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De�nability: examplesStructure Subset Formula(R;+; �) fr : r � 0g 9y x = y � y(Z;+; �) fn : n � 0g 9y19y29y39y4x = y1 � y1 + y2 � y2+y3 � y3 + y4 � y4
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Some concepts from logic� S symbol set, e.g. ff; g;Rg (R binary relationsymbol, f; g unary function symbols)� First-order formulas over S:Rxx; 8x9y (Rxfy ^ :fy = gz):� An S-structure is of the formA = (A; fA; gA; RA):� A j= '(a) denotes�a satis�es ' in A�.
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De�nability� M � A is de�nable in �rst-order language ifM = fa 2 A : A j= '(a)gfor a formula '(x) in the language of A.� Similarly: de�nability for relations R � An.� There are only countably many de�nable rela-tions on A.
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The signi�cance of de�nabilityA property of an element of A is de�n-able ,the property can be formulated withoutreference to objects external to A.In other words, one can restrict oneself to the uni-verse given by A. Not permitted are:� quantifying over subsets of A� in�nite disjunctions� : : :
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De�ning N in QTheorem 1 (Julia Robinson) N � Q is de�nablein (Q ;+;�).A second-order de�nition: q 2 N , 8X � Q(�) 0 2 X ^ 8m[m 2 X ) m+1 2 X] ) 8r r 2 XJ.R. shows: it su�ces to require (�) for all the setsXa;b = fw : abw2 + 2 2 Za;bg:Za;b: the range of the quadratic formx2 + ay2 � bz2Thusq 2 Q � Z ) 9a9b[q 62 Xa;b ^ Xa;b inductive].Now we can express (�) by a �rst�order formula. }
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ParametersU � Ak is parameter-de�nableM = fa1; : : : ; ak 2 Ak :A j= '(a1; : : : ; ak; p1; : : : ; pn)gfor a formula '(x) and a list of parametern p1; : : : ; pn.A further exampleAlgebraic curves over R are parameter-de�nable re-lations in (R;+;�). E.g.fx; y : y2 = x3 + ax2 + bx+ cgis a parameter-de�nable relation. It is de�nable ifa; b; c 2 Q . The de�ning formula has no quanti�ers.
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Invariance and L1� M � A is invariant if �(M) = M for everyautomorphism � of A.� De�nable ) invariant.L1 (or L!1;!) consists of formulas which can be builtup with 9x;: and countable conjunctions and dis-junctions. This language is considerably more ex-pressive than �rst-order language. For instance, ev-ery M � N is L1-de�nable in (N ;+; 1) via'(x) , Wn2M x = 1 + : : :+ 1| {z }n :Easy: L1-de�nable in A ) invariant in A.For countable A the converse is true.Theorem 2 (Scott) If A is countable and U � A,then U invariant ) U L1-de�nable:
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UndecidabilityThe halting problem: Let (Mn) be an e�ective listof all Turingmachines. A diagonal argumnent provesthatK = fn : the computation of Mnwith input n stopsgis undecidable.For which structures A is Th(A) decidable ?(N ;+;�) no halting problem(Q ;+;�) no N j= ',Q j= '[fx:�(x)g](R;+;�) yes quanti�er-elimination
0-8



Coding(N ;+;�) can be coded in A if there are parameter-de�nable relations as follows:� a set D,� an equivalence relation �� ternary relations R, Ssuch that (D;R; S)=� �= (N ;+;�):Example: (N ;+;�) can be coded in (Q ;+;�) (evenwithout parameters).Theorem 3 (Rabin) If (N ;+;�) can be coded inA, then Th(A) is undecidable.As a consequence, N � R is not parameter-de�nablein (R;+;�).
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Computability theoryW � N is computably enumerable (c.e.) if thereis a Turingmachine T such thatW = fn : the computation of T oninput n stopsg:C.e. sets are of central importance in mathematicallogic and also occur in other areas of mathematics(e.g. the Higman Embedding Theorem).The most elementary way to compare c.e. sets is in-clusion. E = (c.e. sets;�)is a distributive lattice with least and greatest ele-ments. In E ,computable , complemented
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ReducibilitiesLet X;Y � N .X �m Y ,X = f�1(Y ) for a computable f .X �T Y ,X is computed by an oracle-TM T where Y is theoracle set.RT = (C.e. sets;�T )=�Tis the partial order of Turing degrees. (Degree: equiv-alence class of sets of the same complexity.) Again ithas least and greatest elements. Least: degree con-sisting of the computable sets. Greatest: degree ofthe halting problm.In a similar way one obtains Rm, the degree struc-ture on c.e. sets based on m-reducibility.RT is dense, while Rm � f0g has minimal elements.0-11



Undecidability and beyondHarrington, Slaman 1985:Theorem 4 (N ;+;�) is parameter�de�nable in RT .Th(N) can be interpreted in Th(RT ).A simpler proof was found by Slaman/Woodin.N, 1994:Theorem 5 The same for Rm.Harrington, 1995:Theorem 6 The same for E .
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De�nability resultsIf A is a structure from computability theory, de�n-ability of a set M � A often means:Subsets which at �rst were introducedusing concepts external for A can actu-ally be recognized internally.Theorem 7 (Harrington)C = fA c.e. : A m� completegis de�nable.A 2 C , 9C 8B 9R comp.C \R non-comp. ^ A \ R = B \ R:(Recall: computable , complemented in E .)The formula is 989.
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The jump-operatorLet (Mn) be an e�ective list of all oracle- Turing-machines.� KX = fn : the computation of Mnon input n with oracle X stopsgThen KX >T X.� If x is a Turing�degree, let x0 be the degree ofKX , for a set X 2 x.� x(n) is the result of applying the jump-operatorto x for n times.� Lown = fx : x(n) = 0(n)g;Highn = fx : x(n) = 0(n+1)g
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De�nability in RTN,Shore, Slaman (1996) prove de�nability results us-ing coding methods.We write x �2 y for x(2) = y(2).Theorem 8 Let C � RnT be closed under �2. If theindex set of C is arithmetical, then C is de�nable.The index set of C is fe : degT (We) 2 Cg, where(We)e2N is an e�ective list of c.e. sets.Corollary: de�nable are� Lown, Highn for n � 2� The relation �2 itself.Theorem 9 High1 is de�nable in RT .Formula:x 2 High1 , RT j= 8y 9z � x[z �2 y]:0-15


