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Presentations of continuum size structures

Continuum size structures occur naturally in analysis, algebra, and
other areas. Examples are the additive groups of real numbers, or of
p-adic integers, and the ring of continuous functions on the unit
interval.

What can we say about their complexity?

I We will study continuum size structures that are effective in the
sense that they have a Borel presentation.

I This includes the examples given above.
I It actually includes most continuum size structures from

mathematics.
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The plan

I We define Borel presentations of structures. We give examples.

I We consider the interplay of Borel theories and Borel structures,
and show that the completeness theorem from logic fails in the
Borel setting for an uncountable signature.

I We end with open questions.
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Borel sets

I Let X be a “standard Borel space”, for instance R, Cantor
space {0, 1}ω, or, more generally, some uncountable Polish
topological space (that is, complete metrizable, and separable).

I The Borel sets of X are the smallest σ-algebra containing the open
sets.

I Thus, the Borel sets are the sets obtained from the open sets by
iterated applications of complementation and countable union.
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Sets that are Borel, and sets that are not Borel

I Most sets of reals one considers in analysis are Borel.

I The set of wellorderings on ω is not Borel.

I A free ultrafilter on ω (viewed as a subset of Cantor space 2ω) is
not Borel (not even measurable).
.
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Larger classes of sets

ΣΣΣ1
1 (or analytic) projections of Borel relations

Π1
1Π1
1Π1
1 (or co-analytic) complements of ΣΣΣ1

1 sets

Souslin (1917) proved that

Borel = ΣΣΣ1
1 ∩ΠΠΠ1

1.
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Computable structures

Computable model theory studies the effective content of model
theoretic concepts and results for countable structures.

Definition
A structure A in a finite signature is called computable if

I there is a function from a computable set D ⊆ ω onto A, such that
I the preimages of the atomic relations of A (including equality) are

computable.

Example
(Q, <) and (ω,+,×) are computable.
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Main Definition (H. Friedman, 1979)
A structure A in a finite signature is called Borel structure if

I there is a function from a Borel set D in a standard Borel space X
onto A, such that

I the preimages of the atomic relations of A (including equality) are
Borel relations on X .

We call the tuple consisting of D and these preimages of the atomic
relations a Borel presentation of A.

I We allow that an element of A is represented by a whole
equivalence class of a Borel equivalence relation E.
If E is the identity relation on D, we say the Borel presentation is
injective.

I Injectivity is free for computable structures, because in that case
the equivalence relation has a computable separating set.
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Examples of Borel structures in algebra

Many algebraic structures of size the continuum are Borel.

I The Boolean algebra P(ω)/Fin is Borel, where Fin denotes the
ideal of finite sets.

I For a countable structure S in a countable signature, the following
structures are Borel:

I the lattice of substructures of S,
I the congruence lattice of S,
I the automorphism group of S.

These structures are in fact arithmetical in the atomic diagram of S.
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Borel structures in analysis
Most structures from analysis of size the continuum are Borel.
For instance, the fields (R,+,×), (C,+,×), the ring C[0, 1] are Borel.

Fact (Hjorth and Nies, 2010)
There are continuum many non-Borel isomorphic injective Borel
presentations of (R,+).

Proof. For each p > 1, we obtain a Borel presentation of (R,+) as the
abelian group underlying the Banach space

`p = {~x ∈ Rω :
∑

n

|xn|p <∞},

where the norm is ||~x||p = (
∑

n |xn|p)1/p.
Two different Borel presentations of this sort are not Borel isomorphic,
because any two Borel isomorphic Polish groups are already
homeomorphic. (See Thm. 9.10 in Kechris, Classical descriptive set theory.)
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Restrictions on Borel orders

I The well-ordering of length 2ℵ0 is not Borel.
(If S is a Borel presentation of this well-ordering, then the class G of
linear orderings of ω which embed in S is ΣΣΣ1

1. On the other hand, G is the
class of countable well-orderings, and hence Π1

1 complete, contradiction.)

I More generally, Harrington and Shelah (1982) proved that no Borel
linear order has a subset of order type ω1 (even if equality is
presented by a nontrivial equivalence relation).

I Harrington, Shelah, and Marker (1988) showed that any Borel
partial order without an uncountable Borel antichain is a (disjoint)
union of countably many Borel chains.
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Classes of structures defined by automata

To differentiate the complexity of structures, we consider classes of
structures presented by a type of infinitary automaton, such as Büchi,
or Rabin automata.

