Profinite groups and computability theory

André Nies

Tian Yuan Mathematics Research Center Computability theory and Descriptive set theory June 2025

The plan

- I. Profinite groups: definition and examples
- II. Algorithmic presentations of profinite groups
- III. Fractal dimensions of closed subgroups (with Elvira Mayordomo, U Zaragoza)
- IV. Algorithmic randomness in computable profinite groups (with Willem Fouche, Pretoria and Matteo Vannacci, U Firenze)

I. Profinite groups

their definitions and examples

Profinite groups as inverse limits

An inverse system is a sequence $(G_n, p_n)_{n \in \mathbb{N}}$ where the G_n are finite groups, and the $p_n \colon G_{n+1} \to G_n$ are homomorphisms.

Its inverse limit is the topological group $G = \varprojlim_n (G_n, p_n)$, given up to isomorphism by the universal property from category theory.

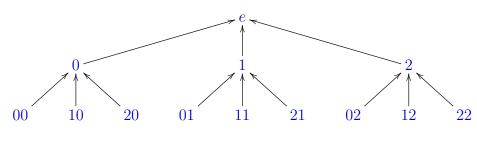
A separable topological group is called **profinite** if it is isomorphic to such an inverse limit.

Equivalently, the group is compact and 0-dimensional.

 ${\cal G}$ will always denote a profinite group with a specified inverse system.

The inverse limit as a group on a path space (1)

An inverse system $(G_n, p_n)_{n \in \mathbb{N}}$, with G_0 trivial, yields a finitely branching rooted tree T. The n-th level consists of G_n ; the predecessor relation is given by the $p_n : G_{n+1} \to G_n$.



The first levels of the tree for the additive group of 3-adic integers.

$$G_1 = C_3, G_2 = C_9, \text{ etc.}$$

The inverse limit as a group on a path space (2)

Recall: an inverse system of groups $(G_n, p_n)_{n \in \mathbb{N}}$, with G_0 trivial, yields a finitely branching rooted tree T. The n-th level consists of G_n ; the predecessor relation is given by the maps $p_n: G_{n+1} \to G_n$.

- As the domain of the inverse limit one can concretely take the path space [T].
- Its neutral element is the path consisting of the neutral elements in the G_n 's.
- The group multiplication is given by

$$f \cdot g = \bigcup_n [f \upharpoonright_n \cdot_n g \upharpoonright_n] \text{ for } f, g \in [T].$$

- Similarly for inverse operation.
- \blacksquare These operations are continuous w.r.t. the topology on [T].

Profinite groups given by p-adic integers

- Let p be a prime. Let $(\mathbb{Z}_p, +) = \varprojlim_n C_{p^n}$ where C_{p^n} is the cyclic group of size p^n .
- Via the view as a tree, the elements of \mathbb{Z}_p can be encoded by infinite sequences of digits in $\{0, \ldots, p-1\}$, with addition via the usual carry digits.
- This is a pro-p group: all the G_n have size a power of p.
- Let $k \ge 2$. Matrix groups such as
 - upper unitriangular $\mathrm{UT}_k(\mathbb{Z}_p)$
 - special linear $\mathrm{SL}_k(\mathbb{Z}_p)$

are profinite. This uses that $(\mathbb{Z}_p, +, \times)$ is a profinite ring.

Profinite groups given by infinite Galois extensions

For a Galois extension K/k, its Galois group G = Gal(K/k) consist of the automorphisms of K that fix k pointwise.

- G = Gal(K/k) is a profinite group:
- If $K = \bigcup_{i \in \mathbb{N}} L_i$, where $L_{i+1} \geq L_i$ and each L_i is a normal finite extension of k, then

$$G \cong \varprojlim_{i} (\operatorname{Gal}(L_{i}/k), p_{i})$$

where $p_i(\sigma)$ is the restriction of σ to L_i .

Profinite groups from \aleph_0 -categorical structures

Theorem (N. and Paolini, 2024, arxiv.org/pdf/2410.02248)

Let M be an \aleph_0 -categorical structure with domain \mathbb{N} , and let $G = \operatorname{Aut}(M)$. Then N_G/G is profinite.

Here $N_G = \{ \sigma \in \operatorname{Sym}(\mathbb{N}) : G^{\sigma} = G \}$ is the normaliser of G; it coincides with $\operatorname{Aut}(\mathcal{E}_M)$ where \mathcal{E}_M is the orbital structure of M. Any separable profinite group occurs (Evans and Hewitt, 1991).

