Randomness via effective descriptive set theory

André Nies The University of Auckland

FRG workshop, Madison, May 2009 LIAFA, Univ. Paris 7, May 2011

- One introduces a mathematical randomness notion by specifying a test concept.
- Usually the null classes given by tests are arithmetical.
- Here we provide formal definitions of randomness notions using tools from higher computability theory.

Part 1 Introduction

Let $2^{\mathbb{N}}$ denote Cantor space.

- A relation B ⊆ N^k × (2^N)^r is Π¹₁ if it is obtained from an arithmetical relation by a universal quantification over sets.
- If k = 1, r = 0 we have a Π_1^1 set $\subseteq \mathbb{N}$.
- If k = 0, r = 1 we have a Π_1^1 class $\subseteq 2^{\mathbb{N}}$.
- A relation \mathcal{B} is Δ_1^1 if both \mathcal{B} and its complement are Π_1^1 .

There is an equivalent representation of Π_1^1 relations where the members are enumerated at stages that are countable ordinals. For Π_1^1 sets (of natural numbers) these stages are in fact computable ordinals, i.e., the order types of computable well-orders.

- Analogs of many notions from the computability setting exist in the setting of higher computability.
- The results about them often turn out to be different.
- The reason is that there are two new closure properties.
- (C1) The Π_1^1 and Δ_1^1 relations are closed under number quantification.
- (C2) If a function *f* maps each number *n* in a certain effective way to a computable ordinal, then the range of *f* is bounded by a computable ordinal. This is the Bounding Principle.

We will study the Π_1^1 version of ML-randomness.

Beyond that, we will study Δ_1^1 -randomness and Π_1^1 -randomness. The tests are simply the null Δ_1^1 classes and the null Π_1^1 classes, respectively. The implications are

 $\Pi_1^1\text{-randomness} \Rightarrow \Pi_1^1\text{-}ML\text{-randomness} \Rightarrow \Delta_1^1\text{-randomness}.$

The converse implications fail.

- Martin-Löf (1970) was the first to study randomness in the setting of higher computability theory.
- Surprisingly, he suggested ∆₁¹-randomness as the appropriate mathematical concept of randomness.
- His main result was that the union of all Δ¹₁ null classes is a Π¹₁ class that is not Δ¹₁.
- Later it turned out that △¹/₁-randomness is the higher analog of both Schnorr and computable randomness.

- The strongest notion we will consider is Π¹₁-randomness, which has no analog in the setting of computability theory.
- This is where we reach the limits of effectivity.
- Interestingly, there is a universal test. That is, there is a largest Π¹₁ null class.

Part 2

Preliminaries on higher computability theory

- We give more details on Π_1^1 and Δ_1^1 relations.
- We formulate a few principles in effective descriptive set theory from which most results can be derived. They are proved in Sacks 90.

Definition 1

Let
$$\mathcal{A} \subseteq \mathbb{N}^k \times 2^{\mathbb{N}}$$
 and $n \ge 1$. \mathcal{A} is \sum_n^0 if
 $\langle e_1, \dots, e_k, X \rangle \in \mathcal{A} \leftrightarrow$
 $\exists y_1 \forall y_2 \dots Qy_n R(e_1, \dots, e_k, y_1, \dots, y_{n-1}, X \upharpoonright_{y_n}),$

where *R* is a computable relation, and *Q* is " \exists " if *n* is odd and *Q* is " \forall " if *n* is even.

 \mathcal{A} is arithmetical if \mathcal{A} is Σ_n^0 for some *n*.

We can also apply this to relations $\mathcal{A} \subseteq \mathbb{N}^k \times (2^{\mathbb{N}})^n$, replacing a tuple of sets X_1, \ldots, X_n by the single set $X_1 \oplus \ldots \oplus X_n$.

