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• One introduces a mathematical randomness notion by
specifying a test concept.

• Usually the null classes given by tests are arithmetical.

• Here we provide formal definitions of randomness notions
using tools from higher computability theory.
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Part 1
Introduction
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Informal introduction to Π1
1 relations

Let 2N denote Cantor space.

• A relation B ⊆ Nk × (2N)r is Π1
1 if it is obtained from an

arithmetical relation by a universal quantification over sets.
• If k = 1, r = 0 we have a Π1

1 set ⊆ N.
• If k = 0, r = 1 we have a Π1

1 class ⊆ 2N.
• A relation B is ∆1

1 if both B and its complement are Π1
1.

There is an equivalent representation of Π1
1 relations where the

members are enumerated at stages that are countable ordinals.

For Π1
1 sets (of natural numbers) these stages are in fact

computable ordinals, i.e., the order types of computable
well-orders.
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New closure properties

Analogs of many notions from the computability setting
exist in the setting of higher computability.

The results about them often turn out to be different.

The reason is that there are two new closure properties.

(C1) The Π1
1 and ∆1

1 relations are closed under number
quantification.

(C2) If a function f maps each number n in a certain effective
way to a computable ordinal, then the range of f is
bounded by a computable ordinal. This is the
Bounding Principle .
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Further notions

We will study the Π1
1 version of ML-randomness.

Beyond that, we will study ∆1
1-randomness

and Π1
1-randomness. The tests are simply the null ∆1

1 classes
and the null Π1

1 classes, respectively.
The implications are

Π1
1-randomness⇒ Π1

1-ML-randomness⇒ ∆1
1-randomness.

The converse implications fail.
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The story of ∆1
1 randomness

• Martin-Löf (1970) was the first to study randomness in the
setting of higher computability theory.

• Surprisingly, he suggested ∆1
1-randomness as the

appropriate mathematical concept of randomness.

• His main result was that the union of all ∆1
1 null classes is

a Π1
1 class that is not ∆1

1.

• Later it turned out that ∆1
1-randomness is the higher analog

of both Schnorr and computable randomness.
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Limits of effectivity

• The strongest notion we will consider is Π1
1-randomness,

which has no analog in the setting of computability theory.

• This is where we reach the limits of effectivity.

• Interestingly, there is a universal test. That is, there is a
largest Π1

1 null class.
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Part 2
Preliminaries on higher computability theory

• We give more details on Π1
1 and ∆1

1 relations.

• We formulate a few principles in effective descriptive set
theory from which most results can be derived. They are
proved in Sacks 90.
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Definition 1

Let A ⊆ Nk × 2N and n ≥ 1. A is Σ0
n if

〈e1, . . . ,ek ,X 〉 ∈ A ↔
∃y1∀y2 . . .Qyn R(e1, . . . ,ek , y1, . . . , yn−1,X�yn ),

where R is a computable relation, and Q is “∃” if n is odd and Q
is “∀” if n is even.

A is arithmetical if A is Σ0
n for some n.

We can also apply this to relations A ⊆ Nk × (2N)n, replacing a
tuple of sets X1, . . . ,Xn by the single set X1 ⊕ . . .⊕ Xn.
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Π1
1 and other relations

Definition 2

Let k , r ≥ 0 and B ⊆ Nk × (2N)r . B is Π1
1 if there is an

arithmetical relation A ⊆ Nk × (2N)r+1 such that
〈e1, . . . ,ek ,X1, . . . ,Xr 〉 ∈ B ↔

∀Y 〈e1, . . . ,ek ,X1, . . . ,Xr ,Y 〉 ∈ A.
B is Σ1

1 if its complement is Π1
1, and B is ∆1

1 if it is both Π1
1 and

Σ1
1. A ∆1

1 set is also called hyperarithmetical.

• The Π1
1 relations are closed under the application of number

quantifiers.
• So are the Σ1

1 and ∆1
1 relations.

