K-triviality in computable metric spaces

A. Melnikov and A. Nies

U of Auckland

ARA 2011, Auckland

- ► The property of K-triviality for a set of natural numbers was introduced by Chaitin and Solovay 1975. It was intensely studied during the last decade. Today it is a key notion at the interface of computability and randomness.
- Surprising coincidence results have been obtained.
 K-trivial sets are at the same time
 - far from random (by definition)
 - weak as an oracle set
 - computably approximable with a small total of changes.
- ▶ We will extend the notion of K-triviality to the more general setting of points in a computable metric space M.

Main results

Existence and preservation:

- Every perfect computable metric space *M* contains a *K*-trivial non-computable point.
- K-triviality is preserved under computable maps between metric spaces.
- ► The definition of K-triviality of a point x ∈ M is via Cauchy names, generalizing the definition of computable points.

It is equivalent to an apparently weaker "local" condition stating that special points (something like rationals) close to x are highly compressible.

Existence and preservation results for K-trivials

3 A local condition characterizing K-trivials

A partial computable function from binary strings to binary strings is called prefix-free machine if its domain is an anti-chain under the prefix relation of strings.

There is a universal prefix-free machine \mathbb{U} : for every prefix-free machine M,

$$M(\sigma) = y$$
 implies $\mathbb{U}(\tau) = y$,

for a string τ that is only by a constant d_M longer than σ .

► The prefix-free Kolmogorov complexity is the length of a shortest U-description of y:

 $K(y) = \min\{|\sigma|: \mathbb{U}(\sigma) = y\}.$

• One can show that $2^{-K(y)}$ is proportional to

 $\lambda \{ X \in 2^{\mathbb{N}} \colon \mathbb{U}(\sigma) = y \text{ for some initial segment } \sigma \text{ of } X \},\$

where λ denotes product measure in Cantor space $2^{\mathbb{N}}$. Informally, this is the probability that \mathbb{U} prints y. This only works with prefix-free machines.

Definition of K-triviality

For a string y, up to constants, $K(|y|) \le K(y)$, since we can compute |y| from y (here we write numbers in binary). Converse?

Definition

A set A is K-trivial if there is a constant $b \in \mathbb{N}$ such that for each n,

 $K(A \upharpoonright_n) \leq K(n) + b$,

namely, the K complexity of all initial segments is minimal.

This is opposite to ML-randomness:

- ► Z is ML-random if all complexities $K(Z \upharpoonright_n)$ are near the upper bound n + K(n), while
- ► Z is K-trivial if they have the minimal possible value K(n) (all within constants).

- C-triviality is the analogous notion defined with the usual Kolmogorov complexity C instead of K.
- ► Each *C*-trivial set is computable (Chaitin, 1975).
- ► (Chaitin, 1976) proved that the K-trivial sets are Δ⁰₂ (i.e., computed by the halting problem).
- Solovay (1975) was the first to construct a non-computable K-trivial A, which was △⁰₂ as expected but not computably enumerable.
- Later on, various constructions of a computably enumerable example appeared. E.g., the cost function construction of Downey et al. (2002).

Theorem

There is a constant $\mathbf{c} \in \mathbb{N}$ such that for each constant $b \in \mathbb{N}$, for each length n

$$|\{x\colon |x|=n \land K(x) \leq K(n)+b\}| < 2^{\mathbf{c}}2^{\mathbf{b}}.$$

Using this, one proves:

Theorem

(i) For each b, at most 2^{c+b} sets are K-trivial with constant b. (ii) Each K-trivial set is in Δ_2^0 .

Theorem (Downey et al., 2002)

If sets A and B are K-trivial then $A \oplus B = 2A \cup 2B + 1$ is K-trivial.

More specifically, if both A and B are K-trivial via b, then $A \oplus B$ is K-trivial via 3b + O(1).

K-trivial functions $f: \mathbb{N} \to \mathbb{N}$

For a number $v \in \mathbb{N}$ (seen as a binary string), recall that K(v) denotes the prefix-free Kolmogorov complexity of v: $K(v) = \min\{|\sigma|: \mathbb{U}(\sigma) = v\}$, where \mathbb{U} is a universal prefix-free machine.

Definition

A function $f: \mathbb{N} \to \mathbb{N}$ is called *K*-trivial if there is a constant $b \in \mathbb{N}$ such that for each n, $K(f \upharpoonright_n) \le K(n) + b$. Here $f \upharpoonright_n$ denotes the tuple of the first n values of f. We assume some effective encoding of tuples over \mathbb{N} by natural numbers.

This extends the usual definition for sets (seen as 0, 1-valued functions). Each computable function is K-trivial, but not conversely.

Proposition (uses that K-trivial = low for K)

A function f is K-trivial \iff the graph of f is K-trivial.

Definition

Let (M, d) be a complete metric space, and let $(\alpha_i)_{i \in \mathbb{N}}$ be a dense sequence in M.

