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K -trivial sets of natural numbers

I The property of K -triviality for a set of natural numbers was

introduced by Chaitin and Solovay 1975. It was intensely studied

during the last decade. Today it is a key notion at the interface of

computability and randomness.

I Surprising coincidence results have been obtained.

K -trivial sets are at the same time

I far from random (by definition)
I weak as an oracle set
I computably approximable with a small total of changes.

I We will extend the notion of K -triviality to the more general setting of

points in a computable metric space M.
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Main results

I Existence and preservation:

I Every perfect computable metric space M contains a

K -trivial non-computable point.
I K -triviality is preserved under computable maps

between metric spaces.

I The definition of K -triviality of a point x ∈M is via Cauchy names,

generalizing the definition of computable points.

It is equivalent to an apparently weaker “local” condition stating that

special points (something like rationals) close to x are highly

compressible.
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Prefix-free machines

A partial computable function from binary strings to binary strings is

called prefix-free machine if its domain is an anti-chain under the prefix

relation of strings.

There is a universal prefix-free machine U: for every prefix-free machine M,

M(σ) = y implies U(τ) = y ,

for a string τ that is only by a constant dM longer than σ.
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Descriptive string complexity K

I The prefix-free Kolmogorov complexity is the length of a shortest

U-description of y :

K (y) = min{|σ| : U(σ) = y}.

I One can show that 2−K(y) is proportional to

λ{X ∈ 2N : U(σ) = y for some initial segment σ of X},
where λ denotes product measure in Cantor space 2N. Informally, this

is the probability that U prints y . This only works with prefix-free

machines.
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Definition of K -triviality

For a string y , up to constants, K (|y |) ≤ K (y), since we can compute |y |
from y (here we write numbers in binary). Converse?

Definition

A set A is K -trivial if there is a constant b ∈ N such that for each n,

K (A�n) ≤ K (n) + b,

namely, the K complexity of all initial segments is minimal.

This is opposite to ML-randomness:

I Z is ML-random if all complexities K (Z �n) are near the upper bound

n + K (n), while

I Z is K -trivial if they have the minimal possible value K (n) (all within

constants).
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Why prefix free machines?

I C -triviality is the analogous notion defined with the usual Kolmogorov

complexity C instead of K .

I Each C -trivial set is computable (Chaitin, 1975).

I (Chaitin, 1976) proved that the K -trivial sets are ∆0
2 (i.e., computed

by the halting problem).

I Solovay (1975) was the first to construct a non-computable K -trivial

A, which was ∆0
2 as expected but not computably enumerable.

I Later on, various constructions of a computably enumerable example

appeared. E.g., the cost function construction of Downey et al. (2002).
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K -trivials are Turing below the halting problem

Theorem

There is a constant c ∈ N such that for each constant b ∈ N, for each

length n

|{x : |x | = n ∧ K (x) ≤ K (n) + b}| < 2c2b.

Using this, one proves:

Theorem

(i) For each b, at most 2c+b sets are K -trivial with constant b.

(ii) Each K-trivial set is in ∆0
2.
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Closure under ⊕

Theorem (Downey et al., 2002)

If sets A and B are K -trivial then A⊕ B = 2A ∪ 2B + 1 is K -trivial.

More specifically, if both A and B are K -trivial via b, then A⊕ B

is K -trivial via 3b +O(1).
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K -trivial functions f : N→ N

For a number v ∈ N (seen as a binary string), recall that K (v) denotes the

prefix-free Kolmogorov complexity of v : K (v) = min{|σ| : U(σ) = v}, where U is

a universal prefix-free machine.

Definition

A function f : N→ N is called K -trivial if there is a constant b ∈ N such

that for each n, K (f �n) ≤ K (n) + b.

Here f �n denotes the tuple of the first n values of f . We assume some

effective encoding of tuples over N by natural numbers.

This extends the usual definition for sets (seen as 0, 1-valued functions).

Each computable function is K -trivial, but not conversely.

Proposition (uses that K -trivial = low for K )

A function f is K -trivial ⇐⇒ the graph of f is K-trivial.
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Computable metric spaces

Definition

Let (M, d) be a complete metric space, and let (αi )i∈N be a dense

sequence in M.

I M = (M, d , (αi )i∈N) is a computable metric space if d(αi , αk) is a

computable real uniformly in i , k .