I Büchi structures are Borel, but Rabin structures not necessarily.

I The classes have a decidable theory.

I The classes are closed under first-order interpretations
(unlike the Borel structures).
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Büchi Automata 1

I A Büchi automaton B has the same components as a
(nondeterministic) finite automaton:

I a (finite) alphabet A
I a set of states with a subset of accepting states, and an initial

state,
I a transition relation, of the format

〈state, input symbol, new state 〉.

I The inputs are ω-words, such as 01001000100001 . . ..
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Büchi Automata 2

I A run of Büchi automaton B on an ω-word is a sequence of states
consistent with the transition relation when B is “reading” that
word.

I B accepts an ω-word if some run of B on this word is infinitely
often in an accepting state.
For instance, the set of ω-words over {0, 1} with infinitely many
1’s is recognizable by a Büchi automaton.

Complementation theorem, Büchi 1966
The Büchi recognizable sets are closed under complements.

Thus, these sets are analytic and co-analytic, and hence Borel.
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Büchi structures
I A k-tuple of ω-words over A can be put into the format of a k × ω

“table”. Thus it corresponds to a single ω-word over Ak.
I A k-ary relation on ω-words over A is called Büchi recognizable

if the corresponding set of tables is Büchi recognizable
I A Büchi presentation is a Borel presentation where the standard

Polish space is X = Aω, and the domain and the relevant relations
are all Büchi recognizable.

Many examples of Borel structures are in fact Büchi structures:
I the reals with addition
I the 2-adic integers with addition

0
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1
0
1

1
1
0

0
0
1

0
0
0

0
1
1

1
1
0
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0
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1
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...

...

...

0

1
0

I the Boolean algebra P(ω)/Fin.
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Muller automata
A Muller automaton is the same as a Büchi automaton, except that
acceptance is given by a nonempty set F of sets of states.

A run of a Muller automaton is accepting if

the set of states that occurs infinitely often is in F .

Büchi automata recognize the same ω-languages as
deterministic Muller automata M.

The property

“the state s occurs infinitely often in the run of M on w”

is Π0
2. So every Büchi recognizable set is not only Borel, but in fact a

Boolean combination of Π0
2 (and hence Gδ) sets.
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Rabin-Muller automata
I A Rabin-Muller automaton M over the alphabet A is like a Muller

automaton, but instead of ω-words, it processes full infinite binary
trees, where the nodes are labeled with symbols from A.

I The transition relation is now of the format
〈 state, input symbol, new left state, new right state 〉.

I M accepts a labeled tree x if there is a run of M on x such that
along each path, the set of states occurring infinitely often is in F .

I By definition, each set recognizable by a Rabin-Muller automaton
is Σ1

2:

“there is a run such that for each path [. . . (arithmetical)].

I Hence the set is ∆1
2 by Rabin’s complementation theorem.

I The domain of Rabin presentations consists of labeled trees.
We define Rabin structures in the same way as we defined Büchi
structures.
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The category algebra is Rabin presentable
An open set U ⊆ {0, 1}ω is called regular open if U =

◦
U.

I The regular open sets form a Boolean algebra RO.
I RO is the completion of the countable dense Boolean algebra.
I RO is isomorphic to the category algebra of an uncountable Polish

space (i.e. the sets with Baire property, modulo the meager sets).

Theorem
RO is injective Rabin presentable.

Proof. We represent open sets in 2ω by sets of strings closed under extension.
A Rabin automaton can recognize their inclusion.
The regular open sets are first-order definable (and hence Rabin recognizable)
because U is regular open⇔
U contains all the open sets W that are disjoint with the same open sets as U.
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Two Fσ-ideals

Theorem (Just and Krawzcyk, 1984)
Let I ⊆ P(ω) be a (proper) Fσ ideal containing Fin.
Then P(ω)/I is a dense ℵ1-saturated Boolean algebra.

Under CH, this implies that P(ω)/I ∼= P(ω)/Fin.

Let K be the ideal of P(2<ω) consisting of the sets of strings that have
no infinite antichain.

Theorem (Finkel and Todorcevic, 2010)
I K is an Fσ ideal.
I This ideal can be recognized by a Rabin-Muller automaton.