Definition 2

Let $k, r \ge 0$ and $\mathcal{B} \subseteq \mathbb{N}^k \times (2^{\mathbb{N}})^r$. \mathcal{B} is Π_1^1 if there is an arithmetical relation $\mathcal{A} \subseteq \mathbb{N}^k \times (2^{\mathbb{N}})^{r+1}$ such that $\langle e_1, \ldots, e_k, X_1, \ldots, X_r \rangle \in \mathcal{B} \leftrightarrow \forall Y \langle e_1, \ldots, e_k, X_1, \ldots, X_r, Y \rangle \in \mathcal{A}$. \mathcal{B} is Σ_1^1 if its complement is Π_1^1 , and \mathcal{B} is Δ_1^1 if it is both Π_1^1 and Σ_1^1 . A Δ_1^1 set is also called hyperarithmetical.

- The Π¹₁ relations are closed under the application of number quantifiers.
- So are the Σ_1^1 and Δ_1^1 relations.
- One can assume that \mathcal{A} in Σ_2^0 and still get all Π_1^1 relations.

In the following we will consider binary relations $W \subseteq \mathbb{N} \times \mathbb{N}$ with domain an initial segment of \mathbb{N} . They can be encoded by sets $R \subseteq \mathbb{N}$ via the usual pairing function. We identify the relation with its code.

Well-orders and computable ordinals

- A linear order *R* is a well-order if each non-empty subset of its domain has a least element.
- The class of well-orders is Π₁¹. Furthermore, the index set {*e*: *W_e* is a well-order} is Π₁¹.
- Given a well-order *R* and an ordinal *α*, we let |*R*| denote the order type of *R*, namely, the ordinal *α* such that (*α*, ∈) is isomorphic to *R*.
- We say that an ordinal α is computable if α = |R| for a computable well-order R.
- Each initial segment of a computable well-order is also computable. So the computable ordinals are closed downwards.

We let ω_1^{Y} denote the least ordinal that is not computable in *Y*. The least incomputable ordinal is ω_1^{ck} (which equals ω_1^{\emptyset}).

An important example of a Π_1^1 class is

 $\mathcal{C} = \{ \mathbf{Y} \colon \omega_1^{\mathbf{Y}} > \omega_1^{\mathrm{ck}} \}.$

To see that this class is Π_1^1 , note that $Y \in \mathcal{C} \iff \exists e$ Φ_e^Y is well-order & $\forall i \; [W_i \text{ is computable relation} \rightarrow \Phi_e^Y \ncong W_i]$. This can be put into Π_1^1 form because the Π_1^1 relations are closed under number quantification.

If $\omega_1^Y = \omega_1^{ck}$ we say that Y is low for ω_1^{ck} .

Representing Π_1^1 relations by well-orders

- A Σ₁⁰ class, of the form {X: ∃y R(X ↾_y)} for computable R, can be thought of as being enumerated at stages y ∈ N.
- Π¹₁ classes can be described by a generalized type of enumeration where the stages are countable ordinals.

Theorem 3 (Representing Π_1^1 relations)

Let $k, r \ge 0$. Given a Π_1^1 relation $\mathcal{B} \subseteq \mathbb{N}^k \times (2^{\mathbb{N}})^r$, there is a computable function $p \colon \mathbb{N}^k \to \mathbb{N}$ such that

 $\langle e_1, \ldots, e_k, X_1 \oplus \ldots \oplus X_r \rangle \in \mathcal{B} \leftrightarrow \Phi_{p(e_1, \ldots, e_k)}^{X_1 \oplus \ldots \oplus X_r}$ is a well-order.

Conversely, each relation given by such an expression is Π_1^1 . The order type of $\Phi_{p(e_1,...,e_k)}^{X_1 \oplus ... \oplus X_r}$ is the stage at which the element enters \mathcal{B} , so for a countable ordinal α , we let

$$\mathcal{B}_{\alpha} = \{ \langle \boldsymbol{e}_1, \dots, \boldsymbol{e}_k, X_1 \oplus \dots \oplus X_r \rangle \colon |\Phi_{\boldsymbol{p}(\boldsymbol{e}_1, \dots, \boldsymbol{e}_k)}^{X_1 \oplus \dots \oplus X_r}| < \alpha \}.$$

Thus, \mathcal{B}_{α} contains the elements that enter \mathcal{B} before stage α .

