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Presentations of continuum size structures

Structures of size the continuum occur naturally in analysis, algebra,
and other areas.
Examples are the additive groups of real numbers, or of p-adic integers,
and the ring of continuous functions on the unit interval.

What can we say about the complexity of these structures?

I We will study continuum size structures that are effective in the
weak sense that they have a Borel presentation.

I This includes the examples given above.
I It actually includes most continuum-sized structures from

mathematics.
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The plan

I We give some background from descriptive set theory

I We define Borel presentations of structures. We give examples.

I We show that there is a Borel (even Büchi) structure without an
injective Borel presentation.

I We consider the interplay of Borel theories and Borel structures,
and show that the completeness theorem from logic fails in the
Borel setting for an uncountable signature.

I We end with open questions.
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Basic concepts

I Let X be a “standard Borel space”, for instance R, Cantor
space {0, 1}ω, or, more generally, some uncountable Polish
topological space (that is, complete metrizable, and separable).

I The Borel sets of X are the smallest σ-algebra containing the open
sets.

I Thus, the Borel sets are the sets obtained from the open sets by
iterated applications of complementation and countable union.
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Sets that are Borel, and sets that are not Borel

I Many sets of reals one from analysis are Borel. For instance, if
f : [0, 1]→ R is an arbitrary function, the set {z : f ′(z) exists} is
Borel. This can be proved using the Denjoy-Young-Saks Theorem.

I However, using the axiom of choice, one can define a set that is not
Borel: for instance, a separating set for the Vitaly equivalence
relation on R.

I The set of wellorderings on ω is not Borel.

I An ultrafilter on ω can be viewed as a subset of Cantor space 2ω.
If the ultrafilter is free, it is not Borel; not even measurable.
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Larger classes of sets

ΣΣΣ1
1 (or analytic) projections of Borel relations

Π1
1Π1
1Π1
1 (or co-analytic) complements of ΣΣΣ1

1 sets

Souslin (1917) proved that

Borel = ΣΣΣ1
1 ∩ΠΠΠ1

1.
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We will use analogy with computable structures

Computable model theory studies the effective content of model
theoretic concepts and results for countable structures.

Definition
A structure A in a finite signature is called computable if

I there is a function from a computable set D ⊆ ω onto A, such that
I the preimages of the atomic relations of A (including equality) are

computable.

Example
(Q, <) and (ω,+,×) are computable.
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We replace “computable” by “Borel”

Main Definition (H. Friedman, 1979)
A structure A in a countable signature is called Borel structure if

I there is a function from a Borel set D in a standard Borel space X
onto A, such that

I the preimages of the atomic relations of A (including equality) are
Borel relations on X .

We call D together with these preimages of the atomic relations a Borel
presentation of A.

I We allow that an element of A is represented by a whole
equivalence class of a Borel equivalence relation E.

I If E is the identity relation on D, we say the Borel presentation is
injective.
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Examples of Borel structures in algebra
Many algebraic structures of size the continuum are Borel. (The
signature is finite.)

I The Boolean algebra P(ω)/Fin is Borel, where Fin denotes the ideal
of finite sets. More generally, consider BAs of the form P(ω)/I,
where I ⊇ Fin is a Borel ideal. This gives lots of non-isomorphic
examples.

I For a countable structure S in a countable signature, the following
structures are Borel:

I the lattice of substructures of S,
I the congruence lattice of S,
I the automorphism group of S.

These structures are in fact arithmetical relative to the atomic diagram
of S.
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Borel structures in analysis
Most structures from analysis of size the continuum are Borel.
For instance, the fields (R,+,×), (C,+,×), the ring C[0, 1] are Borel.

Fact (Hjorth and Nies, 2010)
There are continuum many non-Borel isomorphic injective Borel
presentations of (R,+).

Proof. For each p > 1, we obtain a Borel presentation of (R,+) as the
abelian group underlying the Banach space

`p = {~x ∈ Rω :
∑
n

|xn|p <∞},

where the norm is ||~x||p = (
∑

n |xn|p)1/p.
Two different Borel presentations of this sort are not Borel isomorphic,
because any two Borel isomorphic Polish groups are already
homeomorphic. (See Thm. 9.10 in Kechris, Classical Descriptive set Theory.)
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Restrictions on Borel orders

I The well-ordering of length 2ℵ0 is not Borel.
(If S is a Borel presentation of this well-ordering, then the class G of
linear orderings of ω which embed in S is ΣΣΣ1

1. On the other hand, G is the
class of countable well-orderings, and hence Π1

1 complete, contradiction.)

