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∆0
2 sets

In computability theory one studies the complexity of sets Z of natural

numbers.

A good arena, not too far from the computable sets, is the class of ∆0
2

sets, that is, the sets Turing below the Halting problem ∅′.

For, they can still be approximated in a computable way via the Limit

Lemma.
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Computable approximations of sets

Theorem (Shoenfield Limit Lemma,1959)

Z is Turing below the halting problem ∅′ ⇐⇒
there is a computable function g : N× N→ {0, 1} such that

Z (x) = lims g(x , s)

for each x ∈ N.

We will write Zs for {x : g(x , s) = 1}. The sequence (Zs)s∈N is called a

computable approximation of Z .
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Main idea

Study the complexity of a ∆0
2 set Z by quantifying the amount of changes

needed in a computable approximation (Zs)s∈N.

First we will do this for random sets.

Then we do it for computably enumerable (c.e.) sets.

Thereafter we will relate the two cases.
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Martin-Löf randomness

Our central algorithmic randomness notion is the one of Martin-Löf. It has

many equivalent definitions. Here is one.

Z is Martin-Löf random ⇔
for every computable sequence (σi )i∈N of binary strings with∑

i 2−|σi | <∞, there are only finitely many i such that σi is an

initial segment of Z .

Note that limi 2−|σi | = 0, so this means that we cannot “Vitali cover” Z ,

viewed as a real number, with the collection of dyadic intervals

corresponding to (σi )i∈N.
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Left-c.e. sets

We consider a special type of ∆0
2 set. We say that Z ⊆ N is left-c.e. if it

has a computable approximation (Zs)s∈N such that Zs ≤lex Zs+1 in the lex

ordering.

For instance, let Ω be the halting probability of a universal prefix-free

machine U.

Then Ω is left-c.e.: Ωs is the measure of U-descriptions σ where the

computation U(σ) has converged by stage s. This is a dyadic rational,

identified with a binary string.

Ω is a left-c.e. random set.
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Act 1

Random ∆0
2 sets and change bounds

The players:

Z , a raundon ∆0
2-knight

Ω, the king.

More knights.

The scene:

The fields outside a castle.

A. Nies (U of Auckland) Measuring the complexity of ∆0
2 sets via their changes ALC 2011 7 / 1



Counting the changes of initial segments

Definition

Let g : N→ N. We say that a ∆0
2 set Z is a

g -change set

if it has a computable approximation (Zs)s∈N such that an initial segment

Zs �n changes at most g(n) times.

We also say that Z is g -computably approximable, or g -c.a. To be ω-c.a.

means to be g -c.a. for some computable g .

Example

Every left-c.e. set is a g -change set for some g = o(2n).

Proof: If Z �k is stable by stage t, then for n ≥ k + t + 1,

Z �n changes at most 2n−k times.
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Lower bounds for changes of raundon ∆0
2 knights

Proposition (Figueira, Hirschfeldt, Miller, Ng and Nies, 2011)

Let Z be a random ∆0
2 set.

Let q : N→ R+ be computable and nonincreasing.

If Z is a bq(n)2nc-change set then limn q(n) > 0.

For instance, let q(n) = 1/ log log n. Then limn q(n) = 0. Thus:

Example

No ML-random set is a b2n/ log log nc-change set.

As a consequence, for the number of initial segment changes for Ω, the

o(2n) upper bound is not far below 2n.
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Sir Thomas Malory, Le Morte D’Arthur (1483)

Chapter IX: How Sir Tor rode after the knight with the brachet, and of his

adventure by the way.

(...) And anon the knight yielded him to his mercy. But, sir, I

have a fellow in yonder pavilion that will have ado with you

anon. He shall be welcome, said Sir Tor. Then was he ware of

another knight coming with great raundon, and each of them

dressed to other, that marvel it was to see; but the knight smote

Sir Tor a great stroke in midst of the shield that his spear all

to-shivered. And Sir Tor smote him through the shield below of

the shield that it went through the cost of the knight, but the

stroke slew him not. (...)

The Old French noun “raundon”, great speed, is derived from “randir”, to

gallop. It has been used in English since the 14th century. Metaphorically,

“raundon” also meant ‘impetuousity’. (OED)
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Sir Thomas Malory’s thesis

Let Z be a Martin-Löf random ∆0
2 set.

