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Coding and theories

Consider a structure A from computability theory (such as Dy, Ry or &).
Coding methods can be used to show that Th(A) is complex.

1. Uniform coding of a sufficiently complicated class of structures with pa-
rameters, shows Th(A) undecidable.

2. Coding of a standard model of arithmetic with parameters, implies K <,,

Th(A).

So far, the coding is local, namely reflects properties of very special parameter
lists in the context of A.

3. Extend (2) to give an interpretation of true arithmetic (or, true second-
order arithmetic) in A.

To do so, need a first-order condition on parameters coding models which imply
standardness.

e Use some uniform definability result (like an exact pair theorem), or

e compare coded models, typically by considering definable (partial) maps
between them.

What is coding ?

Example:
Fach finite distributive lattice is isomorphic to an initial segment [0, a] of R,.

A coding (or interpretation) of a relational structure B in A is given by a scheme
of formulas



¢U(xa ﬁ)a (¢R($a ﬁ))R relation symbol)

s.t. for appropriate P in A, a copy of B is defined on {#: A E ¢y (z,D)}.

A more general coding: @ is coded in Z via the quotient field construction

Coding and structure

Coding methods can reveal information about the structure A itself (not only
it’s theory), such as

e restrictions on automorphisms (e.g. for Dr)
e show that A is a prime model of its theory (Slaman-Woodin for Dz (< 0))

e compare the complexity of models (e.g. £ can be interpreted in Ry, but
not conversely)

e definability results.

Invariance and definability

Suppose C' C A" is given “externally”. When is ' already inherent in A 7
e weak version: (' is invariant under automorphisms
e strong: (' is first—order definable in A without parameters.
Examples:
e The jump operator is definable in Dy [Cooper ta]
e In Ry, promptly simple=noncappable.

Both first order definitions are using simple, “understandable” formulas.

Definability in Ry

We prove definability results using coding methods.
Theorem 0.1 {x:x® = a(®} is definable for each a.
Thus Lows and Highs are definable.

Definition 0.2 We write x ~5 y if x(2) = y(2).
Theorem 0.3 (Main definability Theorem) If

o O CRY is invariant under ~o and



e the corresponding relation on indices is arithmetical,
then C' s definable.
Applications: definable are

e Low,, High, for each n > 2

e The relation ~+ itself

e For each n > 2, the relation « x(™) < y(7)”,

nghl
Theorem 0.4 High; is definable

x € Highy & Ry E (Vy(3z < x)[z ~2 ¥].

For “=”, use two times the Robinson jump interpolation in relativized forms.
For the direction <, use a result of Soare and Stob (relativized to 0(2)):
If ¢ € Ry — {0}, then there is a u r.e.a. ¢, which is not an r.e. degree.

First goal: invariance

Lemma 0.5 Ifa,b are automorphic, then a'?) = b(2)

Proof. a®) is determined by the class of sets ¥3(a). We will recover this class
from the isomorphism type of (Rr,a).

We define a class of sets S(a) which only depends on this isomorphism type,
and show S(a) = X3(a). Then:

a, b automorphic

= S(a) = S(b)
& Y5(a) = T5(b)
& al? = b2,

Ultimately we can recover ¥3(a) because, on [0,a], <r is ¥3(a) and join is
effective.

Towards defining S(a)

First, we need a representation of setsX C w in Rp. We code the model
(w, 0, X), where ¢ is the successor function.

To keep in mind:

Upper bound—don’t represent too many sets

Lower bound-represent all sets in X3(a).



The coding frame

Definition 0.6 (The domain) A set G C Ry is called an SW-set if, for some
parameters p,q,r,b € Ry, G is the sel of minimal degrees x € [b,x] salisfying
q<xVp.

Definition 0.7 (Successor) An effective successor model is a standard suc-
cessor structure G = ({gi:1 € w}, o) coded by parameters p,q,r,b and four
further parameters e, fo, e, 11 as follows:

o {gi:i€w} is a SW-set
e For each i,
— (gai Ver)Afh = gaiq1

— (g2i+1 Veo) Ay = gaiyo
— 8o L 11 and goi11 £ 1y

Effectivity

Lemma 0.8 If there is a lowy upper bound on all parameters, then, for some
B0,
gi = degr({8(i)}"*.

Here R is some set in the degree r.
The function G is defined by recursion. E.g.,

B(2n 4+ 1) = some e s.t. Z = {e} is total,
and Z < By @ {8(2n)}F, 1.