Recall that we may view sets as relations $\subseteq \mathbb{N} \times \mathbb{N}.$ By the above,

$$O = \{e: W_e \text{ is a well-order}\}$$

is a Π_1^1 -complete set. That is, O is Π_1^1 and $S \leq_m O$ for each Π_1^1 set S.

For $p \in \mathbb{N}$, we let \mathcal{Q}_p denote the Π_1^1 class with index p. Thus,

$$\mathcal{Q}_{p} = \{ X : \Phi_{p}^{X} \text{ is a well-order} \}.$$

Note that $Q_{p,\alpha} = \{X : |\Phi_p^X| < \alpha\}$, so $X \in Q_p$ implies that $X \in Q_{p,|\Phi_p^X|+1}$.

Relativization

The notions introduced above can be relativized to a set *A*. It suffices to include *A* as a further set variable in definition of Π_1^1 relations. For instance, $S \subseteq \mathbb{N}$ is a $\Pi_1^1(A)$ set if $S = \{e: \langle e, A \rangle \in \mathcal{B}\}$ for a Π_1^1 relation $\mathcal{B} \subseteq \mathbb{N} \times 2^{\mathbb{N}}$. The following set is $\Pi_1^1(A)$ -complete:

$$O^{A} = \{ e : W_{e}^{A} \text{ is a well-order} \}.$$

A Π_1^1 object can be approximated by Δ_1^1 objects.

Lemma 4 (Approximation Lemma)

(i) For each Π_1^1 set *S* and each $\alpha < \omega_1^{ck}$, the set S_α is Δ_1^1 . (ii) For each Π_1^1 class \mathcal{B} and each countable ordinal α , the class \mathcal{B}_α is $\Delta_1^1(R)$, for every well-order *R* such that $|R| = \alpha$.

Theorem 5 (Lusin)

Each Π_1^1 class is measurable.

The following frequently used result states that the measure of a class has the same descriptive complexity as the class itself. Note that (ii) follows from (i).

Lemma 6 (Measure Lemma)

(i) For each Π_1^1 class, the real $\lambda \mathcal{B}$ is left- Π_1^1 .

(ii) If S is a Δ_1^1 class then the real λS is left- Δ_1^1 .

Theorem 7 (Sacks-Tanaka)

A Π_1^1 class that is not null has a hyperarithmetical member.

Turing reducibility has two analogs in the new setting.

(1) Intuitively, as the stages are now countable ordinals, it is possible to look at the whole oracle set during a "computation". If full access to the oracle set is granted we obtain hyperarithmetical reducibility: $X \leq_h A$ iff $X \in \Delta_1^1(A)$.

(2) If only a finite initial segment of the oracle can be used we have the restricted version \leq_{fin-h} .

Theorem 8 (Sacks 69)

$$A \notin \Delta_1^1 \Leftrightarrow \{X \colon X \ge_h A\}$$
 is null.

Next, we reconsider the class of sets that are not low for ω_1^{ck} .

Theorem 9 (Spector 55)

 $O \leq_h X \Leftrightarrow \omega_1^{ck} < \omega_1^X.$

The foregoing two theorems yield:

Corollary 10

The
$$\Pi_1^1$$
 class $C = \{ Y : \omega_1^Y > \omega_1^{ck} \}$ is null.

The following result is an analog of the Low Basis Theorem. The proof differs because Σ_1^1 classes are not closed in general.

Theorem 11 (Gandy Basis Theorem)

Let $S \subseteq 2^{\mathbb{N}}$ be a non-empty Σ_1^1 class. Then there is $A \in S$ such that

$$A \leq_T O$$
 and $O^A \leq_h O$

(whence $A <_h O$).

