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I. Profinite groups

their definitions and examples
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Profinite groups as inverse limits

An inverse system is a sequence (Gn, pn)n∈N where the Gn are

finite groups, and the pn : Gn+1 → Gn are homomorphisms.

Its inverse limit is the topological group G = lim←−n
(Gn, pn), given

up to isomorphism by the universal property from category theory.

A separable topological group is called profinite if

it is isomorphic to such an inverse limit.

Equivalently, the group is compact and 0-dimensional.

G will always denote a profinite group with a specified inverse

system.
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The inverse limit as a group on a path space (1)
An inverse system (Gn, pn)n∈N, with G0 trivial, yields a finitely

branching rooted tree T . The n-th level consists of Gn;

the predecessor relation is given by the pn : Gn+1 → Gn.

e44 OO jj

0== OO aa 1== OO aa 2== OO aa

00 10 20 01 11 21 02 12 22

· · ·

The first levels of the tree for the additive group of 3-adic integers.

G1 = C3, G2 = C9, etc.
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The inverse limit as a group on a path space (2)
Recall: an inverse system of groups (Gn, pn)n∈N, with G0 trivial, yields

a finitely branching rooted tree T . The n-th level consists of Gn;

the predecessor relation is given by the maps pn : Gn+1 → Gn.

As the domain of the inverse limit one can concretely take the path

space [T ].

Its neutral element is the path consisting of the neutral elements in

the Gn’s.

The group multiplication is given by

f · g =
⋃

n [f ↾n ·n g ↾n] for f, g ∈ [T ].

Similarly for inverse operation.

These operations are continuous w.r.t. the topology on [T ].
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Profinite groups given by p-adic integers

Let p be a prime. Let (Zp,+) = lim←−n
Cpn where Cpn is the

cyclic group of size pn.

Via the view as a tree, the elements of Zp can be encoded by

infinite sequences of digits in {0, . . . , p− 1}, with addition via

the usual carry digits.

This is a pro-p group: all the Gn have size a power of p.

Let k ≥ 2. Matrix groups such as

- upper unitriangular UTk(Zp)

- special linear SLk(Zp)

are profinite. This uses that (Zp,+,×) is a profinite ring.
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Profinite groups given by infinite Galois extensions

For a Galois extension K/k, its Galois group G = Gal(K/k)

consist of the automorphisms of K that fix k pointwise.

G = Gal(K/k) is a profinite group:

If K =
⋃

i∈N Li, where Li+1 ≥ Li and each Li is a normal

finite extension of k, then

G ∼= lim←−
i

(Gal(Li/k), pi)

where pi(σ) is the restriction of σ to Li.
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Profinite groups from ℵ0-categorical structures
Theorem (N. and Paolini, 2024, arxiv.org/pdf/2410.02248)

Let M be an ℵ0-categorical structure with domain N, and let

G = Aut(M). Then NG/G is profinite.

Here NG = {σ ∈ Sym(N) : Gσ = G} is the normaliser of G; it

coincides with Aut(EM) where EM is the orbital structure of M .

Any separable profinite group occurs (Evans and Hewitt, 1991).

Theorem (N. and Paolini, 2024)

(1) Let G as above. Then Aut(G) carries a natural Polish topology

and Inn(G) is closed in it.

(2) Out(G) = Aut(G)/Inn(G) with the quotient topology is totally

disconnected, locally compact (t.d.l.c.).

It is unknown whether Out(G) is in fact always profinite.
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II. Algorithmic presentations

of profinite groups
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Co-c.e., and computable profinite groups
Recall: a profinite group is given by an inverse system (Gn, pn)n∈N,

where the pn : Gn+1 → Gn are homomorphisms of finite groups.

Definition (Smith, 1981; LaRoche, 1981)

A co-c.e. profinite group G is given by a computable inverse system.

The group is called computable if in addition, all the pn’s are onto.

Theorem (Smith, 1981)

(i) Some co-c.e. profinite group G is not isomorphic to a

computable one.

(ii) Each co-c.e. pro-p group that is topologically f.g. is computable.

Proof. (i) let A be a properly Σ0
2 set of primes, and let G be a

co-c.e. presentation of
∏

p∈A Cp.

(ii) uses the Frattini subgroup.
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Co-c.e., and computable in terms of the tree

Recall that an inverse system (Gn, pn)n∈N yields a finitely branching

tree T with levels consisting of the Gn.

G is co-c.e. if

- the tree T is computable with

a computable number of successors, and

- the group operations at each level are uniformly computable.

