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[. Profinite groups

their definitions and examples



Profinite groups as inverse limits

An inverse system is a sequence (G, P )neny Where the G, are
finite groups, and the p,: G,+1 — G, are homomorphisms.

Its inverse limit is the topological group G' = l'gln(Gm Pn), given
up to isomorphism by the universal property from category theory.

A separable topological group is called profinite if

it is isomorphic to such an inverse limit.
Equivalently, the group is compact and 0-dimensional.

G will always denote a profinite group with a specified inverse
system.
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The inverse limit as a group on a path space (1)

An inverse system (G, pn)nen, With Gy trivial, yields a finitely
branching rooted tree T'. The n-th level consists of G,;
the predecessor relation is given by the p,,: G,11 — G,,.

0/?\2
SINC T ING N

00 10 20 01 11 21 02 12 22

The first levels of the tree for the additive group of 3-adic integers.
G1 = 03, Gg = Cg, etc.
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The inverse limit as a group on a path space (2)

Recall: an inverse system of groups (G, pn)nen, with Gg trivial, yields
a finitely branching rooted tree T'. The n-th level consists of Gy;
the predecessor relation is given by the maps p,: Gpr1 — Gh.

m As the domain of the inverse limit one can concretely take the path
space [T].

Its neutral element is the path consisting of the neutral elements in
the G,,’s.

The group multiplication is given by

fQZUn[ffn ngrn] for fage [T]

Similarly for inverse operation.

These operations are continuous w.r.t. the topology on [T7].
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Profinite groups given by p-adic integers

m Let p be a prime. Let (Z,,+) = fm Cpn where Cyn is the
cyclic group of size p".

m Via the view as a tree, the elements of Z, can be encoded by
infinite sequences of digits in {0,...,p — 1}, with addition via
the usual carry digits.

m This is a pro-p group: all the G,, have size a power of p.

m Let k£ > 2. Matrix groups such as

- upper unitriangular UTy(Z,)
- special linear SL(Z,)

are profinite. This uses that (Z,, +, X) is a profinite ring.

August 9, 2025 7/1



Profinite groups given by infinite Galois extensions

For a Galois extension K /k, its Galois group G = Gal(K/k)
consist of the automorphisms of K that fix k& pointwise.

m G = Gal(K/k) is a profinite group:

m If K = ;o Li, where Ly > L; and each L; is a normal
finite extension of k, then

G = lim (Gal(Ly/k), py)
where p;(0) is the restriction of o to L;.
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Profinite groups from Ny-categorical structures
Theorem (N. and Paolini, 2024, arxiv.org/pdf/2410.02248)

Let M be an Ny-categorical structure with domain N, and let
G = Aut(M). Then Ng/G is profinite.

Here Ng = {0 € Sym(N): G” = G} is the normaliser of G; it
coincides with Aut(&y,) where &), is the orbital structure of M.
Any separable profinite group occurs (Evans and Hewitt, 1991).

Theorem (N. and Paolini, 2024)

(1) Let G as above. Then Aut(G) carries a natural Polish topology
and Inn(G) is closed in it.

(2) Out(G) = Aut(G)/Inn(G) with the quotient topology is totally
disconnected, locally compact (t.d.l.c.).

It is unknown whether Out(G) is in fact always profinite.
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[I. Algorithmic presentations

of profinite groups



Co-c.e., and computable profinite groups

Recall: a profinite group is given by an inverse system (G, pp)nen,

where the p,,: G,+1 — G, are homomorphisms of finite groups.

Definition (Smith, 1981; LaRoche, 1981)

A co-c.e. profinite group G is given by a computable inverse system.
The group is called computable if in addition, all the p,’s are onto.

Theorem (Smith, 1981)

(i) Some co-c.e. profinite group G is not isomorphic to a
computable one.
(i) Each co-c.e. pro-p group that is topologically f.g. is computable.

Proof. (i) let A be a properly 3 set of primes, and let G be a
co-c.e. presentation of [[ ., C,
(ii) uses the Frattini Subgroup

August 9, 2025 11/1



Co-c.e., and computable in terms of the tree

Recall that an inverse system (G, pn)nen yields a finitely branching

tree T' with levels consisting of the G,,.

m G is co-c.e. if

- the tree T is computable with
a computable number of successors, and
- the group operations at each level are uniformly computable.

m (G is computable if, in addition, the tree has no leaves.
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Preservation properties

Smith (1981) proved preservation properties for computable
profinite groups. If G is computable then

m the derived group G’ is computable

m for each prime p, the group G has a computable p-Sylow
subgroup (that is, a maximal pro-p closed subgroup).
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Arbitrary effective tree ~ nice effective tree

m If a topological structure for a finite functional signature o is
compact and O-dimensional, then it has a copy
with domain [T for some finitely branching tree T

m Co-c.e. o-structures: 1" is computable, with computable
bound on branching, and operations computable.

m Computable o-structures: in addition, 7" has no leaves.