Theorem (N. and Paolini, 2024)

- (1) Let G as above. Then Aut(G) carries a natural Polish topology and Inn(G) is closed in it.
- (2) $\operatorname{Out}(G) = \operatorname{Aut}(G)/\operatorname{Inn}(G)$ with the quotient topology is totally disconnected, locally compact (t.d.l.c.).

It is unknown whether Out(G) is in fact always profinite.

II. Algorithmic presentations of profinite groups

Co-c.e., and computable profinite groups

Recall: a profinite group is given by an inverse system $(G_n, p_n)_{n \in \mathbb{N}}$, where the $p_n \colon G_{n+1} \to G_n$ are homomorphisms of finite groups.

Definition (Smith, 1981; LaRoche, 1981)

A co-c.e. profinite group G is given by a computable inverse system. The group is called computable if in addition, all the p_n 's are onto.

Theorem (Smith, 1981)

- (i) Some co-c.e. profinite group G is not isomorphic to a computable one.
- (ii) Each co-c.e. pro-p group that is topologically f.g. is computable.
- Proof. (i) let A be a properly Σ_2^0 set of primes, and let G be a co-c.e. presentation of $\prod_{p \in A} C_p$. (ii) uses the Frattini subgroup.

Co-c.e., and computable in terms of the tree

Recall that an inverse system $(G_n, p_n)_{n \in \mathbb{N}}$ yields a finitely branching tree T with levels consisting of the G_n .

- \blacksquare G is co-c.e. if
 - the tree *T* is computable with a computable number of successors, and
 - the group operations at each level are uniformly computable.
- \blacksquare G is computable if, in addition, the tree has no leaves.

Preservation properties

Smith (1981) proved preservation properties for computable profinite groups. If G is computable then

- the derived group G' is computable
- for each prime p, the group G has a computable p-Sylow subgroup (that is, a maximal pro-p closed subgroup).

Arbitrary effective tree → nice effective tree

- If a topological structure for a finite functional signature σ is compact and 0-dimensional, then it has a copy with domain [T] for some finitely branching tree T.
- Co-c.e. σ -structures: T is computable, with computable bound on branching, and operations computable.
- **Computable** σ -structures: in addition, T has no leaves.

Theorem (Smith 1981/ Melnikov and N., 2022 in l.c. context)

If a profinite group has a co-c.e. copy as a topological structure, then it has a co-c.e. presentation as defined above.

Same for computable. The transformations are uniform.

Computably f.g. subgroups of profinite groups

- A group L is called residually finite if each $w \in L \{e\}$ remains $\neq e$ in some finite quotient of L.
- A f.g. group L is residually finite \iff it is isomorphic to a subgroup of a profinite group. For " \Rightarrow ", use the profinite completion.

Theorem

A f.g. group L is isomorphic to a subgroup of some computable profinite group that is generated by finitely many computable paths \iff the following two conditions hold:

- L has a Π_1^0 word problem
- \blacksquare L is effectively residually finite.

III. Fractal dimensions of closed subgroups

Joint with Elvira Mayordomo (arXiv:2502.09995, 2025)

Closed subgroups of a profinite group

- Write $H \leq_c G$ to express that H is a closed subgroup of $G = \varprojlim_n (G_n, p_n)$.
- Let H_n be the range of the natural projection of H into G_n .
- Let $q_n = p_n \upharpoonright_{H_{n+1}}$. Then $H = \varprojlim_n (H_n, q_n)$, with onto maps.

Recall G = [T] for the tree T associated with the inverse system. Then H = [S] for its subtree S associated with (H_n, q_n) .

H is a nullset for the uniform measure on [T] (Haar measure), unless H has finite index (and hence is open in case that G is topologically f.g., by Nikolov and Segal 2008).

So, how can one measure the size of H? Using fractal dimensions!

Metrics on a profinite group

- \blacksquare Fractal dimensions are defined for bounded subsets of metric spaces. So we need a metric on G.
- The tree T for G provides us with an ultrametric: For distinct $g, h \in [T]$, let

$$d(g,h) = \max\{|T_n|^{-1}: g(n) \neq h(n)\},\$$

where T_n is the *n*-th level of T (starting from 0).

- lacktriangleright Problem: the tree is based on the inverse system for G, which in the general case is somewhat arbitrary.
- However, for some classes, there is a natural inverse system.

Natural metric on topologically f.g. pro-p group

A profinite group is called pro-p group if the size of every continuous finite quotient is a power of p.

If G is pro-p and (topologically) finitely generated, there is a natural inverse system:

- Let R_n be the subgroup of G generated by the p^n -th powers. Clearly $\bigcap_n R_n = \{e\}$.
- R_n is normal and open; let $G_n = G/R_n$.
- Then $(G_n, p_n)_{n \in \mathbb{N}}$, with the canonical maps $p_n : G_{n+1} \to G_n$, forms an inverse system for G.
- Inverse system is invariant under Aut(G).

