Coding and Definability in \mathcal{R}_T

André Nies Theodore A. Slaman Richard A. Shore

January 1996

refined April 1997

Coding and theories

Consider a structure **A** from computability theory (such as \mathcal{D}_T , \mathcal{R}_T or \mathcal{E}). Coding methods can be used to show that $Th(\mathbf{A})$ is complex.

- 1. Uniform coding of a sufficiently complicated class of structures with parameters, shows $Th(\mathbf{A})$ undecidable.
- 2. Coding of a standard model of arithmetic with parameters, implies $K \leq_m Th(\mathbf{A})$.

So far, the coding is *local*, namely reflects properties of very special parameter lists in the context of \mathbf{A} .

3. Extend (2) to give an interpretation of true arithmetic (or, true second-order arithmetic) in **A**.

To do so, need a first-order condition on parameters coding models which imply standardness.

- Use some uniform definability result (like an exact pair theorem), or
- compare coded models, typically by considering definable (partial) maps between them.

What is coding ?

Example:

Each finite distributive lattice is isomorphic to an initial segment $[0, \mathbf{a}]$ of \mathcal{R}_m .

A coding (or interpretation) of a relational structure ${\bf B}$ in ${\bf A}$ is given by a scheme of formulas

 $\phi_U(x,\overline{p}), (\phi_R(x,\overline{p}))_R \text{ relation symbol})$

s.t. for appropriate \overline{p} in **A**, a copy of **B** is defined on $\{x : \mathbf{A} \models \phi_U(x, \overline{p})\}$.

A more general coding: \mathbb{Q} is coded in \mathbb{Z} via the quotient field construction

Coding and structure

Coding methods can reveal information about the structure \mathbf{A} itself (not only it's theory), such as

- restrictions on automorphisms (e.g. for \mathcal{D}_T)
- show that **A** is a prime model of its theory (Slaman-Woodin for $\mathcal{D}_T(\leq 0')$)
- compare the complexity of models (e.g. \mathcal{E} can be interpreted in \mathcal{R}_T , but not conversely)
- definability results.

Invariance and definability

Suppose $C \subseteq \mathbf{A}^n$ is given "externally". When is C already inherent in \mathbf{A} ?

- weak version: C is invariant under automorphisms
- strong: C is first-order definable in A without parameters.

Examples:

- The jump operator is definable in \mathcal{D}_T [Cooper ta]
- In \mathcal{R}_T , promptly simple=noncappable.

Both first order definitions are using simple, "understandable" formulas.

Definability in \mathcal{R}_T

We prove definability results using coding methods.

Theorem 0.1 $\{\mathbf{x}:\mathbf{x^{(2)}}=\mathbf{a^{(2)}}\}$ is definable for each $\mathbf{a}.$

Thus Low_2 and $High_2$ are definable.

Definition 0.2 We write $\mathbf{x} \sim_2 \mathbf{y}$ if $\mathbf{x}^{(2)} = \mathbf{y}^{(2)}$.

Theorem 0.3 (Main definability Theorem) If

• $C \subseteq \mathcal{R}_T^n$ is invariant under \sim_2 and

• the corresponding relation on indices is arithmetical,

then C is definable.

Applications: definable are

- Low_n , $High_n$ for each $n \ge 2$
- The relation \sim_2 itself
- For each $n \ge 2$, the relation " $\mathbf{x}^{(n)} \le \mathbf{y}^{(n)}$ ".

 $High_1$

Theorem 0.4 $High_1$ is definable

$$\mathbf{x} \in High_1 \Leftrightarrow \mathcal{R}_T \models (\forall \mathbf{y} (\exists \mathbf{z} \leq \mathbf{x}) [\mathbf{z} \sim_2 \mathbf{y}].$$

For " \Rightarrow ", use two times the Robinson jump interpolation in relativized forms. For the direction \Leftarrow , use a result of Soare and Stob (relativized to $0^{(2)}$): If $\mathbf{c} \in \mathcal{R}_T - \{0\}$, then there is a **u** r.e.a. **c**, which is not an r.e. degree.