Definition 0.9 Given a and an upper bound on parameters u. X C w is
represented below a,u if

e there are parameters below u coding effective successor model
o r<a (and hence all g; < a)

e there are also ¢,d < a such that

X={i:e<g Vvd}

S(a)



Let
S(a) = {X : Vu noncappable }

X represented below a,u}

FACT: If a,b are automorphic, then S(a) = S(b).
(Reason: If 7 is an automorphism such that w(a) = b, then 7 maps representa-
tions of X below a, u to representations of X below b, 7(u)).

S(a) = Tj(a)

This is the crucial step from an arithmetical property of a to an invariant prop-
erty of a.

Proof: 1. The upper bound

S(a) C X3(a) uses the effectivity of the coding. Choose u low noncappable.
Then, for a representation below a,u

e X & C<p {8} FaD

and the right hand side is X3(a).

2. The lower bound

¥J(a) C S(a) requires more work.

Given: X in X3(a), u promptly simple.

Find: G coded below a,u, and ¢, d < a such that

X={i:e<gvd}
Big Theorems
Theorem A: If: a # 0, u promptly simple, then:
there 1s an effective successor model coded below a,u such that
e (g;)isu.re. and
o r =P, g is low.
Theorem B: If
e (g;) is a u.r.e. antichain,
o P, g is low and
e g; < a for each i, then:
for each X in X3(a), there are ¢, d < a such that
X ={i:c<g Vvd}

Relativizations of Rt

Let RX = {y :yreaX}.



Theorem 0.10 If Z(*) £ W) then REZ £ RY

(Similar Theorems are known for Dr(< 0'), Ry, and £.)
Proof: By relativization of the arguments above, also in R, S(a) = X5(a).
So, from the isomorphism type of R, we can recover

Y(X) = ﬂ{S(a) careain X, a# 0}
Definability of {x:x ~5 a}

To define {x : S(x) = X3(a)} by a f.o. formula, we need
e a coding of SMA’s M, to evaluate “X§(a)” inside Ry

e a way to f.o.-define isomorphism between SMA’s, to express standardness
and compare representations in different models

e A way to f.o.—define the isomorphism between an effective successor model
G and M (viewed as successor model), to transfer a represented set X C G
into M.

Schemes

Recall: a scheme is a collection of formulas (with parameters) to code objects of
a certain type in Rp. From now on it may include a f.o.—correctness condition
on parameters.

Example: We obtained s, a scheme for coding effective successor models. The
c.c. says it is a successor model.

Convention: If sx is a scheme, X, X etc denote objects coded via this scheme,
by parameters satisfying the correctness condition.

Standard models and comparison

Theorem 0.11 1. There 1s a scheme spy such that all coded M are standard
models of arithmetic.

2. There 1s a scheme sy, for uniformly defining the isomorphism between any
two standard M’s,

3. There is a scheme s, for uniformly defining the isomorphism between stan-
dard G’s such that (G;) is u.r.e. and the parametery is low and any M s,
viewed as a successor model.

e These restricted G’s were the only models we needed to verify that ¥3(a) C
S(a).

e So we can add a correctness condition on the scheme sg stating that an
isomorphism g to some standard Mg exists.



e This “secret” modification in the def of representability below a,u and
hence in the definition of S(a) doesn’t change the fact that

To prove the theorem, use the following easy extension of the SW-construction.

Lemma 0.12 If (w;) is a u.r.e. sequence, and @, w; is low , then there is M
such that iM < w; and
w £u; =MLy

A version of S(x) inside M

Let (T;) = (VV]@?’) be a listing of the X sets.

S(x,M) = {j € M : Vu noncappable
JG coded below x,u
dg : G — M isom. of successor models

g~ (T}) is repr. below x,u via G

Then x ~3 a < AMVj € M

[j € S(x, M) & “M = T € X3(a)]

and the statement on the right can be expressed in a f.o.—way. by quantifying
over the parameters involved and using that each M is standard.

Approximation to biinterpretability

Theorem 0.13 (i) A SMA N can be interpreted in Ry without parameters.

(ii) There is a definable map f: Rp — N such that (Va)W}’(a)

— a//’
Part (ii) gives the Main Definability Theorem: If
o (' CR% is invariant under ~5 and

e the corresponding relation on indices is arithmetical,

then C'1s definable.
Proof: C'= f=L(f(C)).