Definition 12

A *fin-h* reduction procedure is a partial function $\Phi: \{0,1\}^* \to \{0,1\}^*$ with Π_1^1 graph such that dom(Φ) is closed under prefixes and, if $\Phi(x) \downarrow$ and $y \preceq x$, then $\Phi(y) \preceq \Phi(x)$. We write $A = \Phi^Z$ if $\forall n \exists m \Phi(Z \upharpoonright_m) \succeq A \upharpoonright_n$, and $A \leq_{fin-h} Z$ if $A = \Phi^Z$ for some *fin-h* reduction procedure Φ .

If *A* is hyperarithmetical then $\Phi = \{\langle x, A \upharpoonright_{|x|} \rangle : x \in \{0, 1\}^*\}$ is Π_1^1 , so $A \leq_{fin-h} Z$ via Φ for any *Z*. For a set S we let

- L(0, S) be the transitive closure of $\{S\} \cup S$.
- L(α + 1, S) contains the sets that are first-order definable with parameters in (L(α, S), ∈), and

•
$$L(\eta, S) = \bigcup_{\alpha < \eta} L(\alpha, S)$$
 for a limit ordinal η .

We write $L(\alpha)$ for $L(\alpha, \emptyset)$.

A Δ_0 formula is a first-order formula in the language of set theory which involves only bounded quantification, namely, quantification of the form $\exists z \in y$ and $\forall z \in y$.

A Σ_1 formula has the form $\exists x_1 \exists x_2 ... \exists x_n \varphi_0$ where φ_0 is Δ_0 .

By Theorem 3 we can view Π_1^1 sets as being enumerated at stages that are computable ordinals. The following important theorem provides a further view of this existential aspect of Π_1^1 sets.

Theorem 13 (Gandy/Spector, 55)

 $S \subseteq \mathbb{N}$ is $\Pi_1^1 \Leftrightarrow$ there is a Σ_1 -formula $\varphi(y)$ such that

 $S = \{ y \in \omega : (L(\omega_1^{ck}), \in) \models \varphi(y) \}.$

Given $A \subseteq \mathbb{N}$, let $L_A = L(\omega_1^A, A)$. We say that $D \subseteq (L_A)^k$ is Σ_1 over L_A if there is a Σ_1 formula φ such that

$$D = \{ \langle x_1, \ldots, x_k \rangle \in (L_A)^k \colon (L_A, \in) \models \varphi(x_1, \ldots, x_k) \}.$$

Thus, $S \subseteq \mathbb{N}$ is Π_1^1 iff S is Σ_1 over $L(\omega_1^{ck})$.

We often consider partial functions from L_A to L_A with a graph defined by a Σ_1 formula with parameters. We say the function is Σ_1 over L_A . Such functions are an analog of functions partial computable in A.

Lemma 14 (Bounding Principle)

Suppose $f: \omega \to \omega_1^A$ is Σ_1 over L_A . Then there is an ordinal $\alpha < \omega_1^A$ such that $f(n) < \alpha$ for each n.

Approximation Lemma 4. (i) For each Π_1^1 set *S* and each $\alpha < \omega_1^{ck}$, the set S_α is Δ_1^1 . (ii) For each Π_1^1 class \mathcal{B} and each countable ordinal α , the class \mathcal{B}_α is $\Delta_1^1(R)$, for every well-order *R* such that $|\mathcal{R}| = \alpha$.

Measure Lemma 6. (i) For each Π_1^1 class, the real $\lambda \mathcal{B}$ is left- Π_1^1 . (ii) If \mathcal{S} is a Δ_1^1 class then the real $\lambda \mathcal{S}$ is left- Δ_1^1 .

Bounding Principle 14. Suppose $f: \omega \to \omega_1^A$ is Σ_1 over L_A . Then there is an ordinal $\alpha < \omega_1^A$ such that $f(n) < \alpha$ for each n.