Z gets more raundon

⇔
Z needs more changes.

Was Malory right?
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Enhancing Martin-Löf randomness

Let Z be a Martin-Löf random set. The randomness enhancement

principle states that

Z is computational less complex ⇐⇒ Z is more random

This was observed first for randomness notions not compatible with ∆0
2.

Example (Hirschfeldt, Miller ‘06 / N, Terwijn, Stephan ‘05)

I Z and ∅′ form a minimal pair ⇐⇒ Z is weakly 2-random

I Z is low for Ω ⇐⇒ Z is 2-random.

The following later result also affects a ∆0
2 ML-random set Z .

Example (Franklin, Ng 10)

Z is Turing incomplete ⇐⇒ Z is difference random.
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For random ∆0
2 sets, less complex means more changes (1)

Randomness enhancement together with Malory’s thesis would imply that

for a Martin-Löf random ∆0
2 set Z ,

Z is computational less complex ⇐⇒ Z needs more changes.

To give evidence for this, first we consider random ∆0
2 sets that are

complex. This should mean that they need few changes.

Example

Ω is Turing complete.

Its rate of change is o(2n), which is at the lower end of the scale.

For each incomputable c.e. A there is a ∆0
2 random Z not above A.

However, the ω-c.a. random sets are “jointly” complex, because:

Example (Hirschfeldt, Miller, 2006)

There is an incomputable c.e. set below all ω-c.a. ML-random sets.
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For random ∆0
2 sets, less complex means more changes (2)

Next we consider random ∆0
2 sets that are not complex. This should mean

that they need a lot of changes.

Recall that a set Z ⊆ N is low if Z ′ ≤T ∅′, and superlow if Z ′ ≤tt ∅′.

Theorem (Figueira, Hirschfeldt, Miller, Ng, Ni 2010)

Suppose that a Martin-Löf random set Z is superlow.

Then Z is not an O(2n) change set.

In contrast:

Theorem (Figueira et al. 2011)

There is a low Martin-Löf random set Z with o(2n) changes.
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For random ∆0
2 sets, less complex means more changes (3)

We last result also gives contrary evidence.

Theorem (Figueira et al. 2011)

There is a low Martin-Löf random set Z with o(2n) changes.

It says that Z has a rate of change similar to the one of Ω.

We would need a fine analysis of change bounds in o(2n) to differentiate

between Ω and low random sets.
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Act 2

Computably enumerable sets and cost functions

The players:

A, an abject ∆0
2 peasant.

The king’s tax collector.

Peasant folk.

The scene:

A village.
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Cost functions

The king issues a tax law (cost function) c.

Consider a computable approximation (As)s∈N of a ∆0
2 peasant A.

Suppose that on day s, the number x is least such that As(x) changes.

Then the tax the peasant pays is c(x , s) ∈ Q+.

Definition

We say a ∆0
2 set A obeys a cost function c if A has a computable

approximation such that the total tax is finite.

Properties of c we require:

I computable,

I nondecreasing in s,

I nonincreasing in x .
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Each fair tax law can be obeyed without being taxed to

death (where death = computable)

Let c∗(x) = sups c(x , s). We say that c has the limit condition if

limx c∗(x) = 0. (Fair tax law.)

Proposition (Existence; DHNS 03)

Suppose a cost function c has the limit condition.

Then there is a promptly simple set A obeying c.

Proposition (C.e. cover; Nies’ 2009 book)

Suppose a ∆0
2 set A obeys a cost function c.

Then there is a computably enumerable set D ≥tt A such that D also

obeys c.

So, for studying obedience to a single cost function we can pretty much

stay with the c.e. sets.
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A cost function characterizing K -triviality

Recall that A is K -trivial if for some b, ∀n K (A�n) ≤ K (n) + b.

This means far from random (using the Levin-Schnorr theorem).

Let c〈Ω〉(x , s) = Ωs − Ωx , the amount Ω increases from x to s.

The following characterizes the K -trivial peasants as the ones that obey

the king’s tax law c〈Ω〉.

Theorem (N, 2005; 2010)

A is K-trivial ⇔ A obeys c〈Ω〉.

⇐ is not hard. ⇒ is also not hard for c.e. A, but needs the so-called golden

run method in general. (The 2005 proof was for the cost function cK.)

Corollary

Every K-trivial set has a computably enumerable K-trivial above.