• One can assume that A in Σ0
2 and still get all Π1

1 relations.
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Well-orders and computable ordinals

In the following we will consider binary relations W ⊆ N× N
with domain an initial segment of N. They can be encoded by
sets R ⊆ N via the usual pairing function. We identify the
relation with its code.
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Well-orders and computable ordinals

• A linear order R is a well-order if each non-empty subset of
its domain has a least element.
• The class of well-orders is Π1

1. Furthermore, the index set
{e : We is a well-order} is Π1

1.
• Given a well-order R and an ordinal α, we let |R| denote the

order type of R, namely, the ordinal α such that (α,∈) is
isomorphic to R.
• We say that an ordinal α is computable if α = |R| for a

computable well-order R.
• Each initial segment of a computable well-order is also

computable. So the computable ordinals are closed
downwards.
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Lowness for ωck
1

We let ωY
1 denote the least ordinal that is not computable in Y .

The least incomputable ordinal is ωck
1 (which equals ω∅1).

An important example of a Π1
1 class is

C = {Y : ωY
1 > ωck

1 }.

To see that this class is Π1
1, note that Y ∈ C ↔ ∃e

ΦY
e is well-order & ∀i [Wi is computable relation → ΦY

e 6∼= Wi ].

This can be put into Π1
1 form because the Π1

1 relations are
closed under number quantification.

If ωY
1 = ωck

1 we say that Y is low for ωck
1 .
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Representing Π1
1 relations by well-orders

• A Σ0
1 class, of the form {X : ∃y R(X �y )} for computable R,

can be thought of as being enumerated at stages y ∈ N.

• Π1
1 classes can be described by a generalized type of

enumeration where the stages are countable ordinals.
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Theorem 3 (Representing Π1
1 relations)

Let k , r ≥ 0. Given a Π1
1 relation B ⊆ Nk × (2N)r , there is a

computable function p : Nk → N such that

〈e1, . . . ,ek ,X1 ⊕ . . .⊕ Xr 〉 ∈ B ↔ ΦX1⊕...⊕Xr
p(e1,...,ek ) is a well-order.

Conversely, each relation given by such an expression is Π1
1.

The order type of ΦX1⊕...⊕Xr
p(e1,...,ek ) is the stage at which the element

enters B, so for a countable ordinal α, we let

Bα = {〈e1, . . . ,ek ,X1 ⊕ . . .⊕ Xr 〉 : |ΦX1⊕...⊕Xr
p(e1,...,ek )| < α}.

Thus, Bα contains the elements that enter B before stage α.
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A Π1
1 complete set, and indices for Π1

1 relations

Recall that we may view sets as relations ⊆ N× N. By the
above,

O = {e : We is a well-order}

is a Π1
1-complete set. That is, O is Π1

1 and S ≤m O for each Π1
1

set S.
For p ∈ N, we let Qp denote the Π1

1 class with index p. Thus,

Qp = {X : ΦX
p is a well-order}.

Note that Qp,α = {X : |ΦX
p | < α}, so X ∈ Qp implies that

X ∈ Qp,|ΦX
p |+1.
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Relativization

The notions introduced above can be relativized to a set A. It
suffices to include A as a further set variable in definition of Π1

1
relations. For instance, S ⊆ N is a Π1

1(A) set if
S = {e : 〈e,A〉 ∈ B} for a Π1

1 relation B ⊆ N× 2N.
The following set is Π1

1(A)-complete:

OA = {e : W A
e is a well-order}.

A Π1
1 object can be approximated by ∆1

1 objects.

Lemma 4 (Approximation Lemma)

(i) For each Π1
1 set S and each α < ωck

1 , the set Sα is ∆1
1.

(ii) For each Π1
1 class B and each countable ordinal α, the

class Bα is ∆1
1(R), for every well-order R such that |R| = α.
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Π1
1 classes and the uniform measure

Theorem 5 (Lusin)

Each Π1
1 class is measurable.

The following frequently used result states that the measure of
a class has the same descriptive complexity as the class itself.
Note that (ii) follows from (i).

Lemma 6 (Measure Lemma)

(i) For each Π1
1 class, the real λB is left-Π1

1.

(ii) If S is a ∆1
1 class then the real λS is left-∆1

1.

Theorem 7 (Sacks-Tanaka)

A Π1
1 class that is not null has a hyperarithmetical member.
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Reducibilities

Turing reducibility has two analogs in the new setting.