Lower and upper box (or counting) dimension

Let M be a metric space, and $X \subseteq M$ be compact. For $\alpha > 0$, let $N_{\alpha}(X) = \text{least size of a covering of } X$ with sets of diameter $\leq \alpha$. The lower box dimension is

$$\underline{\dim}_{\mathrm{Box}}(X) = \liminf_{\alpha \to 0^+} \frac{\log N_{\alpha}(X)}{\log(1/\alpha)}$$

$$\underline{\dim}_{\mathrm{Box}}(\mathrm{Coastline}) = 1.25$$

Source: wikipedia

The upper box dimension $\dim_{\text{Box}}(X)$ is defined as the limsup.

Lower box dimension of [S]

Consider the metric space [T] for a finitely branching tree $T \subseteq \mathbb{N}^*$. Let X = [S] where S is a subtree. (Trees will have no leaves.)

 $\{[\sigma]: \sigma \in S_n\}$ is the "optimal covering" of [S] for diameter $|T_n|^{-1}$. Only α 's of form $|T_n|^{-1}$ matter, so

$$\underline{\dim}_{\mathrm{Box}}([S]) = \liminf_{\alpha \to 0^+} \frac{\log N_{\alpha}(X)}{\log(1/\alpha)} = \liminf_{n \to \infty} \frac{\log |S_n|}{\log |T_n|}$$

Example (similar to the Cantor "no middle-third" set)

- Let $T = \{0, 1, 2\}^{<\omega}$ and S the subtree of strings without a 1.
- $\log |S_n|/\log |T_n| = \log 2/\log 3$ for each n.
- So $\underline{\dim}_{Box}[S] = \overline{\dim}_{Box}[S] = \log_3(2) \approx 0.631$

Box dimensions of closed subgroups of G

Recall that G = [T]. The subtree S describing $H \leq_c G$ satisfies $S_n = H_n$, where H_n is the projection of H into G_n . So

$$\underline{\dim}_{\mathrm{Box}}(H) = \liminf_{n \to \infty} \frac{\log |H_n|}{\log |G_n|}$$

Example (Barnea-Shalev 1997, essentially)

Let G be the Cantor space $\mathcal{P}(\mathbb{N})$ with symmetric difference Δ as the group multiplication. Let $G_n = \mathcal{P}(n)$.

For each $0 \le \alpha \le \beta \le 1$ there is a closed subgroup H with

$$\underline{\dim}_{\mathrm{Box}}(H) = \alpha \text{ and } \overline{\dim}_{\mathrm{Box}}(H) = \beta.$$

To see this, let $R \subseteq \mathbb{N}$ be a set with lower [upper] density α [β]. Let H be the subgroup $\mathcal{P}(R)$. We have $|S_n| = 2^{|R \cap n|}$, $|T_n| = 2^n$.

Hausdorff and packing dimension

- $\dim_{\text{Hausdorff}}(X)$ is the sup of the r such that the r-dimensional Hausdorff measure $\mathcal{H}^r(X)$ is positive.
- Packing dimension $\dim_{\text{Packing}}(X)$ is defined in a similar way but "from the inside", via disjoint sets of balls with centre in X.
- We always have

$$\dim_{\operatorname{Packing}}(X) \leq \overline{\dim}_{\operatorname{Box}}(X)$$

$$\dim_{\text{Hausdorff}}(X) \leq \underline{\dim}_{\text{Box}}(X)$$

and also upward inequalities.

Coincidences of fractal dimensions for [S]

Theorem (Mayordomo and N., 2024)

Suppose a subtree S of T is levelwise uniformly branching. Then

```
Packing dimension of [S] = \text{upper box dim. of } [S]
Hausdorff dimension of [S] = \text{lower box dim. of } [S]
```

- The proof uses two versions of the point-to-set principle in general metric spaces (J. Lutz, N. Lutz and Mayordomo, 2023). We will discuss this proof on the next two slides.
- For both equalities, we also have direct proofs of the inequalities >; the inequalities < always hold.
- E.g., Tricot: $\dim_P[S] \ge \inf\{\overline{\dim}_B(V) : V \ne \emptyset \text{ open in } [S]\}.$

Proof of Theorem: constructive dimensions

Consider a computable metric space M with a dense sequence of designated points, encoded by binary strings.

The lower constructive dimension of a **point** $x \in M$ is defined by

$$\operatorname{cdim}(x) := \lim\inf_{\alpha \to 0^+} C_\alpha(x) / \log(1/\alpha),$$

where $C_{\alpha}(x)$ is the least complexity of a designated point within radius α . The upper dimension cDim(x) is defined using the sup.