Part 3

Analogs of Martin-Löf randomness and *K*-triviality

We develop an analog of the theory of ML-randomness and K-triviality based on Π_1^1 sets. The definitions and results are due to Hjorth and Nies (2007)

Definition 15

A Π_1^1 -machine is a possibly partial function $M: \{0,1\}^* \to \{0,1\}^*$ with a Π_1^1 graph. For $\alpha \le \omega_1^{ck}$ we let $M_\alpha(\sigma) = y$ if $\langle \sigma, y \rangle \in M_\alpha$. We say that M is prefix-free if dom(M) is prefix-free.

There is an effective listing $(M^d)_{d \in \mathbb{N}}$ of all the prefix-free Π_1^1 -machines.

As a consequence, there is an optimal prefix-free Π_1^1 -machine.

Definition 16

The prefix-free Π_1^1 -machine $\underline{\mathbb{U}}$ is given by $\underline{\mathbb{U}}(0^d 1\sigma) \simeq M^d(\sigma)$. Let $\underline{K}(y) = \min\{|\sigma|: \underline{\mathbb{U}}(\sigma) = y\}$. For $\alpha \le \omega_1^{ck}$ let $\underline{K}_{\alpha}(y) = \min\{|\sigma|: \underline{\mathbb{U}}_{\alpha}(\sigma) = y\}$.

Since $\underline{\mathbb{U}}$ has Π_1^1 graph, the relation " $\underline{K}(y) \leq u$ " is Π_1^1 and, by the Approximation Lemma 4, for $\alpha < \omega_1^{ck}$ the relation " $\underline{K}_{\alpha}(y) \leq u$ " is Δ_1^1 . Moreover $\underline{K} \leq_T O$.

Definition 17

A Π_1^1 -Martin-Löf test is a sequence $(G_m)_{m \in \mathbb{N}}$ of open sets such that $\forall m \in \mathbb{N} \ \lambda G_m \leq 2^{-m}$ and the relation $\{\langle m, \sigma \rangle \colon [\sigma] \subseteq G_m\}$ is Π_1^1 .

A set Z is Π_1^1 -ML-random if $Z \notin \bigcap_m G_m$ for each Π_1^1 -ML-test $(G_m)_{m \in \mathbb{N}}$.

For $b \in \mathbb{N}$ let $\underline{\mathcal{R}}_b = [\{x \in \{0,1\}^* : \underline{K}(x) \le |x| - b\}]^{\prec}$.

Proposition 18

 $(\underline{\mathcal{R}}_b)_{b\in\mathbb{N}}$ is a Π_1^1 -ML-test.

We have a higher analog of the Levin-Schnorr Theorem:

Z is Π_1^1 -ML-random $\Leftrightarrow Z \in 2^{\mathbb{N}} - \underline{\mathcal{R}}_b$ for some b.

Since $\bigcap_b \underline{\mathcal{R}}_b$ is Π_1^1 , this implies that the class of Π_1^1 -ML-random sets is Σ_1^1 .

We provide two examples of Π_1^1 -ML-random sets.

1. By the Gandy Basis Theorem there is a Π_1^1 -ML-random set $Z \leq_T O$ such that $O^Z \leq_h O$. 2. Let $\underline{\Omega} = \lambda [\operatorname{dom} \underline{\mathbb{U}}]^{\prec} = \sum_{\sigma} 2^{-|\sigma|} [\![\underline{\mathbb{U}}(\sigma) \downarrow]\!]$. Note that $\underline{\Omega}$ is left- Π_1^1 . $\underline{\Omega}$ is shown to be Π_1^1 -ML-random similar to the usual proof.

Theorem 19 (Kučera - Gács)

Let Q be a closed Σ_1^1 class of Π_1^1 -ML-random sets such that $\lambda Q \ge 1/2$ (say $Q = 2^{\mathbb{N}} - \underline{\mathcal{R}}_1$). Then, for each set A there is $Z \in Q$ such that $A \leq_{fin-h} Z$.