- M = (M, d, (α_i)_{i∈ℕ}) is a computable metric space if d(α_i, α_k) is a computable real uniformly in i, k.
- We call the elements of the sequence (α_i)_{i∈ℕ} the special points. We often identify α_i with i ∈ ℕ.

Definition

- A sequence (p_s)_{s∈N} of special points is called a Cauchy name if d(p_s, p_t) ≤ 2^{-s} for each s, t ∈ N, t ≥ s.
- Since *M* is complete, x = lim_s p_s exists. We say that (p_s)_{s∈N} is a Cauchy name for x. Note that d(x, p_s) ≤ 2^{-s}.

Let M be a computable metric space. Recall that a point $x \in M$ is called computable if it has a computable Cauchy name.

Definition

A point $x \in M$ is called *K*-trivial if it has a *K*-trivial Cauchy name.

- The unit interval, and Baire space N^N with the ultrametric distance function d(f,g) = max{2⁻ⁿ: f(n) ≠ g(n)}, form computable metric spaces in a natural way.
- It is easy to check that in these spaces, a point is K-trivial iff it is K-trivial in the usual sense.

2 Existence and preservation results for K-trivials

3 A local condition characterizing *K*-trivials

A map F between computable metric spaces is called computable if there is an oracle computation procedure that with a Cauchy name for x as an oracle computes a Cauchy name for F(x).

Proposition

Let \mathcal{M}, \mathcal{N} be computable metric spaces, and let the map $F : \mathcal{M} \to \mathcal{N}$ be computable. If x is K-trivial in \mathcal{M} , then F(x) is K-trivial in \mathcal{N} .

This relies on a hard result, the downward closure under \leq_T of the class of K-trivial functions. However, the result can be verified directly if F is Lipschitz. It shows that K-triviality is invariant under the change of computable structure to an equivalent one.

Another preservation fact: if \mathcal{M} is a computable Banach space, then the K-trivial points form a subspace.

Example

There is a computable metric space \mathcal{M} with a noncomputable point such that the only K-trivial points are the computable points.

Proof.

Let

$$M = \{\Omega_s : s \in \mathbb{N}\} \cup \{\Omega\}$$

with the metric inherited from the unit interval, and with the computable structure given by $\alpha_s = \Omega_s$. If g is a Cauchy name for Ω then $\Omega \leq_T g$, so g is not K-trivial. In the following fix a computable metric space $\ensuremath{\mathcal{M}}$ with no isolated points.

Theorem (Brattka and Gherardi, 2009)

There is a computable injective map $F: \{0,1\}^{\mathbb{N}} \to \mathcal{M}$ which is Lipschitz.

Corollary

 \mathcal{M} contains a K-trivial, non-computable point.

Proof of Corollary.

Let $A \in \{0,1\}^{\mathbb{N}}$ be a *K*-trivial non-computable set. Then F(A) is *K*-trivial. The inverse of *F* is computable on its domain. Hence the point F(A) is non-computable.

A K-trivial in ℓ_2

It is interesting to look at separable Banach spaces, because they often have a natural computable structure (see book by Pour-El / Richards, 1989).

Examples of such spaces are C[0,1] with the sup norm, and the sequence spaces ℓ_p for $1 \le p < \infty$ a computable real.

We give an example of a K-trivial point in Hilbert space ℓ_2 which is not obtained through a Brattka/Gherardi embedding.

Let $\mathbf{e}_0, \mathbf{e}_1, \ldots$ be the usual orthonormal basis of ℓ_2 .

Example Let g: N → N be an increasing, non-computable K-trivial function. Let x = ∑_i 2^{-g(i)}e_i. Then x is non-computable. Let f(n) = ∑_{i=0}²ⁿ⁺¹ 2^{-g(i)}e_i. Then f is a K-trivial Cauchy name for x.

K-trivial compact sets

- ► Given a Polish space M, let K(M) denote the Polish space of compact subsets of M with the Hausdorff distance (the maximum distance that a point in one set can have from the other set).
- ► If M is a computable metric space then K(M) carries a natural computable structure where the special points are the finite sets of special points in M. Thus we have a notion of K-trivial compact sets.

If *M* is Cantor space $\{0,1\}^{\mathbb{N}}$, as a computable structure we can take equivalently the clopen sets.

Barmpalias, Cenzer, Remmel and Weber (2009) studied a notion of *K*-triviality in $\mathbb{K}(\{0,1\}^{\mathbb{N}})$. They call a closed set $\mathcal{C} \subseteq \{0,1\}^{\mathbb{N}}$ is *K*-trivial if the corresponding tree consisting of strings σ with $[\sigma] \cap \mathcal{C} \neq \emptyset$ is *K*-trivial.

It's not hard to see that their definition coincides with ours.

Existence and preservation results for K-trivials

3 A local condition characterizing K-trivials

The local condition

As usual we fix a computable metric space \mathcal{M} .

Let the letters p, q range over special points in \mathcal{M} .

We write K(u, v) for $K(\langle u, v \rangle)$, the complexity of the ordered pair.