(1) Intuitively, as the stages are now countable ordinals, it is
possible to look at the whole oracle set during a “computation”.
If full access to the oracle set is granted we obtain
hyperarithmetical reducibility: X ≤h A iff X ∈ ∆1

1(A).

(2) If only a finite initial segment of the oracle can be used we
have the restricted version ≤fin-h.
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Measure and reducibilities

Theorem 8 (Sacks 69)

A 6∈ ∆1
1 ⇔ {X : X ≥h A} is null.

Next, we reconsider the class of sets that are not low for ωck
1 .

Theorem 9 (Spector 55)

O ≤h X ⇔ ωck
1 < ωX

1 .

The foregoing two theorems yield:

Corollary 10

The Π1
1 class C = {Y : ωY

1 > ωck
1 } is null.
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The Gandy Basis Theorem

The following result is an analog of the Low Basis Theorem.
The proof differs because Σ1

1 classes are not closed in general.

Theorem 11 (Gandy Basis Theorem)

Let S ⊆ 2N be a non-empty Σ1
1 class.

Then there is A ∈ S such that

A ≤T O and OA ≤h O

(whence A <h O).
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Definition 12

A fin-h reduction procedure is a partial function
Φ: {0,1}∗ → {0,1}∗ with Π1

1 graph such that dom(Φ) is closed
under prefixes and, if Φ(x) ↓ and y � x , then Φ(y) � Φ(x).

We write A = ΦZ if ∀n∃m Φ(Z �m) � A�n, and

A ≤fin-h Z if A = ΦZ for some fin-h reduction procedure Φ.

If A is hyperarithmetical then Φ = {〈x ,A�|x |〉 : x ∈ {0,1}∗}
is Π1

1, so A ≤fin-h Z via Φ for any Z .
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A set theoretical view

For a set S we let

• L(0,S) be the transitive closure of {S} ∪ S.
• L(α + 1,S) contains the sets that are first-order

definable with parameters in (L(α,S),∈), and
• L(η,S) =

⋃
α<η L(α,S) for a limit ordinal η.

We write L(α) for L(α, ∅).
A ∆0 formula is a first-order formula in the language of set
theory which involves only bounded quantification, namely,
quantification of the form ∃z ∈ y and ∀z ∈ y .

A Σ1 formula has the form ∃x1∃x2...∃xn ϕ0 where ϕ0 is ∆0.
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By Theorem 3 we can view Π1
1 sets as being enumerated at

stages that are computable ordinals. The following important
theorem provides a further view of this existential aspect of Π1

1
sets.

Theorem 13 (Gandy/Spector, 55)

S ⊆ N is Π1
1 ⇔ there is a Σ1-formula ϕ(y) such that

S = {y ∈ ω : (L(ωck
1 ),∈) |= ϕ(y)}.

Given A ⊆ N, let LA = L(ωA
1 ,A). We say that D ⊆ (LA)k is Σ1

over LA if there is a Σ1 formula ϕ such that

D = {〈x1, . . . , xk 〉 ∈ (LA)k : (LA,∈) |= ϕ(x1, . . . , xk )}.

Thus, S ⊆ N is Π1
1 iff S is Σ1 over L(ωck

1 ).
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We often consider partial functions from LA to LA with a graph
defined by a Σ1 formula with parameters. We say the function
is Σ1 over LA. Such functions are an analog of functions partial
computable in A.

Lemma 14 (Bounding Principle)

Suppose f : ω → ωA
1 is Σ1 over LA. Then there is an ordinal

α < ωA
1 such that f (n) < α for each n.
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Summary of tools

Approximation Lemma 4. (i) For each Π1
1 set S and each

α < ωck
1 , the set Sα is ∆1

1.
(ii) For each Π1

1 class B and each countable ordinal α, the
class Bα is ∆1

1(R), for every well-order R such that |R| = α.

Measure Lemma 6. (i) For each Π1
1 class, the real λB is left-Π1

1.
(ii) If S is a ∆1

1 class then the real λS is left-∆1
1.

Bounding Principle 14. Suppose f : ω → ωA
1 is Σ1 over LA.