Theorem (Smith 1981/ Melnikov and N.; 2022 in l.c. context)

If a profinite group has a co-c.e. copy as a topological structure,
then it has a co-c.e. presentation as defined above.
Same for computable. The transformations are uniform.
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Computably f.g. subgroups of profinite groups

m A group L is called residually finite if
each w € L — {e} remains # ¢ in some finite quotient of L.
m A f.g. group L is residually finite <=
it is isomorphic to a subgroup of a profinite group.
For “=", use the profinite completion.

Theorem

A f.g. group L is isomorphic to a subgroup of some computable

profinite group that is generated by finitely many computable paths
<= the following two conditions hold:

m L has a II{ word problem

m L is effectively residually finite.
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[II. Fractal dimensions of closed subgroups

Joint with Elvira Mayordomo (arXiv:2502.09995, 2025)



Closed subgroups of a profinite group

m Write H <. G to express that H is a
closed subgroup of G = l'&nn(Gn,pn).

m Let H,, be the range of the natural projection of H into G,,.
m Let ¢, =pyl,,,. Then H = l'&nn(Hn, qn), with onto maps.

Recall G = [T for the tree T" associated with the inverse system.
Then H = [S] for its subtree S associated with (H,, ¢,).

H is a nullset for the uniform measure on [T'] (Haar measure),
unless H has finite index (and hence is open in case that G is
topologically f.g., by Nikolov and Segal 2008).

So, how can one measure the size of H? Using fractal dimensions!
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Metrics on a profinite group

m Fractal dimensions are defined for bounded subsets of metric
spaces. So we need a metric on G.

m The tree T for G provides us with an ultrametric:
For distinct g, h € [T, let

d(g,h) = max{|T,| ™" g(n) # h(n)},

where T, is the n-th level of T' (starting from 0).

m Problem: the tree is based on the inverse system for G, which
in the general case is somewhat arbitrary.

m However, for some classes, there is a natural inverse system.
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Natural metric on topologically f.g. pro-p group

A profinite group is called pro-p group if the size of every
continuous finite quotient is a power of p.

If G is pro-p and (topologically) finitely generated, there is a
natural inverse system:

m Let R, be the subgroup of GG generated by the p™-th powers.
Clearly (), R, = {e}.
m R, is normal and open; let G,, = G/R,,.

m Then (G, pn)nen, With the canonical maps p,: G,11 — Gy,
forms an inverse system for G.

m Inverse system is invariant under Aut(G).
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Lower and upper box (or counting) dimension

Let M be a metric space, and X C M be compact. For a > 0, let
N, (X) = least size of a covering of X with sets of diameter < a.
The lower box dimension is

a—0t  log(l/a)

dimp,, (Coastline) = 1.25

Source: wikipedia

The upper box dimension dimp,y(X) is defined as the limsup.
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Lower box dimension of [S]

Consider the metric space [T] for a finitely branching tree 7' C N*.
Let X = [S] where S is a subtree. (Trees will have no leaves.)
{[o]: ¢ € S,} is the “optimal covering” of [S] for diameter |T,,|~".
Only a’s of form |T,|~' matter, so

: . dog No(X) o L log |S|
d =1 f———F— =1 f
Mo 15 = T Togt/a) — W Tog [T,

Example (similar to the Cantor “no middle-third” set)
m Let 7= {0,1,2}<¥ and S the subtree of strings without a 1.
m log |S,|/log|T,| = log2/log 3 for each n.
m So dimp,, [S] = dimpu[S] = log;(2) ~ 0.631

August 9, 2025 21/1



Box dimensions of closed subgroups of G

Recall that G = [T']. The subtree S describing H <. G satisfies
S, = H,, where H, is the projection of H into GG,,. So

. .. log|H,|
d‘l_rIHBOX(H> = hgggolf 10g |Gn|

Example (Barnea-Shalev 1997, essentially)

Let G be the Cantor space P(N) with symmetric difference A as
the group multiplication. Let G,, = P(n).