Part 4

Δ_1^1 -randomness and Π_1^1 -randomness

- We show that Δ¹₁-randomness coincides with the higher analogs of both Schnorr randomness and computable randomness.
- There is a universal test for Π_1^1 randomness
- Z is Π_1^1 -random $\Leftrightarrow Z$ is Δ_1^1 -random and $\omega_1^Z = \omega_1^{ck}$.

Definition 20

Z is Δ_1^1 -random if Z avoids each null Δ_1^1 class (Martin-Löf, 1970). Z is Π_1^1 -random if Z avoids each null Π_1^1 class (Sacks, 1990).

We have the proper implications

 Π_1^1 -random $\Rightarrow \Pi_1^1$ -ML-random $\Rightarrow \Delta_1^1$ -random

- Δ¹₁ randomness is equivalent to being ML-random in Ø^(α) for each computable ordinal α.
- Each Π¹₁-random set Z satisfies ω^Z₁ = ω^{ck}₁, because the Π¹₁ class {X: ω^X₁ > ω^{ck}₁} is null.
- Thus, since <u>Ω</u> ≡_{wtt} O, the Π¹₁-ML-random set <u>Ω</u> is not Π¹₁-random.

Notions that coincide with Δ_1^1 -randomness

A Π_1^1 -Schnorr test is a Π_1^1 -ML-test $(G_m)_{m \in \mathbb{N}}$ such that λG_m is left- Δ_1^1 uniformly in *m*. A supermartingale $M: \{0,1\}^* \to \mathbb{R}^+ \cup \{0\}$ is hyperarithmetical if $\{\langle x, q \rangle : q \in \mathbb{Q}_2 \& M(x) > q\}$ is Δ_1^1 . Its success set is Succ $(M) = \{Z: \limsup_n M(Z \upharpoonright_n) = \infty\}$.

Theorem 21

- (i) Let A be a null Δ¹₁ class. Then A ⊆ ∩ G_m for some Π¹₁-Schnorr test {G_m}_{m∈N} such that λG_m = 2^{-m} for each m.
- (ii) If $(G_m)_{m \in \mathbb{N}}$ is a Π_1^1 -Schnorr test then $\bigcap_m G_m \subseteq \text{Succ}(M)$ for some hyperarithmetical martingale M.
- (iii) Succ(M) is a null Δ_1^1 class for each hyperarithmetical supermartingale M.

The foregoing characterization of Δ_1^1 -randomness via hyperarithmetical martingales can be used to separate it from Π_1^1 -ML-randomness.

Theorem 22

For every unbounded non-decreasing hyperarithmetical function *h*, there is a Δ_1^1 -random set *Z* such that $\forall^{\infty} n \ \underline{K}(Z \upharpoonright_n | n) \leq h(n)$.

The higher analog of the Levin-Schnorr Theorem now implies:

Corollary 23

There is a Δ_1^1 -random set that is not Π_1^1 -ML-random.

By Sacks-Tanaka the class of Δ_1^1 -random sets is not Π_1^1 . In particular, there is no largest null Δ_1^1 class. However, the class of Δ_1^1 -random sets is Σ_1^1 (Martin-Löf; see Nies book, Ex. 9.3.11).

More on Π_1^1 -randomness

There is a universal test for Π_1^1 -randomness.

Theorem 24 (Kechris (1975); Hjorth, Nies (2007))

There is a null Π_1^1 class \mathcal{Q} such that $\mathcal{S} \subseteq \mathcal{Q}$ for each null Π_1^1 class \mathcal{S} .

Proof.

• We show that one may effectively determine from a Π_1^1 class S a null Π_1^1 class $\widehat{S} \subseteq S$ such that

 $\mathcal{S} \text{ is null} \Rightarrow \widehat{\mathcal{S}} = \mathcal{S}.$

• Assuming this, let Q_p be the Π_1^1 class given by the Turing functional Φ_p in the sense of Theorem 3. Then $Q = \bigcup_p \widehat{Q}_p$ is Π_1^1 , so Q is as required.