First goal: invariance

Lemma 0.5 If \mathbf{a}, \mathbf{b} are automorphic, then $\mathbf{a}^{(2)} = \mathbf{b}^{(2)}$

Proof. $\mathbf{a}^{(2)}$ is determined by the class of sets $\Sigma_3^0(\mathbf{a})$. We will recover this class from the isomorphism type of $(\mathcal{R}_T, \mathbf{a})$.

We define a class of sets $S(\mathbf{a})$ which only depends on this isomorphism type, and show $S(\mathbf{a}) = \Sigma_3^0(\mathbf{a})$. Then:

 $\mathbf{a}, \mathbf{b} \text{ automorphic}$ $\Rightarrow S(\mathbf{a}) = S(\mathbf{b})$ $\Leftrightarrow \Sigma_3^0(\mathbf{a}) = \Sigma_3^0(\mathbf{b})$ $\Leftrightarrow \mathbf{a}^{(2)} = \mathbf{b}^{(2)}.$

Ultimately we can recover $\Sigma_3^0(\mathbf{a})$ because, on $[0, \mathbf{a}], \leq_T$ is $\Sigma_3^0(\mathbf{a})$ and join is effective.

Towards defining $S(\mathbf{a})$

First, we need a representation of sets $X \subseteq \omega$ in \mathcal{R}_T . We code the model (ω, σ, X) , where σ is the successor function. To keep in mind: Upper bound-don't represent too many sets

Lower bound-represent all sets in $\Sigma_3^0(\mathbf{a})$.

The coding frame

Definition 0.6 (The domain) A set $G \subseteq \mathbf{R}_T$ is called an SW-set if, for some parameters $\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{b} \in \mathcal{R}_T, G$ is the set of minimal degrees $\mathbf{x} \in [\mathbf{b}, \mathbf{r}]$ satisfying $\mathbf{q} \leq \mathbf{x} \vee \mathbf{p}$.

Definition 0.7 (Successor) An effective successor model is a standard successor structure $\mathbf{G} = (\{\mathbf{g}_i : i \in \omega\}, \sigma) \text{ coded by parameters } \mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{b} \text{ and four further parameters } \mathbf{e}_0, \mathbf{f}_0, \mathbf{e}_1, \mathbf{f}_1 \text{ as follows:}$

- $\{\mathbf{g}_i : i \in \omega\}$ is a SW-set
- For each i,
 - $(\mathbf{g}_{2i} \vee \mathbf{e}_1) \wedge \mathbf{f}_1 = \mathbf{g}_{2i+1}$
 - $(\mathbf{g}_{2i+1} \lor \mathbf{e}_0) \land \mathbf{f}_0 = \mathbf{g}_{2i+2}$
 - $\mathbf{g}_{2i} \not\leq \mathbf{f}_1 \ and \ \mathbf{g}_{2i+1} \not\leq \mathbf{f}_0$

Effectivity

Lemma 0.8 If there is a low₂ upper bound on all parameters, then, for some $\beta \leq \emptyset''$,

$$\mathbf{g}_i = deg_T(\{\beta(i)\}^R)$$

Here R is some set in the degree **r**. The function β is defined by recursion. E.g.,

$$\beta(2n+1) = \text{some } e \text{ s.t. } Z = \{e\}^R \text{ is total},$$

and $Z \leq E_1 \oplus \{\beta(2n)\}^R, F_1.$

Definition 0.9 Given **a** and an upper bound on parameters **u**. $X \subseteq \omega$ is represented below **a**, **u** if