G is computable if, in addition, the tree has no leaves.
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Preservation properties

Smith (1981) proved preservation properties for computable

profinite groups. If G is computable then

the derived group G′ is computable

for each prime p, the group G has a computable p-Sylow

subgroup (that is, a maximal pro-p closed subgroup).
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Arbitrary effective tree ⇝ nice effective tree

If a topological structure for a finite functional signature σ is

compact and 0-dimensional, then it has a copy

with domain [T ] for some finitely branching tree T .

Co-c.e. σ-structures: T is computable, with computable

bound on branching, and operations computable.

Computable σ-structures: in addition, T has no leaves.

Theorem (Smith 1981/ Melnikov and N., 2022 in l.c. context)

If a profinite group has a co-c.e. copy as a topological structure,

then it has a co-c.e. presentation as defined above.

Same for computable. The transformations are uniform.
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Computably f.g. subgroups of profinite groups

A group L is called residually finite if

each w ∈ L− {e} remains ̸= e in some finite quotient of L.

A f.g. group L is residually finite ⇐⇒
it is isomorphic to a subgroup of a profinite group.

For “⇒”, use the profinite completion.

Theorem

A f.g. group L is isomorphic to a subgroup of some computable

profinite group that is generated by finitely many computable paths

⇐⇒ the following two conditions hold:

L has a Π0
1 word problem

L is effectively residually finite.
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III. Fractal dimensions of closed subgroups

Joint with Elvira Mayordomo (arXiv:2502.09995, 2025)
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Closed subgroups of a profinite group

Write H ≤c G to express that H is a

closed subgroup of G = lim←−n
(Gn, pn).

Let Hn be the range of the natural projection of H into Gn.

Let qn = pn ↾Hn+1 . Then H = lim←−n
(Hn, qn), with onto maps.

Recall G = [T ] for the tree T associated with the inverse system.

Then H = [S] for its subtree S associated with (Hn, qn).

H is a nullset for the uniform measure on [T ] (Haar measure),

unless H has finite index (and hence is open in case that G is

topologically f.g., by Nikolov and Segal 2008).

So, how can one measure the size of H? Using fractal dimensions!
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Metrics on a profinite group
Fractal dimensions are defined for bounded subsets of metric

spaces. So we need a metric on G.

The tree T for G provides us with an ultrametric:

For distinct g, h ∈ [T ], let

d(g, h) = max{|Tn|−1 : g(n) ̸= h(n)},

where Tn is the n-th level of T (starting from 0).

Problem: the tree is based on the inverse system for G, which

in the general case is somewhat arbitrary.

However, for some classes, there is a natural inverse system.
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Natural metric on topologically f.g. pro-p group

A profinite group is called pro-p group if the size of every

continuous finite quotient is a power of p.

If G is pro-p and (topologically) finitely generated, there is a

natural inverse system:

Let Rn be the subgroup of G generated by the pn-th powers.

Clearly
⋂

n Rn = {e}.
Rn is normal and open; let Gn = G/Rn.

Then (Gn, pn)n∈N, with the canonical maps pn : Gn+1 → Gn,

forms an inverse system for G.

Inverse system is invariant under Aut(G).
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Lower and upper box (or counting) dimension

Let M be a metric space, and X ⊆M be compact. For α > 0, let

Nα(X) = least size of a covering of X with sets of diameter ≤ α.

The lower box dimension is

dimBox(X) = lim inf
α→0+

logNα(X)

log(1/α)

dimBox(Coastline) = 1.25

Source: wikipedia

The upper box dimension dimBox(X) is defined as the limsup.
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Lower box dimension of [S]
Consider the metric space [T ] for a finitely branching tree T ⊆ N∗.

Let X = [S] where S is a subtree. (Trees will have no leaves.)

{[σ] : σ ∈ Sn} is the “optimal covering” of [S] for diameter |Tn|−1.

Only α’s of form |Tn|−1 matter, so

dimBox([S]) = lim inf
α→0+

logNα(X)

log(1/α)
= lim inf

n→∞

log |Sn|
log |Tn|

Example (similar to the Cantor “no middle-third” set)

Let T = {0, 1, 2}<ω and S the subtree of strings without a 1.

log |Sn|/ log |Tn| = log 2/ log 3 for each n.

So dimBox[S] = dimBox[S] = log3(2) ≈ 0.631
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Box dimensions of closed subgroups of G
Recall that G = [T ]. The subtree S describing H ≤c G satisfies

Sn = Hn, where Hn is the projection of H into Gn. So

dimBox(H) = lim inf
n→∞

log |Hn|
log |Gn|

Example (Barnea-Shalev 1997, essentially)

Let G be the Cantor space P(N) with symmetric difference ∆ as

the group multiplication. Let Gn = P(n).
For each 0 ≤ α ≤ β ≤ 1 there is a closed subgroup H with

dimBox(H) = α and dimBox(H) = β.