Then there is an ordinal α < ωA
1 such that f (n) < α for each n.
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Part 3
Analogs of Martin-Löf randomness

and K -triviality

We develop an analog of the theory of ML-randomness and
K -triviality based on Π1

1 sets. The definitions and results are
due to Hjorth and Nies (2007)
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Π1
1 Machines and prefix-free complexity

Definition 15

A Π1
1-machine is a possibly partial function

M : {0,1}∗ → {0,1}∗ with a Π1
1 graph. For α ≤ ωck

1 we let
Mα(σ) = y if 〈σ, y〉 ∈ Mα.
We say that M is prefix-free if dom(M) is prefix-free.

There is an effective listing (Md )d∈N of all the prefix-free
Π1

1-machines.
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Universal prefix-free Π1
1 Machine

As a consequence, there is an optimal prefix-free Π1
1-machine.

Definition 16

The prefix-free Π1
1-machine U is given by U(0d1σ) ' Md (σ).

Let K (y) = min{|σ| : U(σ) = y}.
For α ≤ ωck

1 let Kα(y) = min{|σ| : Uα(σ) = y}.

Since U has Π1
1 graph, the relation “K (y) ≤ u” is Π1

1 and, by the
Approximation Lemma 4, for α < ωck

1 the relation “Kα(y) ≤ u”
is ∆1

1. Moreover K ≤T O.
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A version of Martin-Löf randomness based on Π1
1 sets

Definition 17

A Π1
1-Martin-Löf test is a sequence (Gm)m∈N of open sets such

that ∀m ∈ N λGm ≤ 2−m and the relation {〈m, σ〉 : [σ] ⊆ Gm}
is Π1

1.

A set Z is Π1
1-ML-random if Z 6∈

⋂
m Gm for each Π1

1-ML-test
(Gm)m∈N.
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Universal Π1
1 ML-test

For b ∈ N let Rb = [{x ∈ {0,1}∗ : K (x) ≤ |x | − b}]≺.

Proposition 18

(Rb)b∈N is a Π1
1-ML-test. �

We have a higher analog of the Levin-Schnorr Theorem:

Z is Π1
1-ML-random ⇔ Z ∈ 2N −Rb for some b.

Since
⋂

bRb is Π1
1, this implies that the class of Π1

1-ML-random
sets is Σ1

1.
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We provide two examples of Π1
1-ML-random sets.

1. By the Gandy Basis Theorem there is a Π1
1-ML-random

set Z ≤T O such that OZ ≤h O.
2. Let Ω = λ[domU]≺ =

∑
σ 2−|σ| [[U(σ)↓]]. Note that Ω is

left-Π1
1. Ω is shown to be Π1

1-ML-random similar to the usual
proof.

Theorem 19 (Kučera - Gács)

Let Q be a closed Σ1
1 class of Π1

1-ML-random sets such that
λQ ≥ 1/2 (say Q = 2N −R1).
Then, for each set A there is Z ∈ Q such that A ≤fin-h Z.
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Part 4
∆1

1-randomness and Π1
1-randomness

• We show that ∆1
1-randomness coincides with the higher

analogs of both Schnorr randomness and computable
randomness.
• There is a universal test for Π1

1 randomness
• Z is Π1

1-random⇔ Z is ∆1
1-random and ωZ

1 = ωck
1 .
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Definition 20

Z is ∆1
1-random if Z avoids each null ∆1

1 class (Martin-Löf,
1970).
Z is Π1

1-random if Z avoids each null Π1
1 class (Sacks, 1990).

We have the proper implications

Π1
1-random⇒ Π1

1-ML-random⇒ ∆1
1-random

• ∆1
1 randomness is equivalent to being ML-random in ∅(α) for

each computable ordinal α.
• Each Π1

1-random set Z satisfies ωZ
1 = ωck

1 , because the Π1
1

class {X : ωX
1 > ωck

1 } is null.
• Thus, since Ω ≡wtt O, the Π1

1-ML-random set Ω is
not Π1

1-random.
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Notions that coincide with ∆1
1-randomness

A Π1
1-Schnorr test is a Π1

1-ML-test (Gm)m∈N such that λGm is
left-∆1

1 uniformly in m. A supermartingale
M : {0,1}∗ → R+ ∪ {0} is hyperarithmetical if
{〈x ,q〉 : q ∈ Q2 & M(x) > q} is ∆1

1. Its success set is
Succ(M) = {Z : lim supn M(Z �n) =∞}.

Theorem 21

(i) Let A be a null ∆1
1 class. Then A ⊆

⋂
Gm for

some Π1
1-Schnorr test {Gm}m∈N such that λGm = 2−m for

each m.