Definition

We say that $x \in M$ is locally *K*-trivial via *b* if

 $\forall n \exists p \text{ special } [d(x,p) \leq 2^{-n} \text{ and } K(p,n) \leq K(n) + b].$

- Given a set A ⊆ N, from the tuple A ↾_n we can determine n. But from an approximation p we cannot (in general) determine the "intended distance" to x.
- So it seems this definition is the appropriate analog of the usual definition K(A↾_n) ≤ K(n) + O(1) in Cantor space, not the less stringent condition where we write K(p) ≤ K(n) + b.

In Cantor space $\{0,1\}^{\mathbb{N}}$, the special points are the infinite sequences of bits that are eventually 0.

Theorem

There is a Turing complete set $A \in \{0,1\}^{\mathbb{N}}$ such that A has c.e. complement, and

 $\forall n \exists p \text{ special } [d(A, p) \leq 2^{-n} \land K(p) \leq K(n) + b].$

And a K-trivial set is never Turing complete. Thus, we indeed need to write $K(p, n) \le K(n) + b$ in our generalization of K-triviality.

The local condition seems to be weaker than the definition via Cauchy names, because we only require that pairs $\langle p, n \rangle$ be compressible, not the whole tuple of special points for distances down to 2^{-n} . But, surprisingly:

Theorem

 $x \in M$ is K-trivial $\iff x$ satisfies the local condition for some b:

 $\forall n \exists p \text{ special } [d(x, p) \leq 2^{-n} \text{ and } K(p, n) \leq K(n) + b].$

Proof idea.

\implies

This is easy: let f be a K-trivial Cauchy name for x. Given n, let p = f(n). Then

$$K(p,n) \leq K(f \upharpoonright_{n+1}) + O(1) \leq K(n) + O(1).$$

Theorem (again)

 $x \in M$ is K-trivial $\iff \exists b$

 $\forall n \exists p \text{ special } [d(x,p) \leq 2^{-n} \land K(p,n) \leq K(n) + b].$

Proof idea, ← Recall that we identify special points with numbers.

- Fix a Solovay function h (i.e., h is computable, $\forall n K(n) \le h(n)$, and K(n) = h(n) for infinitely many n).
- ▶ Consider the infinite computably enumerable tree

 $T = \{(p_1, \dots, p_r) \colon d(p_i, p_{i+1}) \le 2^{-i-1} \text{ and } K(p_i, i) \le h(i) + b\}$

for all *i* (where it makes sense).

$$T = \{(p_1, \ldots, p_r) : (p_i, p_{i+1}) \le 2^{-i-1} \text{ and } K(p_i, i) \le h(i) + b\}.$$

- Enumerate a c.e. tree G of initial segments of Cauchy names that are K-trivial for the same constant.
- When a new string η enters the given tree T, pick the largest v such that η(v − 1) is already the last entry of some string ρ ∈ G.
- By maximality of v there must be short "unused" descriptions of pairs ⟨η(k), k⟩ for v ≤ k < r. We use these to be able to put ρ concatenated with the rest of η on G.
- ► G is an infinite, finitely branching tree. Hence it has a path, which is a Cauchy name for x. It is K-trivial by a theorem on Solovay functions by Bienvenu, Merkle and Nies (2010).

Algorithmic information theory characterization of computable points

Theorem (variant for C)

 $x \in M$ has a *C*-trivial Cauchy name $\iff \exists b$ $\forall n \exists p \text{ special } [d(x,p) \leq 2^{-n} \land C(p,n) \leq C(n) + b].$

Note that a function $\mathbb{N} \to \mathbb{N}$ is C-trivial iff it is computable. So this characterizes computable points locally.

- ► Characterize the K-trivial points in computable Banach spaces, such as C[0, 1], ℓ₂,
- Study K-trivial compact sets in Cantor space and other computable metric spaces.
- ► A point x ∈ M is called incompressible in approximation if all special points close to x are incompressible:

$$\exists b \in \mathbb{N} \, \forall p \, [d(z, p) \geq 2^{-K(p)-b}].$$

This notion is opposite to *K*-triviality. In the unit interval it coincides with Martin-Löf randomness. We showed some closure properties. Relate incompressibility to *K*-triviality in \mathcal{M} , possibly via relative computability in \mathcal{M} .

► *K*-triviality can be defined in general computable metric spaces.

- ▶ If the space is perfect they can be non-computable.
- Reasonable examples in spaces like ℓ_2 and $\mathbb{K}(\{0,1\}^{\mathbb{N}})$.
- Preserved under computable maps, hence independent of the particular computable structure.
- ► The definition via having a *K*-trivial Cauchy name is equivalent to the apparently weaker local definition

 $\forall n \exists p \text{ special } [d(x,p) \leq 2^{-n} \land K(p,n) \leq K(n) + b].$

- ▶ these and other slides, on Nies' web page.
- ▶ Paper by Melnikov and Nies, Proc. AMS, in press
- ▶ Nies' book for background on *K*-triviality.