To see this, let R ⊆ N be a set with lower [ upper ] density α [β].

Let H be the subgroup P(R). We have |Sn| = 2|R∩n|, |Tn| = 2n.
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Hausdorff and packing dimension
dimHausdorff(X) is the sup of the r such that the r-dimensional

Hausdorff measure Hr(X) is positive.

Packing dimension dimPacking(X) is defined in a similar way

but “from the inside”, via disjoint sets of balls with centre

in X.

We always have

dimPacking(X) ≤ dimBox(X)

dimHausdorff(X) ≤ dimBox(X)

and also upward inequalities.
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Coincidences of fractal dimensions for [S]

Theorem (Mayordomo and N., 2024)

Suppose a subtree S of T is levelwise uniformly branching. Then

Packing dimension of [S] = upper box dim. of [S]

Hausdorff dimension of [S] = lower box dim. of [S]

The proof uses two versions of the point-to-set principle in

general metric spaces (J. Lutz, N. Lutz and Mayordomo,

2023). We will discuss this proof on the next two slides.

For both equalities, we also have direct proofs of the

inequalities ≥; the inequalities ≤ always hold.

E.g., Tricot: dimP [S] ≥ inf{dimB(V ) : V ̸= ∅ open in [S]}.
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Proof of Theorem: constructive dimensions
Consider a computable metric space M with a dense sequence of

designated points, encoded by binary strings.

The lower constructive dimension of a point x ∈M is defined by

cdim(x) := lim infα→0+ Cα(x)/ log(1/α),

where Cα(x) is the least complexity of a designated point within

radius α. The upper dimension cDim(x) is defined using the sup.

Proposition (Mayordomo and N)

Let T be a computable tree. Let S be a computable subtree of T .

cdim(f) ≤ dimBox(S) and cDim(f) ≤ dimBox(S)

for each f ∈ [S].

If S is uniformly branching, then equalities hold when f is

Martin-Löf random in [S] w.r.t. the uniform measure on [S].
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Proof of Theorem: Point-to-set principles

Two point-to-set principles of Lutz, Lutz and Mayordomo (2023)

determine the Hausdorff and packing dimension of a set X ⊆M in

terms of the relativised algorithmic dimensions of the points in it:

dimHausdorff(X) = min
A

sup
x∈X

dimA(x),

dimPacking(X) = min
A

sup
x∈X

DimA(x)

Using the previous proposition in relativised form, this shows

dimHausdorff([S]) = dimBox([S]) and dimPacking([S]) = dimBox([S]),

whenever S is a levelwise uniformly branching subtree of T .
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Apply this to profinite groups G: purely geometric proof of a result

that describes the Hausdorff dimension of closed subgroups of G.

Theorem (Barnea-Shalev, 1997)

Let G = lim←−n
Gn. Suppose that H ≤c G.

Let Hn be the projection of H into Gn. Then

dimHausdorff(H) = dimBox(H) = lim inf
n→∞

log |Hn|
log |Gn|

They used Prop 2.6 in the topological algebra paper “Subgroups

and subrings of profinite rings” by Abercrombie (1994).

Our argument shows that this only needs to use the tree structures.

By our methods, we also obtain

dimPacking(H) = dimBox(H) = lim sup
n→∞

log |Hn|
log |Gn|

.
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Dimension spectrum of a f.g. pro-p group

Important topic of the Barnea-Shalev 1997 paper and its

sequels (such as B. Klopsch and co-authors) is the spectrum,

namely, the set of possible dimensions of closed subgroups.

For instance, the spectrum of Z2
p is {0, 1

2
, 1}.

For especially nice pro-p-groups known as p-adic analytic, the

Hausdorff dimension of a closed subgroup is k/n, where k is

its dimension as a manifold over Zp, and the whole group as a

manifold has dimension n.

There is a f.g. pro-p group with “normal” spectrum [0, 1]

(de las Heras and Klopsch, 2022).

Open question: among the f.g. pro-p groups, are the p-adic

analytic ones the only ones with finite spectrum?
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IV. Algorithmic randomness in

computable profinite groups

Joint with Willem Fouché and Matteo Vannacci
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Haar measure

Any compact separable group has a unique translation invariant

probability measure, called its Haar measure, we denote by µ.

If G = lim←−n
(Gn, pn) is profinite, this is the uniform measure on [T ],

where T is the tree given by the inverse system.

If G is computable and infinite, the usual algorithmic test notions

for Cantor space can be extended to the space of paths [T ].

Kurtz random: in no effectively closed null set.

