$$

Easy: L_{∞} -definable in $\mathbf{A} \Rightarrow$ invariant in \mathbf{A} . For countable \mathbf{A} the converse is true.

Theorem 2 (Scott) If A is countable and $U \subseteq A$, then

$$U \text{ invariant} \Rightarrow U L_{\infty} \text{-definable.}$$

Undecidability

The **halting problem**: Let (M_n) be an effective list of all Turingmachines. A diagonal argument proves that

 $K = \{n : \text{the computation of } M_n \\ \text{with input } n \text{ stops} \}$

is undecidable.

For which structures \boldsymbol{A} is $Th(\boldsymbol{A})$ decidable ?

Coding

 $(\mathbb{N}, +, \times)$ can be **coded** in **A** if there are parameterdefinable relations as follows:

- a set D,
- an equivalence relation \equiv
- ternary relations R, S

such that

$$(D, R, S)/_{\equiv} \cong (\mathbb{N}, +, \times).$$

Example: $(\mathbb{N}, +, \times)$ can be coded in $(\mathbb{Q}, +, \times)$ (even without parameters).

Theorem 3 (Rabin) If $(\mathbb{N}, +, \times)$ can be coded in A, then Th(A) is undecidable.

As a consequence, $\mathbb{N} \subseteq \mathbb{R}$ is *not* parameter-definable in $(\mathbb{R}, +, \times)$.

Computability theory

 $W \subseteq \mathbb{N}$ is computably enumerable (c.e.) if there is a Turingmachine T such that

 $W = \{n : \text{ the computation of } T \text{ on} input n \text{ stops} \}.$

C.e. sets are of central importance in mathematical logic and also occur in other areas of mathematics (e.g. the Higman Embedding Theorem).

The most elementary way to compare c.e. sets is **inclusion**.

 $\mathcal{E} = (\text{c.e. sets}, \subseteq)$

is a distributive lattice with least and greatest elements. In \mathcal{E} ,

computable \Leftrightarrow complemented

Reducibilities

Let $X, Y \subseteq \mathbb{N}$. $X \leq_m Y \Leftrightarrow$ $X = f^{-1}(Y)$ for a computable f. $X \leq_T Y \Leftrightarrow$

X is computed by an oracle-TM T where Y is the oracle set.

$$\mathcal{R}_T = (\text{C.e. sets}, \leq_T)/_{\equiv_T}$$

is the partial order of Turing degrees. (Degree: equivalence class of sets of the same complexity.) Again it has least and greatest elements. Least: degree consisting of the computable sets. Greatest: degree of the halting problm.

In a similar way one obtains \mathcal{R}_m , the degree structure on c.e. sets based on *m*-reducibility.

 R_T is dense, while $\mathcal{R}_m - \{0\}$ has minimal elements.

Undecidability and beyond

Harrington, Slaman 1985:

Theorem 4 $(\mathbb{N}, +, \times)$ is parameter-definable in \mathcal{R}_T . Th(\mathbb{N}) can be interpreted in Th(R_T).

A simpler proof was found by Slaman/Woodin.

N, 1994:

Theorem 5 The same for \mathcal{R}_m .

Harrington, 1995:

Theorem 6 The same for \mathcal{E} .

Definability results

If A is a structure from computability theory, definability of a set $M \subseteq \mathbf{A}$ often means:

Subsets which at first were introduced using concepts external for \boldsymbol{A} can actually be recognized internally.

Theorem 7 (Harrington)

$$\mathcal{C} = \{A \ c.e. : A \ m - complete\}$$

is definable.

 $A \in \mathcal{C} \iff \exists C \forall B \exists R \text{ comp.} \\ C \cap R \text{ non-comp.} \land A \cap R = B \cap R.$

(Recall: computable \Leftrightarrow complemented in \mathcal{E} .) The formula is $\exists \forall \exists$.

The jump-operator

Let (M_n) be an effective list of all oracle- Turingmachines.

- $K^X = \{n : \text{the computation of } M_n \text{ on input } n \text{ with oracle } X \text{ stops} \}$ Then $K^X >_T X$.
- If \boldsymbol{x} is a Turing-degree, let \boldsymbol{x}' be the degree of K^X , for a set $X \in \boldsymbol{x}$.
- $x^{(n)}$ is the result of applying the jump-operator to x for n times.
- •

$$Low_n = \{ \boldsymbol{x} : \boldsymbol{x}^{(n)} = 0^{(n)} \},\$$

$$High_n = \{ \boldsymbol{x} : \boldsymbol{x}^{(n)} = 0^{(n+1)} \}$$

Definability in \mathcal{R}_T

N,Shore, Slaman (1996) prove definability results using coding methods. We write $\boldsymbol{x} \sim_2 \boldsymbol{y}$ for $\boldsymbol{x}^{(2)} = \boldsymbol{y}^{(2)}$.

Theorem 8 Let $C \subseteq \mathcal{R}_T^n$ be closed under \sim_2 . If the index set of C is arithmetical, then C is definable.

The index set of \mathcal{C} is $\{e : \deg_T(W_e) \in \mathcal{C}\}$, where $(W_e)_{e \in \mathbb{N}}$ is an effective list of c.e. sets.

Corollary: definable are

- Low_n , $High_n$ for $n \ge 2$
- The relation \sim_2 itself.

Theorem 9 High₁ is definable in \mathcal{R}_T .

Formula:

$$\boldsymbol{x} \in High_1 \Leftrightarrow \mathcal{R}_T \models \forall \boldsymbol{y} \; \exists \boldsymbol{z} \leq \boldsymbol{x} [\boldsymbol{z} \sim_2 \boldsymbol{y}].$$