A. Nies (U of Auckland) Measuring the complexity of ∆0
2 sets via their changes ALC 2011 19 / 1



For c.e. sets, less complex means fewer changes (1)

Recall that for a random ∆0
2 set Z , the paradigm was

Z is computational less complex

⇐⇒

Z needs more changes.

For c.e. sets A, the paradigm contrasts with the one for random ∆0
2 sets.

A is computational less complex

⇐⇒

A obeys stricter cost functions.
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For c.e. sets, less complex means fewer changes (2)
We give evidence for this. It works in fact for left-c.e. sets.

Evidence I. The case of Ω.

Example

(a) The left-c.e. set Ω is Turing complete.

(b) It obeys no reasonable cost function.

For statement (b) we use:

Fact

If c(x , s) ≥ 2−x for all x , s, then no random ∆0
2 set obeys c.

Evidence II. Bickford and Mills (1982) introduced superlowness of a set A,

namely, A′ ≤tt ∅′. They called these sets abject.

Theorem (N 2005)

Each K-trivial set is superlow. Thus, obeying c〈Ω〉 implies superlowness.
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For c.e. sets, less complex means fewer changes (3)

Evidence III. Let JA be a universal partial computable functional with

oracle A. Strong jump traceability (Figueira, N, Stephan 2008) is a

lowness property of A saying that the possible values of JA are very

limited: they are contained in tiny uniformly c.e. sets Tx .

A cost function is called benign if the number of disjoint increments by

2−k is computably bounded in k. For instance, c〈Ω〉 is benign via k → 2k .

Theorem (Greenberg and N, 2010)

Let A be c.e. Then

A is strongly jump traceable ⇔ A obeys each benign cost function.

Thus, peasants get poorer when they obey stricter tax laws.
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Act 3

Computably enumerable sets below random ∆0
2 sets

The players:

Z , a raundon ∆0
2-knight

A, an abject c.e. peasant.

Knights, peasants.

The scene:

A forest between village and castle. Night.
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Interaction between knights and peasants

We now consider the situation that

A ≤T Z ,

where A is a c.e. peasant and Z is a raundon ∆0
2 knight.

We will see that

the more Z is allowed to change (in the sense of initial segments),

the less A can change (in the sense of cost functions).

This is in line with the paradigms of Act 1 and 2:

Z changes more means Z is computationally less complex.

So the set A ≤T Z is less complex as well, and hence can change less.
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The knight and his subjects

The following classical theorem says that every raundon ∆0
2 knight has c.e.

peasants subject to him.

Theorem (Kučera 1986)

Let Z be a random ∆0
2 set.

Then there is a c.e. incomputable set A such that A ≤T Z.

In general, such an A is very poor.

Theorem (Hirschfeldt, N, Stephan 2005)

If Z is Turing incomplete, then A is necessarily K-trivial.

Greenberg and N (2010) have given a cost function proof of Kučera’s

theorem: A is a set obeying a certain cost function cZ associated with a

computable approximation of Z .
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Subjects can be arbitrarily poor

There are ∆0
2 knights Z such that a c.e. peasant subject to Z is arbitrarily

poor. In fact, instead of ML-randomness of Z we can take membership in

any non-empty Π0
1 class.

Theorem (N, in preparation)

Let P be a non-empty Π0
1 class. Let c be a cost function with the limit

condition.

Then there is a ∆0
2 set Z ∈ P such that every c.e. set A ≤T Z obeys c.

I In the construction, the more restrictive c, the more Z has to change.

I If c is benign (not too restrictive), then Z is ω-c.a.

I This is an instance of the principle above that more changes of Z

mean fewer changes of A ≤T Z .
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A very low random ∆0
2 set

It is not hard to define a cost function c such that every c.e. set A obeying

c is strongly jump traceable. Let P be a Π0
1 class of randoms. Then we

re-obtain the following:

Theorem (Greenberg, 2009)

There is a random ∆0
2 set Z such that every c.e. set A Turing below Z is

strongly jump traceable.

History:

I Greenberg built such a Z directly.

I Thereafter, Kučera and N (2009) showed that Demuth randomness of

Z does the job.

I The extension to Π0
1 classes shows that randomness isn’t really

necessary here. For instance, we can also take a PA complete Z .
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Exeunt omnes.
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