I More generally, Harrington and Shelah (1982) proved that no Borel
linear order has a subset of order type ω1 (even if equality is
presented by a nontrivial equivalence relation).

I Harrington, Shelah, and Marker (1988) showed that any Borel
partial order without an uncountable Borel antichain is a (disjoint)
union of countably many Borel chains.
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A Borel partial order without a Borel linear
extension

Proposition (Montalbán and Nies)

There is a Borel relation R ⊆ X ×X, where X = {0, 1}ω, such that R
is a partial order without a Borel linear extension.

Proof.
Let P be any Borel preorder with an ω1-chain, such as P(ω) with
almost inclusion ⊆∗. We equip each equivalence class for this preorder
with the lexicographical order ≤lex. Thus we define

Rxy ⇔ (Pxy ∧ ¬Pyx) ∨ (Pxy ∧ Pyx ∧ x ≤lex y),

where x, y ⊆ ω. Then R is a Borel partial order that has no Borel linear
extension by the result of Harrington and Shelah.
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Classes of structures defined by automata

We also consider classes of structures presented by a type of infinitary
automaton, such as Büchi, or Rabin automata.

I Büchi structures are Borel, but Rabin structures not necessarily.

I Such classes have a decidable theory.

I Such classes are closed under first-order interpretations
(unlike the Borel structures).
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Büchi Automata 1

I A Büchi automaton B has the same components as a
(nondeterministic) finite automaton:

I a (finite) alphabet A
I a set of states with a subset of accepting states, and an initial

state,
I a transition relation, of the format

〈state, input symbol, new state 〉.

I The inputs are ω-words, such as 01001000100001 . . ..
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Büchi Automata 2

I A run of Büchi automaton B on an ω-word is a sequence of states
consistent with the transition relation when B is “reading” that
word.

I B accepts an ω-word if some run of B on this word is infinitely
often in an accepting state. B recognizes an ω-language if it accepts
precisely the words in it.
For instance, the set of ω-words over {0, 1} with infinitely many 1’s
is recognizable by a Büchi automaton.

Complementation theorem, Büchi 1966
The Büchi recognizable sets are closed under complements.

Thus, these sets are analytic and co-analytic, and hence Borel.
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Büchi structures
I A k-tuple of ω-words over A can be put into the format of a k × ω

“table”. Thus it corresponds to a single ω-word over Ak.
I A k-ary relation on ω-words over A is called Büchi recognizable if

the corresponding set of tables is Büchi recognizable
I A Büchi presentation is a Borel presentation where the standard

Polish space is X = Aω, and the domain and the relevant relations
are all Büchi recognizable.

Many examples of Borel structures are in fact Büchi structures:
I the reals with addition
I the 2-adic integers with addition
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0
1
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1
0

0
0
1
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...
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0

1
0

I the Boolean algebra P(ω)/Fin.
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A fact from descriptive set theory
We need a fact from descriptive set theory:
almost identity cannot be Borel reduced to identity.

I Let X ,Y be Polish spaces. A function F : X → Y is a Borel
function if the preimage F−1(R) is Borel for each open (or Borel)
set R.

I Equivalently, the graph of F is Borel as a subset of S × T .

Let =∗ denote almost equality of subsets of ω.

Fact
There is no Borel function F on Cantor space P(ω) such that

A =∗ B ⇔ F (A) = F (B) for each A,B ⊆ ω.

This can be proved for instance using the 0-1 law for the product
measure on P(ω).
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The Basic Lemma

(P(ω),⊆) is “Borel stable”:

Basic Lemma
Each isomorphism between two Borel presentations of (P(ω),⊆) has a
Borel graph.

This is so because the isomorphism is given by its effect on the
countably many atoms.
The lemma also works for non-injective presentations.
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A Büchi structure without an injective Borel
presentation
Theorem (Hjorth, Khoussainov, Montalbán, Nies, 2008)
There is a Büchi presentable structure A without an injective Borel
presentation.

Proof. The signature consists of:

I binary predicates E,≤, R,
I a unary predicate U .

Let B = (P(ω),⊆) and B∗ = (P(ω)/Fin,≤).
Let A be the disjoint sum of B and B∗ as partial orders.
Let UA be the left side, and let RA be the projection B → B∗.

