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Definability: examples I

Structure Subset Formula

(R,+,) {r:r>0} Jyx=y-y

(Z,+,-) {n:n >0} FyiIyTysTys
=Y Y1 T Y2 Y2t
Y3 - Ys + Ya - Y4



Some concepts from logic.

S symbol set, e.g. {f, g, R} (R binary relation
symbol, f, g unary function symbols)

First-order formulas over S:
Rxx, Vx3y (Rxfy N —fy=gz).

An S-structure is of the form

A= (4, f4 g% RY).
A |E ¢(a) denotes

“a satisfies ¢ in A”.



Definability I

e M C A is definable in first-order language if
M={aeA:AE=y(a)}

for a formula p(x) in the language of A.
e Similarly: definability for relations R C A™.

e There are only countably many definable rela-
tions on A.



The significance of deﬁnability.

A property of an element of A is defin-
able

-

the property can be formulated without
reference to objects external to A.

In other words, one can restrict oneself to the uni-
verse given by A. Not permitted are:

e quantifying over subsets of A
e infinite disjunctions
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Defining N in QI

Theorem 1 (Julia Robinson) N C Q is definable
in (Q,+, x).

A second-order definition: ¢ € N & VX C Q
(x) 0 e XAVmmeX=>m+1e X| = Vrre X
J.R. shows: it suffices to require (x) for all the sets
Xop={w:abw?* +2€ Z,,}.
Zqp: the range of the quadratic form
22 + ay® — b2?

Thus
q€Q—-7Z = FaIblg & Xup N X, inductive].
Now we can express (x) by a first—order formula.



Parameters '

U C A% is parameter-definable
M ={aq,... a; € A~ :
A= olar, ... ,ak;p15- -+ s Pn)}
for a formula ¢(x) and a list of parametern py, ..., p,.

A further example

Algebraic curves over R are parameter-definable re-
lations in (R, +, x). E.g.

{x,y :y* = 2° + ax* + bz + ¢}

is a parameter-definable relation. It is definable if
a,b,c € Q. The defining formula has no quantifiers.
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Invariance and LOOI

e M C A is invariant if ®(M) = M for every
automorphism ® of A.

e Definable = invariant.

Lo (or L, ) consists of formulas which can be built
up with dz, - and countable conjunctions and dis-
junctions. This language is considerably more ex-

pressive than first-order language. For instance, ev-
ery M C Nis Ly-definable in (N, 4,1) via

o) e Vyeyx=1+...+1.

~
mn

Easy: L.,-definable in A = invariant in A.
For countable A the converse is true.

Theorem 2 (Scott) If A is countable and U C A,
then

U wmvariant = U Ly, -definable.
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Undecidability I

The halting problem: Let (M,,) be an effective list
of all Turingmachines. A diagonal argumnent proves
that
K = {n : the computation of M,

with input n stops}
is undecidable.

For which structures A is Th(A) decidable 7

(N, +, x) | no | halting problem
(@, +,%) | no | NEp<e

Q = pHma@)]
(R, +, x) | yes | quantifier-
elimination




Coding I

(N, +, x) can be coded in A if there are parameter-
definable relations as follows:

e aset D,
e an equivalence relation =

e ternary relations R, S
such that
(D,R,S)/= =2 (N, 4, x).

Example: (N, 4+, x) can be coded in (Q, +, x) (even
without parameters).

Theorem 3 (Rabin) If (N,+, x) can be coded in
A, then Th(A) is undecidable.

As a consequence, N C R is not parameter-definable
in (R, 4+, x).



Computability theory I

W C Nis computably enumerable (c.e.) if there
is a Turingmachine 7" such that

W = {n: the computation of T oninput n stops}.

C.e. sets are of central importance in mathematical
logic and also occur in other areas of mathematics
(e.g. the Higman Embedding Theorem).

The most elementary way to compare c.e. sets is in-
clusion.

E = (c.e. sets, C)

is a distributive lattice with least and greatest ele-
ments. In &,

computable < complemented
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Reducibilities '

Let X,Y CN.
X<,Y <

X = f~YY) for a computable f.

X<7Y &

X is computed by an oracle-TM T' where Y is the
oracle set.

Rr = (C.e. sets, <7)/=,

is the partial order of Turing degrees. (Degree: equiv-
alence class of sets of the same complexity.) Again it
has least and greatest elements. Least: degree con-
sisting of the computable sets. Greatest: degree of
the halting problm.

In a similar way one obtains R,,, the degree struc-
ture on c.e. sets based on m-reducibility.

R is dense, while R, — {0} has minimal elements.
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Undecidability and beyond.

Harrington, Slaman 1985:

Theorem 4 (N, +, x) is parameter—definable in R.
Th(N) can be interpreted in Th(Rr).

A simpler proof was found by Slaman/Woodin.

N, 1994:

Theorem 5 The same for R,,.

Harrington, 1995:

Theorem 6 The same for £.
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Definability results I

It Ais a structure from computability theory, defin-
ability of a set M C A often means:

Subsets which at first were introduced
using concepts external for A can actu-
ally be recognized internally.

Theorem 7 (Harrington)
C={A ce.: A m— complete}
s definable.

AeC & d4C VB dR comp.
C'N R non-comp. A ANR=BNRK.

(Recall: computable < complemented in £.)

The formula is dV4.
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The jump-operator I

Let (M,) be an effective list of all oracle- Turing-
machines.

e K* = {n :the computation of M,
on input n with oracle X stops}
Then K= > X.

o If x is a Turing—degree, let ' be the degree of
KX for aset X € .

o (™ is the result of applying the jump-operator
to x for n times.

~
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Definability in RTI

N,Shore, Slaman (1996) prove definability results us-
ing coding methods.
We write & ~s y for (2 = y(2).

Theorem 8 Let C C 'R} be closed under ~o. If the
index set of C 1s arithmetical, then C is definable.

The index set of C is {e : degy(W.) € C}, where
(We)een is an effective list of c.e. sets.

Corollary: definable are

o Low,, High, for n > 2

e The relation ~9 itself.

Theorem 9 Highy is definable in Ry.

Formula:

x € Highy & Ry EVy 3z < x|z ~3 y].
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