For each 0 < a < 8 <1 there is a closed subgroup H with

dimp,, (H) = o and dimpy(H) = 3.

To see this, let R C N be a set with lower | upper | density a [5].
Let H be the subgroup P(R). We have |S,,| = 2/%™ |T,| = 2".
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Hausdorft and packing dimension

m dimpausdor(X) is the sup of the r such that the r-dimensional
Hausdorff measure H"(X) is positive.

m Packing dimension dimpacking(X) is defined in a similar way
but “from the inside”, via disjoint sets of balls with centre
in X.

m We always have

dimPacking (X)

IN

dimpey (X)

IN

dimHausdorff(X) di_mBox (X>

and also upward inequalities.
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Coincidences of fractal dimensions for [S]

Theorem (Mayordomo and N.; 2024)

Suppose a subtree S of T is levelwise uniformly branching. Then
Packing dimension of [S] = upper box dim. of [5]

Hausdorff dimension of [S] = lower box dim. of [S]

m The proof uses two versions of the point-to-set principle in
general metric spaces (J. Lutz, N. Lutz and Mayordomo,
2023). We will discuss this proof on the next two slides.

m For both equalities, we also have direct proofs of the
inequalities >; the inequalities < always hold.

m E.g., Tricot: dimp[S] > inf{dimp(V): V # () open in [S]}.
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Proof of Theorem: constructive dimensions
Consider a computable metric space M with a dense sequence of
designated points, encoded by binary strings.
The lower constructive dimension of a point x € M is defined by
cdim(z) ;= liminf, o+ Cy(x)/log(1l/a),
where C, () is the least complexity of a designated point within
radius o. The upper dimension c¢Dim(x) is defined using the sup.
Proposition (Mayordomo and N)
Let T be a computable tree. Let S be a computable subtree of T'.
m cdim(f) < dimg, (S) and eDim(f) < dimpey(S)
for each f € [S].
m If S is uniformly branching, then equalities hold when f is
Martin-Lof random in [S] w.r.t. the uniform measure on [S].
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Proof of Theorem: Point-to-set principles

Two point-to-set principles of Lutz, Lutz and Mayordomo (2023)
determine the Hausdorff and packing dimension of a set X C M in
terms of the relativised algorithmic dimensions of the points in it:

dimpagsaors(X) = minsup dim”(z),
A xeX

dimpacking(X) = minsup DimA(:z:)
A xeX

Using the previous proposition in relativised form, this shows
dimHausdorﬁ([SD - (h_mBOX<[S]) and dimPacking([S]) - mBox([S])a
whenever S is a levelwise uniformly branching subtree of 7.
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Apply this to profinite groups G: purely geometric proof of a result
that describes the Hausdorff dimension of closed subgroups of G.

Theorem (Barnea-Shalev, 1997)
Let G = 1&]{1n G,. Suppose that H <. G.
Let H,, be the projection of H into GG,,. Then

log |H,
dimHausdorff<H) = di—mBOX(H) - higg}f IZ§ ||Gn||

m They used Prop 2.6 in the topological algebra paper “Subgroups
and subrings of profinite rings” by Abercrombie (1994).

m Our argument shows that this only needs to use the tree structures.

By our methods, we also obtain

: T : log | H,,|
dimpacking (H) = dimpex (H) = limsup ————.
IMpacking(H) = dimpex(H) i Sup Iog |G|
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Dimension spectrum of a f.g. pro-p group

m [mportant topic of the Barnea-Shalev 1997 paper and its
sequels (such as B. Klopsch and co-authors) is the spectrum,
namely, the set of possible dimensions of closed subgroups.

m For instance, the spectrum of Z is {0, 3,1}

m For especially nice pro-p-groups known as p-adic analytic, the
Hausdorff dimension of a closed subgroup is k/n, where k is
its dimension as a manifold over Z,, and the whole group as a
manifold has dimension n.

m There is a f.g. pro-p group with “normal” spectrum [0, 1]
(de las Heras and Klopsch, 2022).

m Open question: among the f.g. pro-p groups, are the p-adic
analytic ones the only ones with finite spectrum?
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[V. Algorithmic randomness in

computable profinite groups

Joint with Willem Fouché and Matteo Vannacci



Haar measure

Any compact separable group has a unique translation invariant
probability measure, called its Haar measure, we denote by .