Hence P(2<ω)/K is both a Borel structure, and a Rabin structure.
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The open coloring axiom
The open coloring axiom (OCA, Todorcevic, 1989) says that each
undirected graph on R× R with an open set of edges

I either has an uncountable clique,
I or can be colored with countably many colors.

If ZFC is consistent, then both ZFC + CH, and ZFC + OCA are
consistent (see Jech, 2002).

Theorem (Finkel and Todorcevic, 2010)
Under ZFC + OCA

P(2<ω)/K is not isomorphic to P(2<ω)/Fin.

(In fact, it is not even embeddable into P(2<ω)/Fin.)

Conclusion: ZFC cannot decide isomorphism of Borel Boolean
algebras, or Rabin Boolean algebras.
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Separating classes of structures
(Hjorth, Khoussainov, Montalbán, Nies, 2008)

Δ1
2

Rabin

Inj.Rabin

Buechi

Inj.-Buechi

Borel

Inj. Borel

NO !

NO !

Complexity classes of continuum sized structures
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The Basic Lemma

(P(ω),⊆) is “Borel stable”:

Basic Lemma
Each isomorphism between two Borel presentations of (P(ω),⊆) has
a Borel graph.

This is so because the isomorphism is given by its effect on the
countably many atoms. It also works for non-injective presentations.
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A fact from descriptive set theory
To see that some Borel structure A has no injective Borel
representation, we need a fact from descriptive set theory:
almost identity cannot be Borel reduced to identity.

I Let X ,Y be Polish spaces. A function F : X → Y is a Borel
function if the preimage F−1(R) is Borel for each open (or Borel)
set R.

I Equivalently, the graph of F is Borel as a subset of S × T .

Let =∗ denote almost equality of subsets of ω.

Fact
There is no Borel function F on Cantor space P(ω) such that

A =∗ B⇔ F(A) = F(B) for each A,B ⊆ ω.

This uses that each Borel function is continuous on a comeager set.
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Büchi, not injective Borel
Theorem (HKMN, 2008)
There is a Büchi presentable structure A
without an injective Borel presentation.

Rabin

Inj.Rabin

Buechi

Inj.-Buechi

Borel

Inj. Borel

NO !

Proof. The signature consists of:

I binary predicates E,≤,R,
I a unary predicate U.

Let B = P(ω) and B∗ = P(ω)/Fin, viewed as partial orders. Let A be
the disjoint sum of B and B∗ .
Let UA be the left side, and let RA be the projection B → B∗.

The Büchi presentation is A = (B0 t B1,E,≤,B0, S), where

I E is identity B0, and almost equality =∗ on B1;
I S is the canonical bijection between the two copies B0,B1 of B.
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Summarize: the Büchi presentation of A is A = (B0 t B1,E,≤,B0, S).
Now assume for contradiction that S = (D,=,≤′,U′,R′) is an
injective Borel presentation of A.
Let G be the restriction to B0 of the isomorphism A → S . Then G is a
Borel function by the Basic Lemma.
Let G∗ be the restriction to B1 of this isomorphism.

The diagram commutes.
Hence R′ ◦ G is a Borel
reduction of =∗ to the
identity, contradiction.

B0 B1

RA

R'

G

U'

G*

André Nies (The University of Auckland) Borel structures 25 / 43



A structure that is not Borel

Theorem (Hjorth, Khoussainov, Montalbán and N, 2008)
Suppose C is a countable set and U ⊆ P(C) is ΠΠΠ1

1 but not Borel.
Then the structure (P(C),⊆,U) has no Borel presentation.

Proof. Suppose (A,E,≤,V) is a Borel presentation such that

Ψ: (P(C),⊆,U) ∼= (A,E,≤,V)/E.

Then X ∈ U⇔ [Ψ(X)]E ∈ V/E⇔ ∃b ∈ V
[
Ψ(X) = [b]E

]
.

The map Ψ has a Borel graph by the basic lemma.
So U is ΣΣΣ1

1, hence Borel. Contradiction.
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Theorem (HKMN, 2008)
Some injective Rabin structure is
not Borel.

Rabin

Inj.Rabin

Buechi

Inj.-Buechi

Borel

Inj. Borel
NO !

Proof. Let C = 2<ω.

I By Niwinsky (1985), the language

U = {T ⊆ 2<ω : ∀Z ∈ 2ω [T has only finitely many 1s along Z]}
is Rabin recognizable, Π1

1, but not Borel.