- there are parameters below \mathbf{u} coding effective successor model
- $\mathbf{r} \leq \mathbf{a} \ (and \ hence \ all \ \mathbf{g}_i \leq \mathbf{a})$
- \bullet there are also $\mathbf{c}, \mathbf{d} \leq \mathbf{a}$ such that

$$X = \{i : \mathbf{c} \le \mathbf{g}_i \lor \mathbf{d}\}\$$

$$S(\mathbf{a})$$

 $S(\mathbf{a}) = \{ X : \forall \mathbf{u} \text{ noncappable } \}$

X represented below \mathbf{a}, \mathbf{u}

FACT: If **a**, **b** are automorphic, then $S(\mathbf{a}) = S(\mathbf{b})$. (Reason: If π is an automorphism such that $\pi(\mathbf{a}) = \mathbf{b}$, then π maps representations of X below **a**, **u** to representations of X below **b**, $\pi(\mathbf{u})$).

$$S(\mathbf{a}) = \Sigma_3^0(\mathbf{a})$$

This is the crucial step from an arithmetical property of \mathbf{a} to an invariant property of \mathbf{a} .

Proof: 1. The upper bound $S(\mathbf{a}) \subseteq \Sigma_3^0(\mathbf{a})$ uses the effectivity of the coding. Choose **u** low noncappable. Then, for a representation below \mathbf{a}, \mathbf{u}

$$i \in X \Leftrightarrow C \leq_T {\{\beta(i)\}}^R \oplus D$$

and the right hand side is $\Sigma_3^0(\mathbf{a})$. 2. The lower bound $\Sigma_3^0(\mathbf{a}) \subseteq S(\mathbf{a})$ requires more work. **Given:** X in $\Sigma_3^0(\mathbf{a})$, **u** promptly simple. **Find: G** coded below \mathbf{a}, \mathbf{u} , and $\mathbf{c}, \mathbf{d} \leq \mathbf{a}$ such that

 $X = \{i : \mathbf{c} \le \mathbf{g}_i \lor \mathbf{d}\}.$

Big Theorems

Theorem A: If: $\mathbf{a} \neq 0$, \mathbf{u} promptly simple, then: there is an effective successor model coded below \mathbf{a}, \mathbf{u} such that

- (\mathbf{g}_i) is u.r.e. and
- $\mathbf{r} = \bigoplus_i \mathbf{g}_i$ is low.

 $\mathbf{Theorem} \ \mathbf{B} \colon \mathrm{If}$

- (\mathbf{g}_i) is a u.r.e. antichain,
- $\bigoplus_i \mathbf{g}_i$ is low and
- $\mathbf{g}_i < \mathbf{a}$ for each i, then:

for each X in $\Sigma_3^0(\mathbf{a})$, there are $\mathbf{c}, \mathbf{d} \leq \mathbf{a}$ such that

$$X = \{i : \mathbf{c} \le \mathbf{g}_i \lor \mathbf{d}\}.$$

Relativizations of \mathcal{R}_T

Let $\mathcal{R}_T^X = \{\mathbf{y} : \mathbf{y}r.e.a.X\}.$

 Let

Theorem 0.10 If $Z^{(2)} \neq W^{(2)}$, then $\mathcal{R}_T^Z \ncong \mathcal{R}_T^W$

(Similar Theorems are known for $\mathcal{D}_T(\leq 0')$, \mathcal{R}_m and \mathcal{E} .) Proof: By relativization of the arguments above, also in \mathcal{R}_T^X , $S(\mathbf{a}) = \Sigma_3^0(\mathbf{a})$. So, from the isomorphism type of \mathcal{R}_T^X , we can recover

$$\Sigma_3^0(X) = \bigcap \{ S(\mathbf{a}) : \mathbf{a} \text{ r.e.a in } X, \mathbf{a} \neq 0 \}$$

Definability of $\{ \mathbf{x} : \mathbf{x} \sim_2 \mathbf{a} \}$

To define $\{\mathbf{x}: S(\mathbf{x}) = \Sigma_3^0(\mathbf{a})\}\$ by a f.o. formula, we need

- a coding of SMA's **M**, to evaluate " $\Sigma_3^0(\mathbf{a})$ " inside \mathcal{R}_T
- a way to f.o.-define isomorphism between SMA's, to express standardness and compare representations in different models
- A way to f.o.-define the isomorphism between an effective successor model **G** and **M** (viewed as successor model), to transfer a represented set $X \subseteq \mathbf{G}$ into **M**.