Proposition (Mayordomo and N)

Let T be a computable tree. Let S be a computable subtree of T.

- $cdim(f) \leq \underline{\dim}_{\mathrm{Box}}(S)$ and $cDim(f) \leq \overline{\dim}_{\mathrm{Box}}(S)$
 - for each $f \in [S]$.
- If S is uniformly branching, then equalities hold when f is Martin-Löf random in [S] w.r.t. the uniform measure on [S].

Proof of Theorem: Point-to-set principles

Two point-to-set principles of Lutz, Lutz and Mayordomo (2023) determine the Hausdorff and packing dimension of a set $X \subseteq M$ in terms of the relativised algorithmic dimensions of the points in it:

$$\dim_{\text{Hausdorff}}(X) = \min_{A} \sup_{x \in X} \dim^{A}(x),$$

$$\dim_{\text{Packing}}(X) = \min_{A} \sup_{x \in X} Dim^{A}(x)$$

Using the previous proposition in relativised form, this shows

$$\dim_{\text{Hausdorff}}([S]) = \underline{\dim}_{\text{Box}}([S]) \text{ and } \dim_{\text{Packing}}([S]) = \overline{\dim}_{\text{Box}}([S]),$$

whenever S is a levelwise uniformly branching subtree of T.

Apply this to profinite groups G: purely geometric proof of a result that describes the Hausdorff dimension of closed subgroups of G.

Theorem (Barnea-Shalev, 1997)

Let $G = \varprojlim_n G_n$. Suppose that $H \leq_c G$. Let H_n be the projection of H into G_n . Then

$$\dim_{\text{Hausdorff}}(H) = \underline{\dim}_{\text{Box}}(H) = \liminf_{n \to \infty} \frac{\log |H_n|}{\log |G_n|}$$

- They used Prop 2.6 in the topological algebra paper "Subgroups and subrings of profinite rings" by Abercrombie (1994).
- Our argument shows that this only needs to use the tree structures.

By our methods, we also obtain

$$\dim_{\operatorname{Packing}}(H) = \overline{\dim}_{\operatorname{Box}}(H) = \limsup_{n \to \infty} \frac{\log |H_n|}{\log |G_n|}.$$

Dimension spectrum of a f.g. pro-p group

- Important topic of the Barnea-Shalev 1997 paper and its sequels (such as B. Klopsch and co-authors) is the spectrum, namely, the set of possible dimensions of closed subgroups.
- For instance, the spectrum of \mathbb{Z}_p^2 is $\{0, \frac{1}{2}, 1\}$.
- For especially nice pro-p-groups known as p-adic analytic, the Hausdorff dimension of a closed subgroup is k/n, where k is its dimension as a manifold over \mathbb{Z}_p , and the whole group as a manifold has dimension n.
- There is a f.g. pro-p group with "normal" spectrum [0,1] (de las Heras and Klopsch, 2022).
- Open question: among the f.g. pro-p groups, are the p-adic analytic ones the only ones with finite spectrum?

IV. Algorithmic randomness in

computable profinite groups

Joint with Willem Fouché and Matteo Vannacci

Haar measure

Any compact separable group has a unique translation invariant probability measure, called its Haar measure, we denote by μ .

If $G = \varprojlim_n (G_n, p_n)$ is profinite, this is the uniform measure on [T], where T is the tree given by the inverse system.

If G is computable and infinite, the usual algorithmic test notions for Cantor space can be extended to the space of paths [T].

- Kurtz random: in *no* effectively closed null set.
- Schnorr random: in *no* null set of the form $\bigcap_m G_m$, where $(G_m)_{m \in \mathbb{N}}$ is a sequence of uniformly Σ_1^0 sets, and μG_m is a uniformly computable real.

"Almost everywhere" results for k-tuples

An "almost everywhere" result for a profinite group G asserts that μ^k -almost every k-tuple \overline{g} satisfies a given property.

- For $\overline{g} \in G^k$, by $\langle \overline{g} \rangle$ one denotes the closure of the subgroup of G generated by \overline{g} .
- Let $G = \widehat{\mathbb{Z}} = \varprojlim_n \mathbb{Z}/n!\mathbb{Z}$ be the free profinite group of rank 1.

Some "almost everywhere" results for $\widehat{\mathbb{Z}}$ (Jarden, Lubotzky):

- (1) $\langle g \rangle$ has infinite index in $\widehat{\mathbb{Z}}$ for a.e. $g \in \widehat{\mathbb{Z}}$.
- (2) $\langle \overline{g} \rangle$ has finite index in $\widehat{\mathbb{Z}}$ for for a.e. $\overline{g} \in (\widehat{\mathbb{Z}})^k$, where $k \geq 2$.