I To see this, consider the embedding of ω<ω into 2<ω given by
n0, . . . , nk → 0n01 . . . 0nk 1.

I The pre-image of U under this embedding is the class of
well-founded trees, which is Π1

1, but not Borel.

I Hence (P(C),⊆,U) is injective Rabin, but not Borel.
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For countable languages, there is Borel completeness theorem.

Theorem (H. Friedman, 1979)
Each consistent theory T in a countable language has a Borel model of
size the continuum. In fact, its elementary diagram is Borel.

Friedman expanded a countable model of T to the size of the
continuum by adding order indiscernibles, ordered like the reals
numbers.

This implies the model has continuum many Borel automorphisms.

For instance, if T is the theory of algebraically closed fields of
characteristic 0, then one obtains a Borel presentation of the field C.

This yields a Borel presentation of the field C not Borel isomorphic to the
natural one, because the natural one has only two Borel automorphisms
(observation of Nies and Shore, 2009).
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Borel Signatures

Definition
A Borel signature is a Borel set L consisting of relation and function
symbols, such that the sets

{R ∈ L : R is a relation symbol of arity n}

and
{f ∈ L : f is a function symbol of arity n}

are all Borel.

The corresponding first-order language can be viewed as a Borel set in
a suitable standard Polish space. So we have a notion of Borel theories.
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A consistent Borel theory without a Borel
completion
Example
The following is a Borel signature:
for each X ⊆ ω a constant symbol cX ; a unary predicate U.

Theorem (Hjorth and Nies, JSL, to appear)
In the signature, given above, there exists a consistent Borel theory
with no Borel completion.

The Borel theory expresses that

{X : U(cX)}

is a filter on ω containing all the co-finite sets. A Borel completion of
the theory would determine a Borel free ultrafilter on ω, contradiction.

André Nies (The University of Auckland) Borel structures 30 / 43



Borel presentations over Borel signatures

Suppose we are given an (uncountable) Borel signature L.
For a Borel presentation of a structure, we now require that the
relations and functions are uniformly Borel:

Definition
An L-structure A is called Borel if there is a function φ from a Borel
set D in standard Borel space X onto A, such that for each n,

{(R, d1, . . . , dn) : RAφ(d1), . . . , φ(dn)} ⊆ L × Dn is Borel,

where R ranges over n-ary relation symbols in L;
a similar condition holds for the n-ary function symbols.
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The completeness theorem fails in this general Borel setting.

Theorem (Hjorth and Nies, JSL, to appear)
There exists a consistent complete Borel theory T with no Borel model.

I At its core this uses the fact from descriptive set theory that there is
no Borel reduction of =∗ to the equality relation on a standard
space. T is defined in such a way that any Borel model of T would
provide such a reduction.

I T is complete and Borel because isomorphic are: countable models
of its restrictions to countable sub-signatures (sharing some fixed
collection of base symbols).

I This uses Malitz’ Lemma that all countable dense sets of paths in
the tree 2<ω are tree automorphic.

I Part of the difficulty is that we also have to rule out non-injective
Borel presentations.
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Open Questions
I The Borel dimension of a Borel structure is the number of

equivalence classes modulo Borel isomorphism on the set of its
Borel presentations. Is there a structure of Borel dimension strictly
between 1 and the continuum? (HKMN 2008)
For instance, (R,+) has Borel dimension 2ω, while (R,+,×) has Borel
dimension 1. Does the field C have Borel dimension 2ω? (Nies and
Shore, recent)

I If a Scott set is Borel, is it already the standard system of a Borel
model of Peano arithmetic? (Woodin, 1990s)
Background: Scott showed that the countable Scott sets are precisely the
standard systems of countable models of Peano arithmetic. Knight and
Nadel (1982) proved the analogous result for Scott sets and models of the
size ω1. For the general uncountable case, the analogous statement is
open.
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I Does the Boolean algebra P(ω)/Fin have an injective Borel
presentation? (HKMN 2008)

I Characterize the Büchi Boolean algebras and the Rabin Boolean
algebras.

I Does every Borel field F have an algebraically closed Borel
extension?
If not, this would yield a further, more natural, example of a complete
Borel theory without a Borel model:

ACFm ∪ DiagF,

where m is the characteristic of F, and DiagF its atomic diagram.

(Marker, 2010; Nies, 2009)
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