Schemes

Recall: a *scheme* is a collection of formulas (with parameters) to code objects of a certain type in \mathcal{R}_T . From now on it may include a f.o.-correctness condition on parameters.

Example: We obtained s_G , a scheme for coding effective successor models. The c.c. says it is a successor model.

Convention: If s_X is a scheme, X, X_0 etc denote objects coded via this scheme, by parameters satisfying the correctness condition.

Standard models and comparison

- **Theorem 0.11** 1. There is a scheme s_M such that all coded \mathbf{M} are standard models of arithmetic.
 - 2. There is a scheme s_h for uniformly defining the isomorphism between any two standard \mathbf{M} 's,
 - 3. There is a scheme s_g for uniformly defining the isomorphism between standard **G**'s such that (G_i) is u.r.e. and the parameter **r** is low and any **M**'s, viewed as a successor model.
 - These restricted **G**'s were the only models we needed to verify that $\Sigma_3^0(\mathbf{a}) \subseteq S(\mathbf{a})$.
 - So we can add a correctness condition on the scheme s_G stating that an isomorphism \tilde{g} to some standard \mathbf{M}_G exists.

• This "secret" modification in the def of representability below \mathbf{a}, \mathbf{u} and hence in the definition of $S(\mathbf{a})$ doesn't change the fact that

$$\Sigma_3^0(\mathbf{a}) = S(\mathbf{a})$$

To prove the theorem, use the following easy extension of the SW-construction.

Lemma 0.12 If (\mathbf{u}_i) is a u.r.e. sequence, and $\bigoplus_i \mathbf{u}_i$ is low, then there is \mathbf{M} such that $i^{\mathbf{M}} \leq \mathbf{u}_i$ and

$$\mathbf{u}_i \not\leq \mathbf{u}_j \Rightarrow i^{\mathbf{M}} \not\leq \mathbf{u}_j$$
 .

A version of $S(\mathbf{x})$ inside M

Let $(T_j) = (W_j^{\emptyset^3})$ be a listing of the Σ_4^0 sets.

 $S(\mathbf{x}, \mathbf{M}) = \{ j \in \mathbf{M} : \forall \mathbf{u} \text{ noncappable} \\ \exists \mathbf{G} \text{ coded below } \mathbf{x}, \mathbf{u} \\ \exists g : \mathbf{G} \leftrightarrow \mathbf{M} \text{ isom. of successor models} \end{cases}$

 $g^{-1}(T_j)$ is repr. below \mathbf{x}, \mathbf{u} via \mathbf{G}

Then $\mathbf{x} \sim_2 \mathbf{a} \Leftrightarrow \exists \mathbf{M} \forall j \in \mathbf{M}$

$$[j \in S(\mathbf{x}, \mathbf{M}) \Leftrightarrow \mathbf{W} \models T_i \in \Sigma_3^0(\mathbf{a})^n],$$

and the statement on the right can be expressed in a f.o.-way. by quantifying over the parameters involved and using that each \mathbf{M} is standard.

Approximation to biinterpretability

Theorem 0.13 (i) A SMA N can be interpreted in \mathcal{R}_T without parameters. (ii) There is a definable map $f : \mathbf{R}_T \to \mathbf{N}$ such that $(\forall \mathbf{a}) W''_{f(\mathbf{a})} = \mathbf{a}''$.

Part (ii) gives the Main Definability Theorem: If

- $C \subseteq \mathcal{R}_T^n$ is invariant under \sim_2 and
- the corresponding relation on indices is arithmetical,

then C is definable.

Proof: $C = f^{-1}(f(C))$.