The Büchi presentation is A = (B0 t B1, E,≤,B0, S), where

I E is identity B0, and almost equality =∗ on B1;
I S is the canonical bijection between the two copies B0,B1 of B.
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Now assume that S = (D,≤′, U ′, R′) is an injective Borel presentation
of A. Let Φ: A → S be an isomorphism. Let G be the restriction of
Φ to B0. Then G is Borel by the Basic Lemma. Now, for X,Y ⊆ ω,

X =∗ Y ⇔ RA(X) = RA(Y )

⇔ Φ(RA(X)) = Φ(RA(Y ))

⇔ R′(G(X)) = R′(G(Y )),

B0 B1

RA

R'

G

U'

contrary to the fact
from descriptive 
set theory.
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All Fσ-ideals of P(ω) behave similarly

Finkel and Todorcevic gave two Borel Boolean algebras which are
isomorphic under CH, but not under the open coloring axiom OCA.

For isomorphism under CH they used this:

Theorem (Just and Krawzcyk, 1984)

Let I ⊆ P(ω) be a proper Fσ ideal containing the ideal Fin of finite
sets. Then P(ω)/I is a dense ℵ1-saturated Boolean algebra.

If CH holds then ℵ1 = 2ℵ0 = the cardinality of P(ω)/I.
So this implies that P(ω)/I ∼= P(ω)/Fin is the unique saturated dense
Boolean algebra of this size.
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An Fσ-ideal of P(ω)

Let K be the ideal of P(ω × ω) consisting of the sets A such that

∃n [A ⊆ ω × n]}.

Fact (following Finkel and Todorcevic 2010)
I K is an Fσ ideal, and hence Borel.
I This ideal can be recognized by a Rabin automaton.

Hence P(2<ω)/K is a Borel structure. It is also representable by Rabin
tree automata, a generalization of Büchi automata.

Their orginal example was the ideal of P(2<ω) consisting of the sets
without an infinite antichain under the prefix relation.
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The open coloring axiom

The open coloring axiom (OCA) in the version of Todorcevic (1989)
says that each undirected graph on R× R with an open set of edges

I either has an uncountable clique,
I or the vertices can be colored with countably many colors so that

no adjacent vertices have the same color.

If ZFC is consistent, then ZFC + OCA is consistent (see Jech, 2002).
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Theorem (Todorcevic, 1998)

Assume ZFC + OCA. Let J be an analytic ideal of P(U), U countable,
such that

P(U)/J can be embedded into P(ω)/F in.

Then J is trivial: there is S ⊆ U such that

J = {B ⊆ U : B ∩ S finite}.

Clearly the ideal K = {A : ∃n [A ⊆ ω × n]} is not trivial.
Thus under OCA the Borel presentable Boolean algebras P(ω)/K and
P(ω)/Fin are not isomorphic.
Hence, ZFC cannot decide whether they are isomorphic.

Note that these are also Rabin presentable Boolean algebras. No
example known (to me) for Büchi presentable BAs

André Nies () Borel Structures Jan 19, 2012 28 / 1



André Nies () Borel Structures Jan 19, 2012 29 / 1



For countable languages, there is a Borel completeness theorem.

Theorem (H. Friedman, 1979)
Each consistent theory T in a countable language has a Borel model of
size the continuum. In fact, its elementary diagram is Borel.

Friedman expanded a countable model of T to the size of the continuum
by adding order indiscernibles, ordered like the real numbers.

This implies the model has continuum many Borel automorphisms, and
only realizes countably many types.

For instance, if T is the theory of algebraically closed fields of
characteristic 0, then one obtains a Borel presentation of the field C.

This Borel presentation of C is not Borel isomorphic to the natural one,
because the natural one has only two Borel automorphisms
(observation of Nies and Shore, 2009).
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Borel models realizing many types

The following 1987 notes by Knight and Simpson
give a different kind of continuum size model for countable “tidy” theories.

tidy:  built in Skolem functions
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Sample application

Let pn be the n-th prime number.

For S ⊆ ω consider the type

τS(x) = {pn | x : n ∈ S} ∪ {pn 6 |x : n 6∈ S}.

There is a Borel model of Th(N,+,×) in which uncountably many of
these types are realized.
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Borel Signatures

Definition
A Borel signature is a Borel set L consisting of relation and function
symbols, such that the sets

{R ∈ L : R is a relation symbol of arity n}

and
{f ∈ L : f is a function symbol of arity n}

are all Borel.

The corresponding first-order language can be viewed as a Borel set in
a suitable standard Polish space. So we have a notion of Borel theories.
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Borel presentations over Borel signatures

Suppose we are given an (uncountable) Borel signature L.
For a Borel presentation of a structure, we now need to require that the
relations and functions are uniformly Borel.