(ii) If (Gm)m∈N is a Π1
1-Schnorr test then

⋂
m Gm ⊆ Succ(M) for

some hyperarithmetical martingale M.

(iii) Succ(M) is a null ∆1
1 class for each hyperarithmetical

supermartingale M.
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The foregoing characterization of ∆1
1-randomness via

hyperarithmetical martingales can be used to separate it
from Π1

1-ML-randomness.

Theorem 22

For every unbounded non-decreasing hyperarithmetical
function h, there is a ∆1

1-random set Z such that
∀∞n K (Z �n| n) ≤ h(n).

The higher analog of the Levin-Schnorr Theorem now implies:

Corollary 23

There is a ∆1
1-random set that is not Π1

1-ML-random.

By Sacks-Tanaka the class of ∆1
1-random sets is not Π1

1. In
particular, there is no largest null ∆1

1 class. However, the class
of ∆1

1-random sets is Σ1
1 (Martin-Löf; see Nies book, Ex.

9.3.11).
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More on Π1
1-randomness

There is a universal test for Π1
1-randomness.

Theorem 24 (Kechris (1975); Hjorth, Nies (2007))

There is a null Π1
1 class Q such that S ⊆ Q for each null Π1

1
class S.

Proof.
• We show that one may effectively determine from a Π1

1
class S a null Π1

1 class Ŝ ⊆ S such that

S is null⇒ Ŝ = S.

• Assuming this, let Qp be the Π1
1 class given by the Turing

functional Φp in the sense of Theorem 3. Then Q =
⋃

p Q̂p

is Π1
1, so Q is as required.

�
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A Π1
1-random Turing below O

Applying the Gandy Basis Theorem to the Σ1
1 class 2N −Q

yields:

Corollary 25

There is a Π1
1-random set Z ≤T O such that OZ ≤h O.

This contrasts with the fact that in the computability setting
already a weakly 2-random set forms a minimal pair with ∅′.
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Classifying Π1
1-randomness within ∆1

1-randomness

For each Π1
1 class S we have S ⊆ {Y : ωY

1 > ωck
1 } ∪

⋃
α<ωck

1
Sα,

because Y ∈ S implies Y ∈ Sα for some α < ωY
1 . For the

largest null Π1
1 class Q, equality holds because {Y : ωY

1 > ωck
1 }

is a null Π1
1 class:

Fact 26

Q = {Y : ωY
1 > ωck

1 } ∪
⋃
α<ωck

1
Qα.

For α < ωck
1 the null class Qα is ∆1

1 by the Approximation
Lemma 4(ii). So, by de Morgan’s, the foregoing fact yields a
characterization of the Π1

1-random sets within the ∆1
1-random

sets by a lowness property in the new setting.

Theorem 27

Z is Π1
1-random⇔ ωZ

1 = ωck
1 & Z is ∆1

1-random.
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Part 5
Lowness properties in higher computability

theory

We study some properties that are closed downward under ≤h,
and relate them to higher randomness notions. The results are
due to Chong, Nies and Yu (2008).
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Hyp-dominated sets

Definition 28
We say that A is hyp-dominated if each function f ≤h A is
dominated by a hyperarithmetical function.

Fact 29

A is hyp-dominated⇒ ωA
1 = ωck

1 .

Weak ∆1
1 randomness means being in no closed null ∆1

1 class.

Theorem 30 (Kjos-Hanssen, Nies, Stephan, Yu (2009))

Z is Π1
1-random⇔ Z is hyp-dominated and weakly ∆1

1-random.

“⇒” is in the Book 9.4.3. “⇐” is a domination argument using
the Bounding Principle (see Nbook, Ex 9.4.6. and solution).
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Traceability

The higher analogs of c.e., and of computable traceability
coincide, again because of the Bounding Principle.