Algorithmic version

Recall "almost everywhere" results for $\widehat{\mathbb{Z}}$ (Jarden, Lubotzky):

- (1) $|\widehat{\mathbb{Z}}: \langle g \rangle| = \infty$ for a.e. $g \in \widehat{\mathbb{Z}}$.
- (2) $|\widehat{\mathbb{Z}}: \langle \overline{g} \rangle| < \infty$ for a.e. $\overline{g} \in (\widehat{\mathbb{Z}})^k$, where $k \geq 2$.

Theorem (Algorithmic versions of these results)

- (1) If $g \in \widehat{\mathbb{Z}}$ is Kurtz random, then $|\widehat{\mathbb{Z}} : \langle g \rangle| = \infty$
- (2) If $k \geq 2$ and $\overline{g} \in \widehat{\mathbb{Z}}^k$ is Schnorr random, then $|\widehat{\mathbb{Z}} : \langle \overline{g} \rangle| < \infty$; Kurtz randomness is not sufficient.

When a k-tuple generates an open subgroup a.s.

We say that a profinite group G is a k-group if $|G: \langle \overline{g} \rangle| < \infty$ almost surely for $\overline{g} \in G^k$.

This means Q(G, k) = 1 in the notation of A. Mann (1996).

- Each k-group is topologically finitely generated.
- By the results above, $\widehat{\mathbb{Z}}$ is a 2-group, and not a 1-group.
- Nikolov and Segal (2008): each subgroup of finite index in a topologically f.g. profinite group is open.
- So in the definition above one could require as well that $\langle \overline{g} \rangle$ be open.

When a k-tuple generates an open subgroup a.s.

Recall a profinite G is a k-group if $|G:\langle \overline{g}\rangle| < \infty$ almost surely for $\overline{g} \in G^k$.

Proposition

Let the computable profinite group G be a k-group.

Then $|G:\langle \overline{g}\rangle| < \infty$ for each weakly 2-random $\overline{g} \in G^k$.

Proof:

- Let $V_m = \{ \overline{g} \in G^k : |G : \langle \overline{g} \rangle| \ge m \}.$
- If $\overline{g} \in V_m$ this becomes apparent at some G_n in the inverse system. So V_m is uniformly Σ_1^0 .
- Also $\mu^k(V_m) \to_m 0$ since G is a k-group.
- So $(V_m)_{m\in\mathbb{N}}$ is a weak 2-test. \square

Work in progress with Vannacci would show that if G is pro-p, then Schnorr randomness suffices.

Effective form of a.e. results for $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$

We give algorithmic versions of "a.e." theorems from Fried and Jarden, Field arithmetic (3d edition, 2005).

- $G = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) = \operatorname{Aut}(\overline{\mathbb{Q}}, +, \times)$ is the absolute Galois group of \mathbb{Q} . A Galois group is always profinite.
- Since $\mathbb{Q}[X]$ has a splitting algorithm, G is computable.

Theorem (algorithmic form of Thm. 18.5.6 in Fried-Jarden)

Let $G = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Let $\overline{g} \in G^k$ be Kurtz random. Then $\langle \overline{g} \rangle$ is a free profinite group of rank k.

Effective form of a.e. results for $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$

 $G = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is the absolute Galois group of \mathbb{Q} .

A field L is pseudo-algebraically closed (PAC) \iff every absolutely irreducible polynomial $p \in L[X, Y]$ has a zero in L.

Theorem (algorithmic form of Thm. 27.4.8 in Fried-Jarden) Let $g \in G$ be Kurtz random. Then the fixed field of the least closed normal subgroup containing g is PAC.

- Since Kurtz randomness is enough, these Fried-Jarden results prove more than what they say.
- For instance, weakly 1-generic also suffices.

Summary

Algorithmic presentations of profinite groups

Reviwed co-c.e. and computable profinite groups. Characterized f.g. subgroups of computable profinite groups by Π_1^0 word problem and e.r.f.

Fractal dimensions of closed subgroups

Showed coincidence of Hausdorff and lower box dimension of [S] when S is a uniformly branching subtree of T. Applied it for a geometric proof of Barnea-Shalev formula for Hausdorff dimension of closed subgroups. (arXiv: 2502.09995)

${\bf Algorithmic\ randomness\ in\ computable\ profinite\ groups}$

Algorithmic versions of a.e. theorems. Often the weak notion of Kurtz randomness suffices.