I We call the elements of the sequence (αi )i∈N the special points. We

often identify αi with i ∈ N.

Definition
I A sequence (ps)s∈N of special points is called a Cauchy name if

d(ps , pt) ≤ 2−s for each s, t ∈ N, t ≥ s.

I Since M is complete, x = lims ps exists. We say that (ps)s∈N is a

Cauchy name for x . Note that d(x , ps) ≤ 2−s .
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K -trivial points

Let M be a computable metric space. Recall that a point x ∈ M is called

computable if it has a computable Cauchy name.

Definition

A point x ∈ M is called K -trivial if it has a K -trivial Cauchy name.

I The unit interval, and Baire space NN with the ultrametric distance

function d(f , g) = max{2−n : f (n) 6= g(n)}, form computable metric

spaces in a natural way.

I It is easy to check that in these spaces, a point is K -trivial iff it is

K -trivial in the usual sense.
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Preservation of K -triviality

A map F between computable metric spaces is called computable if there

is an oracle computation procedure that with a Cauchy name for x as an

oracle computes a Cauchy name for F (x).

Proposition

Let M,N be computable metric spaces, and let the map F : M→N be

computable. If x is K -trivial in M, then F (x) is K -trivial in N .

This relies on a hard result, the downward closure under ≤T of the class of

K -trivial functions. However, the result can be verified directly if F is Lipschitz.

It shows that K -triviality is invariant under the change of computable structure to

an equivalent one.

Another preservation fact: if M is a computable Banach space, then the

K -trivial points form a subspace.
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A metric space where all K -trivial points are computable

Example

There is a computable metric space M with a noncomputable point such

that the only K -trivial points are the computable points.

Proof.

Let

M = {Ωs : s ∈ N} ∪ {Ω}

with the metric inherited from the unit interval,

and with the computable structure given by αs = Ωs .

If g is a Cauchy name for Ω then Ω ≤T g , so g is not K -trivial.
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Existence of K -trivials

In the following fix a computable metric space M with no isolated points.

Theorem (Brattka and Gherardi, 2009)

There is a computable injective map F : {0, 1}N →M which is Lipschitz.

Corollary

M contains a K-trivial, non-computable point.

Proof of Corollary.

Let A ∈ {0, 1}N be a K -trivial non-computable set. Then F (A) is K -trivial.

The inverse of F is computable on its domain. Hence the point F (A) is

non-computable.
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A K -trivial in `2

It is interesting to look at separable Banach spaces, because they often

have a natural computable structure (see book by Pour-El / Richards,

1989).

Examples of such spaces are C[0, 1] with the sup norm, and the sequence

spaces `p for 1 ≤ p <∞ a computable real.

We give an example of a K -trivial point in Hilbert space `2 which is not

obtained through a Brattka/Gherardi embedding.

Let e0, e1, . . . be the usual orthonormal basis of `2.

Example
I Let g : N→ N be an increasing, non-computable K -trivial function.

I Let x =
∑

i 2−g(i)ei . Then x is non-computable.

I Let f (n) =
∑2n+1

i=0 2−g(i)ei . Then f is a K -trivial Cauchy name for x.
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K -trivial compact sets

I Given a Polish space M, let K(M) denote the Polish space of compact

subsets of M with the Hausdorff distance (the maximum distance that

a point in one set can have from the other set).

I If M is a computable metric space then K(M) carries a natural

computable structure where the special points are the finite sets of

special points in M. Thus we have a notion of K -trivial compact sets.

If M is Cantor space {0, 1}N, as a computable structure we can take

equivalently the clopen sets.

Barmpalias, Cenzer, Remmel and Weber (2009) studied a notion of

K -triviality in K({0, 1}N). They call a closed set C ⊆ {0, 1}N is K -trivial if

the corresponding tree consisting of strings σ with [σ] ∩ C 6= ∅ is K -trivial.

It’s not hard to see that their definition coincides with ours.
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The local condition

As usual we fix a computable metric space M.

Let the letters p, q range over special points in M.

We write K (u, v) for K (〈u, v〉), the complexity of the ordered pair.

Definition

We say that x ∈ M is locally K -trivial via b if

∀n ∃p special
[
d(x , p) ≤ 2−n and K (p, n) ≤ K (n) + b

]
.