Definition 31

(i) Let h be a non-decreasing ∆1
1 function. A ∆1

1 trace with
bound h is a uniformly ∆1

1 sequence of sets (Tn)n∈ω such that
∀n [#Tn ≤ h(n)]. (Tn)n∈ω is a trace for the function f if f (n) ∈ Tn

for each n.
(ii) A is ∆1

1 traceable if there is an unbounded non-decreasing
hyperarithmetical function h such that each function f ≤h A has
a ∆1

1 trace with bound h.

As usual, the particular choice of the bound h does not matter.
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Examples of ∆1
1 traceable sets

• Chong, Nies and Yu showed that there are 2ℵ0 many ∆1
1

traceable sets.

• In fact, each generic set for forcing with perfect ∆1
1 trees

(introduced in Sacks 4.5.IV) is ∆1
1 traceable.

• Also, by Sacks 4.10.IV, there a generic set Z ≤h O. Then Z
is ∆1

1 traceable and Z 6∈ ∆1
1.
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Low(∆1
1-random)

∆1
1 traceability characterizes lowness for ∆1

1-randomness. The
following is similar to results of Terwijn/Zambella (1998) .

Theorem 32 (Kjos-Hanssen/Nies/Stephan (2007))

The following are equivalent for a set A.

(i) A is ∆1
1-traceable (or equivalently, Π1

1 traceable).

(ii) Each null ∆1
1(A) class is contained in a null ∆1

1 class.

(iii) A is low for ∆1
1-randomness.

(iv) Each Π1
1-ML-random set is ∆1

1(A)-random.
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Low(Π1
1-random)

For each set A there is a largest null Π1
1(A) class Q(A) by

relativizing Theorem 24. Clearly Q ⊆ Q(A);
A is called low for Π1

1-randomness iff they are equal.

Lemma 33

If A is low for Π1
1-randomness then ωA

1 = ωck
1 .

Proof. Otherwise, A ≥h O by Theorem 9. By Corollary 25 there
is a Π1

1-random set Z ≤h O, and Z is not even ∆1
1(A) random.

�

Question 34

Does lowness for Π1
1-randomness imply being in ∆1

1?
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Π1
1-random cuppable

By the following result, lowness for Π1
1-randomness implies

lowness for ∆1
1-randomness.

We say that A is Π1
1-random cuppable if A⊕ Y ≥h O for some

Π1
1-random set Y .

Theorem 35

A is low for Π1
1-randomness⇔

(a) A is not Π1
1-random cuppable &

(b) A is low for ∆1
1-randomness.

Proof.
⇒: (a) By Lemma 33 A 6≥h O. Therefore the Π1

1(A) class

{Y : Y ⊕ A ≥h O}

is null, by relativizing Cor. 10 to A. Thus A is not Π1
1-random

cuppable.
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(b) Suppose for a contradiction that Y is ∆1
1-random but Y ∈ C

for a null ∆1
1(A) class C. The union D of all null ∆1

1 classes is Π1
1

by Martin-Löf (1970) (see Book Ex. 9.3.11). Thus Y is in the
Σ1

1(A) class C − D.
By the Gandy Basis Theorem 11 relative to A there is
Z ∈ C − D such that ωZ⊕A

1 = ωA
1 = ωck

1 . Then Z is ∆1
1-random

but not ∆1
1(A)-random, so by Theorem 27 and its relativization

to A, Z is Π1
1-random but not Π1

1(A)-random, a contradiction.
⇐: By Fact 26 relative to A we have

Q(A) = {Y : ωY⊕A
1 > ωA

1 } ∪
⋃
α<ωA

1
Q(A)α.

By hypothesis (a) O 6≤h A and hence ωA
1 = ωck

1 , so

ωY⊕A
1 > ωA

1 is equivalent to O ≤h A⊕ Y .

If Y is Π1
1-random then firstly O 6≤h A⊕ Y by (a), and secondly

Y 6∈ Q(A)α for every α < ωA
1 by hypothesis (b). Therefore

Y 6∈ Q(A) and Y is Π1
1(A)-random.
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