Applying the Gandy Basis Theorem to the Σ_1^1 class $2^{\mathbb{N}}-\mathcal{Q}$ yields:

Corollary 25

There is a Π_1^1 -random set $Z \leq_T O$ such that $O^Z \leq_h O$.

This contrasts with the fact that in the computability setting already a weakly 2-random set forms a minimal pair with \emptyset' .

Classifying Π_1^1 -randomness within Δ_1^1 -randomness

For each Π_1^1 class S we have $S \subseteq \{Y : \omega_1^Y > \omega_1^{ck}\} \cup \bigcup_{\alpha < \omega_1^{ck}} S_\alpha$, because $Y \in S$ implies $Y \in S_\alpha$ for some $\alpha < \omega_1^Y$. For the largest null Π_1^1 class Q, equality holds because $\{Y : \omega_1^Y > \omega_1^{ck}\}$ is a null Π_1^1 class:

Fact 26

$$\mathcal{Q} = \{ \mathbf{Y} \colon \omega_1^{\mathbf{Y}} > \omega_1^{\mathrm{ck}} \} \cup \bigcup_{\alpha < \omega_1^{\mathrm{ck}}} \mathcal{Q}_{\alpha}.$$

For $\alpha < \omega_1^{ck}$ the null class \mathcal{Q}_{α} is Δ_1^1 by the Approximation Lemma 4(ii). So, by de Morgan's, the foregoing fact yields a characterization of the Π_1^1 -random sets within the Δ_1^1 -random sets by a lowness property in the new setting.

Theorem 27

Z is
$$\Pi_1^1$$
-random $\Leftrightarrow \omega_1^Z = \omega_1^{ck} \& Z$ is Δ_1^1 -random.

Part 5

Lowness properties in higher computability theory

We study some properties that are closed downward under \leq_h , and relate them to higher randomness notions. The results are due to Chong, Nies and Yu (2008).

Definition 28

We say that *A* is hyp-dominated if each function $f \leq_h A$ is dominated by a hyperarithmetical function.

Fact 29

A is hyp-dominated
$$\Rightarrow \omega_1^A = \omega_1^{ck}$$
.

Weak Δ_1^1 randomness means being in no closed null Δ_1^1 class.

Theorem 30 (Kjos-Hanssen, Nies, Stephan, Yu (2009))

Z is Π_1^1 -random \Leftrightarrow *Z* is hyp-dominated and weakly Δ_1^1 -random.

" \Rightarrow " is in the Book 9.4.3. " \Leftarrow " is a domination argument using the Bounding Principle (see Nbook, Ex 9.4.6. and solution).

The higher analogs of c.e., and of computable traceability coincide, again because of the Bounding Principle.

Definition 31

(i) Let *h* be a non-decreasing Δ_1^1 function. A Δ_1^1 trace with bound *h* is a uniformly Δ_1^1 sequence of sets $(T_n)_{n\in\omega}$ such that $\forall n [\#T_n \leq h(n)]$. $(T_n)_{n\in\omega}$ is a trace for the function *f* if $f(n) \in T_n$ for each *n*.

(ii) *A* is Δ_1^1 traceable if there is an unbounded non-decreasing hyperarithmetical function *h* such that each function $f \leq_h A$ has a Δ_1^1 trace with bound *h*.

As usual, the particular choice of the bound *h* does not matter.

- Chong, Nies and Yu showed that there are 2^{ℵ0} many Δ¹₁ traceable sets.
- In fact, each generic set for forcing with perfect Δ¹₁ trees (introduced in Sacks 4.5.IV) is Δ¹₁ traceable.
- Also, by Sacks 4.10.IV, there a generic set Z ≤_h O. Then Z is Δ¹₁ traceable and Z ∉ Δ¹₁.