IfG = T&ln(Gn, pn) is profinite, this is the uniform measure on [T,
where T is the tree given by the inverse system.

If G is computable and infinite, the usual algorithmic test notions
for Cantor space can be extended to the space of paths [T7].

m Kurtz random: in no effectively closed null set.

m Schnorr random: in no null set of the form (") G,,, where
(Gm)men is a sequence of uniformly X sets, and uG,, is a
uniformly computable real.
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“Almost everywhere” results for k-tuples

An “almost everywhere” result for a profinite group G asserts that
pF-almost every k-tuple g satisfies a given property.

m For g € G*, by (g) one denotes the closure of the subgroup of
G generated by g.

mletG=7= I&nn Z/n\Z be the free profinite group of rank 1.

“ almost everywhere” results for Z (Jarden, Lubotzky):

Some
(1) (g) has infinite index in Z for ae. g € Z.

(2) (g) has finite index in Z for for a.e. g € (Z)*, where k > 2.
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Algorithmic version

~

Recall “ almost everywhere” results for Z (Jarden, Lubotzky):
(1) |Z: (g)| = oo for a.e. g € Z.
(2) |Z : (g)| < oo for a.e. § € (Z)*, where k > 2.

Theorem (Algorithmic versions of these results)
(1) If g € Z is Kurtz random, then |Z : ()| = 0o

(2) If k > 2 and g € Z* is Schnorr random, then |Z : (g)| < co;
Kurtz randomness is not sufficient.
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When a k-tuple generates an open subgroup a.s.

We say that a profinite group G is a k-group if |G: (g)| < oo
almost surely for g € G*.
This means Q(G, k) = 1 in the notation of A. Mann (1996).

m Each k-group is topologically finitely generated.

m By the results above, Zis a 2-group, and not a 1-group.

m Nikolov and Segal (2008): each subgroup of finite index in a
topologically f.g. profinite group is open.

m So in the definition above one could require as well that
(g) be open.
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When a k-tuple generates an open subgroup a.s.
Recall a profinite G is a k-group if |G: (g)| < oo almost surely for
g <Gk

Proposition

Let the computable profinite group G be a k-group.

Then |G : (g)| < oo for each weakly 2-random g € G*.

Proof:
mLet V,, ={g€G": |G: (g)| > m}.
m If g € V,, this becomes apparent at some (G, in the inverse
system. So V,, is uniformly >9.
m Also p*(V,,) = 0 since G is a k-group.
m S0 (Vi)men is a weak 2-test. [J
Work in progress with Vannacci would show that if G is pro-p, then

Schnorr randomness suffices.
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Effective form of a.e. results for Gal(@ /Q)

We give algorithmic versions of “a.e.” theorems from
Fried and Jarden, Field arithmetic (3d edition, 2005).

m (= Gal(Q/Q) = Aut(Q, +, x) is the absolute Galois group
of Q. A Galois group is always profinite.

m Since Q[X] has a splitting algorithm, G is computable.

Theorem (algorithmic form of Thm. 18.5.6 in Fried-Jarden)

Let G = Gal(Q/Q). Let g € G* be Kurtz random.
Then (g) is a free profinite group of rank k.
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Effective form of a.e. results for Gal(@ /Q)

G = Gal(Q/Q) is the absolute Galois group of Q.

A field L is pseudo-algebraically closed (PAC) <= every
absolutely irreducible polynomial p € L[X, Y| has a zero in L.
Theorem (algorithmic form of Thm. 27.4.8 in Fried-Jarden)

Let g € G be Kurtz random. Then the fixed field of the least
closed normal subgroup containing ¢ is PAC.

m Since Kurtz randomness is enough, these Fried-Jarden results
prove more than what they say.

m For instance, weakly 1-generic also suffices.
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Summary

Algorithmic presentations of profinite groups

Reviwed co-c.e. and computable profinite groups. Characterized
f.g. subgroups of computable profinite groups by II{ word problem
and e.r.f.

Fractal dimensions of closed subgroups

Showed coincidence of Hausdorff and lower box dimension of [S]
when S is a uniformly branching subtree of T". Applied it for a
geometric proof of Barnea-Shalev formula for Hausdorff dimension
of closed subgroups. (arXiv: 2502.09995)

Algorithmic randomness in computable profinite groups
Algorithmic versions of a.e. theorems. Often the weak notion of

Kurtz randomness suffices.
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