I Given a set A ⊆ N, from the tuple A�n we can determine n.

But from an approximation p we cannot (in general) determine the

“intended distance” to x .

I So it seems this definition is the appropriate analog of the usual

definition K (A�n) ≤ K (n) + O(1) in Cantor space, not the less

stringent condition where we write K (p) ≤ K (n) + b.
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The less stringent local condition fails even in Cantor space

In Cantor space {0, 1}N, the special points are the infinite sequences of

bits that are eventually 0.

Theorem

There is a Turing complete set A ∈ {0, 1}N such that A has c.e.

complement, and

∀n ∃p special [d(A, p) ≤ 2−n ∧ K (p) ≤ K (n) + b].

And a K -trivial set is never Turing complete. Thus, we indeed need to

write K (p, n)≤ K (n) + b in our generalization of K -triviality.
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Equivalence with K -triviality

The local condition seems to be weaker than the definition via Cauchy

names, because we only require that pairs 〈p, n〉 be compressible, not the

whole tuple of special points for distances down to 2−n. But, surprisingly:

Theorem

x ∈ M is K-trivial ⇐⇒ x satisfies the local condition for some b:

∀n ∃p special
[
d(x , p) ≤ 2−n and K (p, n) ≤ K (n) + b

]
.

Proof idea.

=⇒
This is easy: let f be a K -trivial Cauchy name for x . Given n, let

p = f (n). Then

K (p, n) ≤ K (f �n+1) + O(1) ≤ K (n) + O(1).
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Equivalence with K -triviality

Theorem (again)

x ∈ M is K-trivial ⇐⇒ ∃b

∀n ∃p special
[
d(x , p) ≤ 2−n ∧ K (p, n) ≤ K (n) + b

]
.

Proof idea, ⇐= Recall that we identify special points with numbers.

I Fix a Solovay function h (i.e., h is computable, ∀n K (n) ≤ h(n), and

K (n) = h(n) for infinitely many n).

I Consider the infinite computably enumerable tree

T = {(p1, . . . , pr ) : d(pi , pi+1) ≤ 2−i−1 and K (pi , i) ≤ h(i) + b}

for all i (where it makes sense).
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T = {(p1, . . . , pr ) : (pi , pi+1) ≤ 2−i−1 and K (pi , i) ≤ h(i) + b}.

I Enumerate a c.e. tree G of initial segments of Cauchy names that are

K -trivial for the same constant.

I When a new string η enters the given tree T , pick the largest v such

that η(v − 1) is already the last entry of some string ρ ∈ G .

I By maximality of v there must be short “unused” descriptions of pairs

〈η(k), k〉 for v ≤ k < r . We use these to be able to put ρ

concatenated with the rest of η on G .

I G is an infinite, finitely branching tree. Hence it has a path, which is a

Cauchy name for x . It is K -trivial by a theorem on Solovay functions

by Bienvenu, Merkle and Nies (2010).
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Algorithmic information theory characterization of

computable points

Theorem (variant for C )

x ∈ M has a C -trivial Cauchy name ⇐⇒ ∃b

∀n ∃p special
[
d(x , p) ≤ 2−n ∧C (p, n) ≤C (n) + b

]
.

Note that a function N→ N is C -trivial iff it is computable. So this

characterizes computable points locally.
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Future directions

I Characterize the K -trivial points in computable Banach spaces,

such as C[0, 1], `2, . . ..

I Study K -trivial compact sets in Cantor space and other computable

metric spaces.

I A point x ∈M is called incompressible in approximation if all special

points close to x are incompressible:

∃b ∈ N ∀p [d(z , p) ≥ 2−K(p)−b].

This notion is opposite to K -triviality. In the unit interval it coincides

with Martin-Löf randomness. We showed some closure properties.

Relate incompressibility to K -triviality in M, possibly via relative

computability in M.
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Summary

I K -triviality can be defined in general computable metric spaces.

I If the space is perfect they can be non-computable.

I Reasonable examples in spaces like `2 and K({0, 1}N).

I Preserved under computable maps, hence independent of the particular

computable structure.

I The definition via having a K -trivial Cauchy name is equivalent to the

apparently weaker local definition

∀n ∃p special
[
d(x , p) ≤ 2−n ∧ K (p, n) ≤ K (n) + b].
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