 Δ_1^1 traceability characterizes lowness for Δ_1^1 -randomness. The following is similar to results of Terwijn/Zambella (1998).

Theorem 32 (Kjos-Hanssen/Nies/Stephan (2007))

The following are equivalent for a set A.

- (i) A is Δ_1^1 -traceable (or equivalently, Π_1^1 traceable).
- (ii) Each null $\Delta_1^1(A)$ class is contained in a null Δ_1^1 class.
- (iii) A is low for Δ_1^1 -randomness.
- (iv) Each Π_1^1 -*ML*-random set is $\Delta_1^1(A)$ -random.

Low(Π_1^1 -random)

For each set *A* there is a largest null $\Pi_1^1(A)$ class $\mathcal{Q}(A)$ by relativizing Theorem 24. Clearly $\mathcal{Q} \subseteq \mathcal{Q}(A)$; *A* is called low for Π_1^1 -randomness iff they are equal.

Lemma 33

If A is low for Π_1^1 -randomness then $\omega_1^A = \omega_1^{ck}$.

Proof. Otherwise, $A \ge_h O$ by Theorem 9. By Corollary 25 there is a Π_1^1 -random set $Z \le_h O$, and Z is not even $\Delta_1^1(A)$ random.

Question 34

Does lowness for Π_1^1 -randomness imply being in Δ_1^1 ?

Π_1^1 -random cuppable

By the following result, lowness for Π_1^1 -randomness implies lowness for Δ_1^1 -randomness. We say that *A* is Π_1^1 -random cuppable if $A \oplus Y \ge_h O$ for some Π_1^1 -random set *Y*.

Theorem 35

A is low for Π_1^1 -randomness \Leftrightarrow (a) A is not Π_1^1 -random cuppable & (b) A is low for Δ_1^1 -randomness.

Proof.

⇒: (a) By Lemma 33 $A \succeq_h O$. Therefore the $\Pi_1^1(A)$ class

$$\{Y: Y \oplus A \geq_h O\}$$

is null, by relativizing Cor. 10 to *A*. Thus *A* is not Π_1^1 -random cuppable.

(b) Suppose for a contradiction that Y is Δ_1^1 -random but $Y \in C$ for a null $\Delta_1^1(A)$ class C. The union D of all null Δ_1^1 classes is Π_1^1 by Martin-Löf (1970) (see Book Ex. 9.3.11). Thus Y is in the $\Sigma_1^1(A)$ class C - D.

By the Gandy Basis Theorem 11 relative to *A* there is $Z \in C - D$ such that $\omega_1^{Z \oplus A} = \omega_1^A = \omega_1^{ck}$. Then *Z* is Δ_1^1 -random but not $\Delta_1^1(A)$ -random, so by Theorem 27 and its relativization to *A*, *Z* is Π_1^1 -random but not $\Pi_1^1(A)$ -random, a contradiction. \Leftarrow : By Fact 26 relative to *A* we have

 $\mathcal{Q}(\mathbf{A}) = \{ \mathbf{Y} \colon \omega_1^{\mathbf{Y} \oplus \mathbf{A}} > \omega_1^{\mathbf{A}} \} \cup \bigcup_{\alpha < \omega_1^{\mathbf{A}}} \mathcal{Q}(\mathbf{A})_{\alpha}.$

By hypothesis (a) $O \not\leq_h A$ and hence $\omega_1^A = \omega_1^{ck}$, so

 $\omega_1^{Y \oplus A} > \omega_1^A$ is equivalent to $O \leq_h A \oplus Y$.

If *Y* is Π_1^1 -random then firstly $O \not\leq_h A \oplus Y$ by (a), and secondly $Y \notin \mathcal{Q}(A)_\alpha$ for every $\alpha < \omega_1^A$ by hypothesis (b). Therefore $Y \notin \mathcal{Q}(A)$ and *Y* is $\Pi_1^1(A)$ -random.