Main Definition, extended to Borel signatures
An L-structure A is called Borel if there is a function φ from a Borel
set D in standard Borel space X onto A, such that for each n,

{(R, d1, . . . , dn) : RAφ(d1), . . . , φ(dn)} ⊆ L ×Dn is Borel,

where R ranges over n-ary relation symbols in L;
a similar condition holds for the n-ary function symbols.
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A consistent Borel theory without a Borel model
or Borel completion 1

Example
The following is a Borel signature:
for each X ⊆ ω a constant symbol cX ; a unary predicate U .

Theorem (Hjorth and Nies, JSL, June 2011)
In the signature given above, there exists a consistent Borel theory with
no Borel completion.
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A consistent Borel theory without a Borel model
or Borel completion 2

The Borel theory expresses that {X : U(cX)} is a filter on ω containing
all the co-finite sets.
In more detail, it consists of the sentences

I cA 6= cB, for every A 6= B ⊆ ω;
I U(cA)→ U(cB), for every pair of sets such that A ⊆ B ⊆ ω;
I U(cA)↔ ¬U(cω\A), for every A ⊆ ω;
I U(cA) ∧ U(cB)→ U(cA∩B), for every A,B ⊆ ω;
I ¬U(cA), for each finite set A ⊆ ω.

Any completion S of the theory determines the free ultrafilter
{A : S ` U(cA)} of ω, and hence cannot be Borel.
A similar argument works for Borel models.
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The completeness theorem fails in the general
Borel setting

Theorem (Hjorth and Nies, JSL, June 2011)
There exists a consistent complete Borel theory T with no Borel model.

At its core this uses:

Fact from descriptive set theory
There is no Borel reduction of almost equivalence =∗ to the equality
relation on a Cantor space 2ω.

T is defined in such a way that any Borel model of T would provide
such a reduction.
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Borel models of T would be ω models

T has several sorts. One of them is N , standing for natural numbers.
On N there are

constants en (n ∈ ω) and
unary predicate symbols Ux (x ∈ 2ω).

T expresses that the en are pairwise distinct, and for each e ∈ N , the
truth value of Ux(e) behaves the way one expects for the set x. For
instance, whenever z ⊆ y we have a sentence ∀e ∈ N (Uz(e)⇒ Uy(e)) in
T . For z = {n} we have a sentence ∀e ∈ N (Uz(e)⇔ e = en).

Then any Borel model A of T would be an ω model, i.e.,
NA = {eAn : n ∈ ω}. Else there would be a free Borel ultrafilter on ω.
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I Once we have ensured that N corresponds to the natural numbers,
we can also have a sort for the tree 2<ω, and one for paths through
it. So we have a sort B denoting Cantor space 2ω.

I There are further sorts C,F . There is an equivalence relation E on
C thought of as almost equivalence =∗. The sort F denotes 1-1
functions C/E → B.

I T is complete and Borel because all countable models of its
restrictions to countable sub-signatures (sharing some fixed finite
collection of base symbols) are isomorphic.

I This uses Malitz’ Lemma that all countable dense sets of paths in
the tree 2<ω are tree automorphic.

I Part of the difficulty is that we also have to rule out non-injective
Borel presentations.
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Open Questions
I The Borel dimension of a Borel structure is the number of

equivalence classes modulo Borel isomorphism on the set of its
Borel presentations. Is there a structure of Borel dimension strictly
between 1 and the continuum? (HKMN 2008)
For instance, (R,+) has Borel dimension 2ω, while (R,+,×) has Borel
dimension 1. Does the field C have Borel dimension 2ω? (Nies and Shore,
recent)

I If a Scott set is Borel, is it already the standard system of a Borel
model of Peano arithmetic? (Woodin, 1990s)
Background: Scott showed that the countable Scott sets are precisely the
standard systems of countable models of Peano arithmetic. Knight and
Nadel (1982) proved the analogous result for Scott sets and models of the
size ω1. For the general uncountable case, the analogous statement is
open.
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I Does the Boolean algebra P(ω)/Fin have an injective Borel
presentation? (HKMN 2008)
Analogous question for Sym(ω)/Fin, Calkin Algebra.

I Does every Borel field F have an algebraically closed Borel
extension? (Nies, 2009; variant appeared in D. Markers March 2010
FOM posting.)

If not, this would yield a further, more natural, example of a
complete Borel theory without a Borel model:

ACFm ∪DiagF ,

where m is the characteristic of F , and DiagF its atomic diagram.
One thing one could try would be to code the Hjorth/Nies Borel
theory into a Borel field.
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