Schnorr random: in no null set of the form
⋂

m Gm, where

(Gm)m∈N is a sequence of uniformly Σ0
1 sets, and µGm is a

uniformly computable real.
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“Almost everywhere” results for k-tuples

An “almost everywhere” result for a profinite group G asserts that

µk-almost every k-tuple g satisfies a given property.

For g ∈ Gk, by ⟨g⟩ one denotes the closure of the subgroup of

G generated by g.

Let G = Ẑ = lim←−n
Z/n!Z be the free profinite group of rank 1.

Some “ almost everywhere” results for Ẑ (Jarden, Lubotzky):

(1) ⟨g⟩ has infinite index in Ẑ for a.e. g ∈ Ẑ.

(2) ⟨g⟩ has finite index in Ẑ for for a.e. g ∈ (Ẑ)k, where k ≥ 2.
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Algorithmic version

Recall “ almost everywhere” results for Ẑ (Jarden, Lubotzky):

(1) |Ẑ : ⟨g⟩| =∞ for a.e. g ∈ Ẑ.
(2) |Ẑ : ⟨g⟩| <∞ for a.e. g ∈ (Ẑ)k, where k ≥ 2.

Theorem (Algorithmic versions of these results)

(1) If g ∈ Ẑ is Kurtz random, then |Ẑ : ⟨g⟩| =∞
(2) If k ≥ 2 and g ∈ Ẑk is Schnorr random, then |Ẑ : ⟨g⟩| <∞;

Kurtz randomness is not sufficient.
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When a k-tuple generates an open subgroup a.s.

We say that a profinite group G is a k-group if |G : ⟨g⟩| <∞
almost surely for g ∈ Gk.

This means Q(G, k) = 1 in the notation of A. Mann (1996).

Each k-group is topologically finitely generated.

By the results above, Ẑ is a 2-group, and not a 1-group.

Nikolov and Segal (2008): each subgroup of finite index in a

topologically f.g. profinite group is open.

So in the definition above one could require as well that

⟨g⟩ be open.
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When a k-tuple generates an open subgroup a.s.
Recall a profinite G is a k-group if |G : ⟨g⟩| <∞ almost surely for

g ∈ Gk.

Proposition

Let the computable profinite group G be a k-group.

Then |G : ⟨g⟩| <∞ for each weakly 2-random g ∈ Gk.

Proof:

Let Vm = {g ∈ Gk : |G : ⟨g⟩| ≥ m}.
If g ∈ Vm this becomes apparent at some Gn in the inverse

system. So Vm is uniformly Σ0
1.

Also µk(Vm)→m 0 since G is a k-group.

So (Vm)m∈N is a weak 2-test. □
Work in progress with Vannacci would show that if G is pro-p, then

Schnorr randomness suffices.
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Effective form of a.e. results for Gal(Q̄/Q)

We give algorithmic versions of “a.e.” theorems from

Fried and Jarden, Field arithmetic (3d edition, 2005).

G = Gal(Q̄/Q) = Aut(Q,+,×) is the absolute Galois group

of Q. A Galois group is always profinite.

Since Q[X] has a splitting algorithm, G is computable.

Theorem (algorithmic form of Thm. 18.5.6 in Fried-Jarden)

Let G = Gal(Q̄/Q). Let g ∈ Gk be Kurtz random.

Then ⟨g⟩ is a free profinite group of rank k.
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Effective form of a.e. results for Gal(Q̄/Q)

G = Gal(Q̄/Q) is the absolute Galois group of Q.

A field L is pseudo-algebraically closed (PAC) ⇐⇒ every

absolutely irreducible polynomial p ∈ L[X, Y ] has a zero in L.

Theorem (algorithmic form of Thm. 27.4.8 in Fried-Jarden)

Let g ∈ G be Kurtz random. Then the fixed field of the least

closed normal subgroup containing g is PAC.

Since Kurtz randomness is enough, these Fried-Jarden results

prove more than what they say.

For instance, weakly 1-generic also suffices.
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Summary
Algorithmic presentations of profinite groups

Reviwed co-c.e. and computable profinite groups. Characterized

f.g. subgroups of computable profinite groups by Π0
1 word problem

and e.r.f.

Fractal dimensions of closed subgroups

Showed coincidence of Hausdorff and lower box dimension of [S]

when S is a uniformly branching subtree of T . Applied it for a

geometric proof of Barnea-Shalev formula for Hausdorff dimension

of closed subgroups. (arXiv: 2502.09995)

Algorithmic randomness in computable profinite groups

Algorithmic versions of a.e. theorems. Often the weak notion of

Kurtz randomness suffices.
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